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CSEP 521 

Applied Algorithms 

Richard Anderson 

Lecture 6 

Dynamic Programming 

Announcements 

• Midterm today! 

– 60 minutes, start of class, closed book 

• Reading for this week 

– 6.1, 6.2, 6.3., 6.4 

• Makeup lecture 

– February 19, 6:30 pm. 

• Still waiting on confirmation on MS room. 

 

Dynamic Programming 

• Weighted Interval Scheduling 

• Given a collection of intervals I1,…,In with 

weights w1,…,wn, choose a maximum 

weight set of non-overlapping intervals 
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Optimality Condition 

• Opt[ j ] is the maximum weight 

independent set of intervals I1, I2, . . ., Ij 

• Opt[ j ] = max( Opt[ j – 1], wj + Opt[ p[ j ] ]) 

– Where p[ j ] is the index of the last interval 

which finishes before Ij starts 

 

 

Algorithm 

MaxValue(j) = 

 if j = 0 return 0 

   else 

  return max( MaxValue(j-1),                                                               

             wj + MaxValue(p[ j ])) 

 

Worst case run time: 2n 

A better algorithm 

M[ j ] initialized to -1 before the first recursive call for all j 

 

MaxValue(j) = 

 if j = 0 return 0; 

    else if M[ j ] != -1 return M[ j ]; 

    else  

  M[ j ] = max(MaxValue(j-1), wj + MaxValue(p[ j ])); 

  return M[ j ];                                                        
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Iterative version 

 

MaxValue (j)  { 

 M[ 0 ] = 0; 

          for (k = 1; k <= j; k++){ 

  M[ k ] = max(M[ k-1 ], wk + M[ P[ k ] ]); 

 return M[ j ]; 

} 

Fill in the array with the Opt values 

Opt[ j ] = max (Opt[ j – 1], wj + Opt[ p[ j ] ])  
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Computing the solution 

Opt[ j ] = max (Opt[ j – 1], wj + Opt[ p[ j ] ])  

Record which case is used in Opt computation 
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Dynamic Programming 

• The most important algorithmic technique 

covered in CSEP 521 

• Key ideas 

– Express solution in terms of a polynomial 

number of sub problems 

– Order sub problems to avoid recomputation 

Optimal linear interpolation    

Error = S(yi –axi – b)2 

What is the optimal linear 

interpolation with three line segments 

 



3 

What is the optimal linear 

interpolation with two line segments 

 

What is the optimal linear 

interpolation with n line segments 

 

Notation 

• Points p1, p2, . . ., pn ordered by                

x-coordinate (pi = (xi, yi)) 

• Ei,j is the least squares error for the 

optimal line interpolating pi, . . . pj 

Optimal interpolation with two 

segments 

• Give an equation for the optimal interpolation of 

p1,…,pn with two line segments 

 

 

 

 

 

• Ei,j is the least squares error for the optimal line 

interpolating pi, . . . pj 

 

Optimal interpolation with k 

segments 

• Optimal segmentation with three segments 

– Mini,j{E1,i + Ei,j + Ej,n} 

– O(n2) combinations considered 

• Generalization to k segments leads to 

considering O(nk-1) combinations 

Optk[ j ] : Minimum error 

approximating p1…pj with k segments 

How do you express Optk[ j ] in terms of  

Optk-1[1],…,Optk-1[ j ]? 
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Optimal sub-solution property 

Optimal solution with k segments extends 

an optimal solution of k-1 segments on a 

smaller problem 

Optimal multi-segment interpolation 

Compute Opt[ k, j ] for 0 < k < j < n 

 

for j := 1 to n 

    Opt[ 1, j] = E1,j; 

for k := 2 to n-1 

    for j := 2 to n 

 t := E1,j 

 for i := 1 to j -1 

     t = min (t, Opt[k-1, i ] + Ei,j) 

