

Algorithm

MaxValue(j) =

if $\mathrm{j}=0$ return 0
else return max(MaxValue(j-1),

$$
\mathrm{w}_{\mathrm{j}}+\operatorname{MaxValue(p[j]))}
$$

Worst case run time: 2^{n}

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ with weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, choose a maximum weight set of non-overlapping intervals
\qquad
\qquad

\qquad
\qquad
6

Algorithm
```MaxValue(j) = if j = 0 return 0 else return max(MaxValue(j-1), wj + MaxValue(p[j ]))```
Worst case run time: $2^{\text {n }}$

## Announcements

- Midterm today!
- 60 minutes, start of class, closed book
- Reading for this week
-6.1, 6.2, 6.3., 6.4
- Makeup lecture
- February 19, 6:30 pm.
- Still waiting on confirmation on MS room.


## A better algorithm

$M[j$ ] initialized to -1 before the first recursive call for all $j$
MaxValue(j) =
if $\mathrm{j}=0$ return 0 ;
else if $\mathrm{M}[\mathrm{j}]$ ! $=-1$ return $\mathrm{M}[\mathrm{j}]$;
else
M[ j$]=\max \left(\operatorname{MaxValue}(\mathrm{j}-1), \mathrm{w}_{\mathrm{j}}+\right.$ MaxValue(p[ j$\left.]\right)$ );
return M[ j ];

## Iterative version

## MaxValue (j) \{

$\mathrm{M}[0]=0$;
for $(k=1 ; k<=j ; k++)\{$
$M[k]=\max \left(M[k-1], w_{k}+M[P[k]]\right) ;$
return $\mathrm{M}[\mathrm{j}$ ];
\}

## Computing the solution



## Dynamic Programming

- The most important algorithmic technique covered in CSEP 521
- Key ideas
- Express solution in terms of a polynomial number of sub problems
- Order sub problems to avoid recomputation

What is the optimal linear
interpolation with three line segments
0



## Notation

- Points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ ordered by $x$-coordinate $\left(p_{i}=\left(x_{i}, y_{i}\right)\right)$
- $E_{i, j}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{i}$
- 

$\circ \circ$


## Optimal interpolation with two segments

- Give an equation for the optimal interpolation of $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ with two line segments
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line
interpolating $p_{i}, \ldots p_{j}$
What is the optimal linear interpolation with $n$ line segments O

- 

$\bigcirc \bigcirc$
$\bigcirc$
rpe, pn

$\mathrm{Opt}_{\mathrm{k}}[\mathrm{j}]$ : Minimum error approximating $p_{1} \ldots p_{j}$ with $k$ segments How do you express Opt $[j]$ in terms of Opt $_{\mathrm{k}-1}[1], \ldots, \mathrm{Opt}_{\mathrm{k}-1}[\mathrm{j}]$ ?

## Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $\mathrm{k}-1$ segments on a smaller problem


○
$\bigcirc \bigcirc$


## Optimal multi-segment interpolation

```
Compute Opt[k, j] for 0 < k < j < n
```

for $\mathrm{j}:=1$ to n
Opt[ $1, j]=E_{1, j}$;
for k := 2 to $\mathrm{n}-1$
for $\mathrm{j}:=2$ to n
$t:=E_{1, j}$
for $i:=1$ to $j-1$
$t=\min \left(t, O p t[k-1, i]+E_{i, j}\right)$
Opt[k, j] = t

## Determining the solution

- When Opt[k,j] is computed, record the value of $i$ that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution


## Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments



## Penalty cost measure

- $\operatorname{Opt}[\mathrm{j}]=\min \left(\mathrm{E}_{1, \mathrm{j}}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{P}\right)\right)$


## Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50


## Adding a variable for Weight

- Opt[ $j, \mathrm{~K}]$ the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt $[2,7]=$
- Opt $[3,7]=$
- Opt[3,12] =
- Opt[4,12] =



## Subset Sum Code

- Opt[ j, K ] the largest subset of $\left\{w_{1}, \ldots, w_{j}\right\}$ that sums to at most K


## Subset Sum Recurrence

 tatsin to most
## Subset Sum Grid

,

## Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set $S$ of indices to:
- Maximize $\sum_{\text {is }} \mathrm{V}_{\mathrm{i}}$ such that $\sum_{\text {is } \mathrm{S}} \mathrm{W}_{\mathrm{i}}<=\mathrm{K}$


## Knapsack Recurrence

Subset Sum Recurrence:
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Knapsack Recurrence:


Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$

## Dynamic Programming Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309


## Billboard Placement

- Maximize income in placing billboards
$-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$ : value of placing billboard at position $\mathrm{p}_{\mathrm{i}}$
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?
- How is the solution determined from sub problems?


## Opt[k] = fun(Opt[0], ..,Opt[k-1]) <br> <br> Opt[k] = fun(Opt[0], ..,Opt[k-1])

 <br> <br> Opt[k] = fun(Opt[0], ..,Opt[k-1])}
## Solution

$j=0 ; \quad / / j$ is five miles behind the current position
// the last valid location for a billboard, if one placed at $\mathrm{P}[\mathrm{k}]$
for $\mathrm{k}:=1$ to n
while ( $P[j]<P[k]-5$ )
$\mathrm{j}:=\mathrm{j}+1$;
$\mathrm{j}:=\mathrm{j}-1$;
Opt [ k$]=\operatorname{Max}(\mathrm{Opt}[\mathrm{k}-1], \mathrm{V}[\mathrm{k}]+\operatorname{Opt}[\mathrm{j}])$;

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
- Avoid excessive white space
- Limit number of hyphens
- Avoid widows and orphans
- Etc.


## String approximation

- Given a string S, and a library of strings B $=\left\{b_{1}, \ldots b_{m}\right\}$, construct an approximation of the string $S$ by using copies of strings in $B$.
$B=\{a b a b, b b b a a a, c c b b, c c a a c c\}$
$S=$ abaccbbbaabbccbbccaabab


## Penalty Function

- Pen(i, j) - penalty of starting a line a position $i$, and ending at position $j$

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

- Key technical idea
- Number the breaks between words/syllables


## Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of $\delta$ for unmatched character in S
- Cost of $\gamma$ for mismatched character in S
- MisMatch(i, j) - number of mismatched characters of $b_{j}$, when aligned starting with position ins.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?
Opt[k] = fun(Opt[0], ..,Opt[k-1])
- How is the solution determined from sub problems?


