
1

CSEP 521

Applied Algorithms

Richard Anderson

Lecture 6

Dynamic Programming

Announcements

• Midterm today!

– 60 minutes, start of class, closed book

• Reading for this week

– 6.1, 6.2, 6.3., 6.4

• Makeup lecture

– February 19, 6:30 pm.

• Still waiting on confirmation on MS room.

Dynamic Programming

• Weighted Interval Scheduling

• Given a collection of intervals I1,…,In with

weights w1,…,wn, choose a maximum

weight set of non-overlapping intervals

4

6

3

5

7

6

Optimality Condition

• Opt[j] is the maximum weight

independent set of intervals I1, I2, . . ., Ij

• Opt[j] = max(Opt[j – 1], wj + Opt[p[j]])

– Where p[j] is the index of the last interval

which finishes before Ij starts

Algorithm

MaxValue(j) =

 if j = 0 return 0

 else

 return max(MaxValue(j-1),

 wj + MaxValue(p[j]))

Worst case run time: 2n

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =

 if j = 0 return 0;

 else if M[j] != -1 return M[j];

 else

 M[j] = max(MaxValue(j-1), wj + MaxValue(p[j]));

 return M[j];

2

Iterative version

MaxValue (j) {

 M[0] = 0;

 for (k = 1; k <= j; k++){

 M[k] = max(M[k-1], wk + M[P[k]]);

 return M[j];

}

Fill in the array with the Opt values

Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

4

7

4

6

7

6

2

Computing the solution

Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

Record which case is used in Opt computation

4

7

4

6

7

6

2

Dynamic Programming

• The most important algorithmic technique

covered in CSEP 521

• Key ideas

– Express solution in terms of a polynomial

number of sub problems

– Order sub problems to avoid recomputation

Optimal linear interpolation

Error = S(yi –axi – b)2

What is the optimal linear

interpolation with three line segments

3

What is the optimal linear

interpolation with two line segments

What is the optimal linear

interpolation with n line segments

Notation

• Points p1, p2, . . ., pn ordered by

x-coordinate (pi = (xi, yi))

• Ei,j is the least squares error for the

optimal line interpolating pi, . . . pj

Optimal interpolation with two

segments

• Give an equation for the optimal interpolation of

p1,…,pn with two line segments

• Ei,j is the least squares error for the optimal line

interpolating pi, . . . pj

Optimal interpolation with k

segments

• Optimal segmentation with three segments

– Mini,j{E1,i + Ei,j + Ej,n}

– O(n2) combinations considered

• Generalization to k segments leads to

considering O(nk-1) combinations

Optk[j] : Minimum error

approximating p1…pj with k segments

How do you express Optk[j] in terms of

Optk-1[1],…,Optk-1[j]?

4

Optimal sub-solution property

Optimal solution with k segments extends

an optimal solution of k-1 segments on a

smaller problem

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n

 Opt[1, j] = E1,j;

for k := 2 to n-1

 for j := 2 to n

 t := E1,j

 for i := 1 to j -1

 t = min (t, Opt[k-1, i] + Ei,j)

 Opt[k, j] = t

Determining the solution

• When Opt[k,j] is computed, record the

value of i that minimized the sum

• Store this value in a auxiliary array

• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance

• Penalty function associated with segments

• Cost = Interpolation error + C x #Segments

Penalty cost measure

• Opt[j] = min(E1,j, mini(Opt[i] + Ei,j + P))

Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}

• Find a subset that has as large a sum as

possible, without exceeding 50

5

Adding a variable for Weight

• Opt[j, K] the largest subset of {w1, …, wj}

that sums to at most K

• {2, 4, 7, 10}

– Opt[2, 7] =

– Opt[3, 7] =

– Opt[3,12] =

– Opt[4,12] =

Subset Sum Recurrence

• Opt[j, K] the largest subset of {w1, …, wj}

that sums to at most K

Subset Sum Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Code

Knapsack Problem

• Items have weights and values

• The problem is to maximize total value subject to
a bound on weght

• Items {I1, I2, … In}
– Weights {w1, w2, …,wn}

– Values {v1, v2, …, vn}

– Bound K

• Find set S of indices to:

– Maximize SieSvi such that SieSwi <= K

Knapsack Recurrence

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:

6

Knapsack Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + vj)

Dynamic Programming

Examples
• Examples

– Optimal Billboard Placement

• Text, Solved Exercise, Pg 307

– Linebreaking with hyphenation

• Compare with HW problem 6, Pg 317

– String approximation

• Text, Solved Exercise, Page 309

Billboard Placement

• Maximize income in placing billboards

– bi = (pi, vi), vi: value of placing billboard at

position pi

• Constraint:

– At most one billboard every five miles

• Example

– {(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming

Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub

problems?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Solution

j = 0; // j is five miles behind the current position

 // the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

 while (P[j] < P[k] – 5)

 j := j + 1;

 j := j – 1;

 Opt[k] = Max(Opt[k-1] , V[k] + Opt[j]);

7

Optimal line breaking and hyphen-

ation

• Problem: break lines and insert hyphens to

make lines as balanced as possible

• Typographical considerations:

– Avoid excessive white space

– Limit number of hyphens

– Avoid widows and orphans

– Etc.

Penalty Function

• Pen(i, j) – penalty of starting a line a

position i, and ending at position j

• Key technical idea

– Number the breaks between words/syllables

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

String approximation

• Given a string S, and a library of strings B

= {b1, …bm}, construct an approximation of

the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-

overlapping positions of S

• Strings from B may be used multiple times

• Cost of d for unmatched character in S

• Cost of g for mismatched character in S

– MisMatch(i, j) – number of mismatched

characters of bj, when aligned starting with

position i in s.

Design a Dynamic Programming

Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub

problems?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.

8

Solution

for i := 1 to n

 Opt[k] = Opt[k-1] + d;

 for j := 1 to |B|

 p = i – len(bj);

 Opt[k] = min(Opt[k], Opt[p-1] + g MisMatch(p, j));

