CSEP 521 Applied Algorithms

Richard Anderson Lecture 6 Dynamic Programming

Announcements

- Midterm today!
 60 minutes, start of class, closed book
- Reading for this week
 -6.1, 6.2, 6.3., 6.4
- Makeup lecture

 February 19, 6:30 pm.
 Still waiting on confirmation on MS room.

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, ..., I_j
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]])
 Where p[j] is the index of the last interval which finishes before l_i starts

Algorithm

MaxValue(j) = if j = 0 return 0 else return max(MaxValue(j-1), w_j + MaxValue(p[j]))

Worst case run time: 2ⁿ

Iterative version

```
MaxValue (j) {
    M[ 0 ] = 0;
    for (k = 1; k <= j; k++){
        M[ k ] = max(M[ k-1 ], w<sub>k</sub> + M[ P[ k ] ]);
        return M[ j ];
}
```


+ $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with k segments

- Optimal segmentation with three segments
 Min_{i,i}{E_{1,i} + E_{i,i} + E_{i,n}}
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

Opt_k[j]: Minimum error approximating p₁...p_j with k segments

How do you express $Opt_{k-1}[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n Opt[1, j] = $E_{1,j}$; for k := 2 to n-1 for j := 2 to n t := $E_{1,j}$ for i := 1 to j -1 t = min (t, Opt[k-1, i] + $E_{i,j}$) Opt[k, j] = t

Penalty cost measure

Opt[j] = min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))

- Let w_1,\ldots,w_n = {6, 8, 9, 11, 13, 16, 18, 24}
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- Opt[j, K] the largest subset of $\{w_1,\,...,\,w_j\}$ that sums to at most K
- {2, 4, 7, 10}
 - Opt[2, 7] =
 - Opt[3, 7] =
 - Opt[3, 12] =
 - Opt[4,12] =

Subset Sum Recurrence

 Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K

Knapsack Problem

- · Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\{I_1, I_2, ..., I_n\}$
 - Weights {w₁, w₂, ...,w_n}
 - Values {v₁, v₂, ..., v_n}
 - Bound K
- Find set S of indices to:
 - Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i <= K$

Knapsack Recurrence

Subset Sum Recurrence:

 $Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)$

Knapsack Recurrence:

Dynamic Programming Examples

Examples

- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
 Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards

 b_i = (p_i, v_i), v_i: value of placing billboard at position p_i
- Constraint:
 - At most one billboard every five miles
- Example
 - -{(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input $b_1, \, \dots, \, b_n$, where $b_i = (p_i, \, v_i)$, position and value of billboard i

Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from sub problems?

Input $b_1, \, \ldots, \, b_n$, where $bi = (p_i, \, v_i)$, position and value of billboard i

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

 Pen(i, j) – penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

• Key technical idea – Number the breaks between words/syllables

String approximation

 Given a string S, and a library of strings B = {b₁, ...b_m}, construct an approximation of the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- + Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S

 MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Target string $S = s_i s_2...s_n$ Library of strings $B = \{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])How is the solution determined from sub

Target string S = s,s₂...s_n Library of strings B = $\{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

problems?

Solution

for i := 1 to n $\begin{aligned} & Opt[k] = Opt[k-1] + \delta; \\ & for j := 1 \text{ to } |B| \\ & p = i - len(b_j); \\ & Opt[k] = min(Opt[k], \ Opt[p-1] + \gamma \ MisMatch(p, j)); \end{aligned}$