 Opt[k, j] = t 

Determining the solution 

• When Opt[k,j] is computed, record the 

value of i that minimized the sum 

• Store this value in a auxiliary array 

• Use to reconstruct solution 

Variable number of segments 

• Segments not specified in advance 

• Penalty function associated with segments 

• Cost = Interpolation error + C x #Segments 

Penalty cost measure 

• Opt[ j ] = min(E1,j, mini(Opt[ i ] + Ei,j + P)) 

Subset Sum Problem 

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24} 

• Find a subset that has as large a sum as 

possible, without exceeding 50 
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Adding a variable for Weight 

• Opt[ j, K ] the largest subset of {w1, …, wj} 

that sums to at most K 

• {2, 4, 7, 10} 

– Opt[2, 7] = 

– Opt[3, 7] = 

– Opt[3,12] = 

– Opt[4,12] = 

Subset Sum Recurrence 

• Opt[ j, K ] the largest subset of {w1, …, wj} 

that sums to at most K 

 

Subset Sum Grid 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

{2, 4, 7, 10} 

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj) 

Subset Sum Code 

 

Knapsack Problem 

• Items have weights and values 

• The problem is to maximize total value subject to 
a bound on weght 

• Items {I1, I2, … In} 
– Weights {w1, w2, …,wn} 

– Values {v1, v2, …, vn} 

– Bound K 

• Find set S of indices to: 

– Maximize SieSvi such that SieSwi <= K 

Knapsack Recurrence 

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj) 

Subset Sum Recurrence: 

Knapsack Recurrence: 
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Knapsack Grid 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Weights {2, 4, 7, 10}  Values: {3, 5, 9, 16} 

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj) 

Dynamic Programming 

Examples 
• Examples 

– Optimal Billboard Placement 

• Text, Solved Exercise, Pg 307 

– Linebreaking with hyphenation 

• Compare with HW problem 6, Pg 317 

– String approximation 

• Text, Solved Exercise, Page 309 

 

Billboard Placement 

• Maximize income in placing billboards 

– bi = (pi, vi),  vi: value of placing billboard at  

position pi 

• Constraint: 

– At most one billboard every five miles 

• Example 

– {(6,5), (8,6), (12, 5), (14, 1)} 

Design a Dynamic Programming  

Algorithm for Billboard Placement 

• Compute Opt[1], Opt[2], . . ., Opt[n] 

• What is Opt[k]? 

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i 

Opt[k] = fun(Opt[0],…,Opt[k-1]) 

• How is the solution determined from sub 

problems? 

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i 

Solution 

j = 0;                // j is five miles behind the current position 

                         // the last valid location for a billboard, if one placed at P[k] 

for k := 1 to n 

 while (P[ j ] < P[ k ] – 5) 

  j := j + 1; 

 j := j – 1; 

 Opt[ k]  = Max(Opt[ k-1] , V[ k ] + Opt[ j ]); 
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Optimal line breaking and hyphen-

ation 

• Problem: break lines and insert hyphens to 

make lines as balanced as possible 

• Typographical considerations: 

– Avoid excessive white space 

– Limit number of hyphens 

– Avoid widows and orphans 

– Etc.  

Penalty Function 

• Pen(i, j) – penalty of starting a line a 

position i, and ending at position j 

 

 

 

 

• Key technical idea 

– Number the breaks between words/syllables 

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming 

String approximation 

• Given a string S, and a library of strings B 

= {b1, …bm}, construct an approximation of 

the string S by using copies of strings in B.  

B = {abab, bbbaaa, ccbb, ccaacc} 

S = abaccbbbaabbccbbccaabab 

Formal Model 

• Strings from B assigned to non-

overlapping positions of S 

• Strings from B may be used multiple times 

• Cost of d for unmatched character in S 

• Cost of g for mismatched character in S 

– MisMatch(i, j) – number of mismatched 

characters of bj, when aligned starting with 

position i in s. 

Design a Dynamic Programming 

Algorithm for String Approximation 

• Compute Opt[1], Opt[2], . . ., Opt[n] 

• What is Opt[k]? 

Target string S = s1s2…sn 

Library of strings B = {b1,…,bm} 

MisMatch(i,j) = number of mismatched characters with b j when aligned 

starting at position i of S. 

Opt[k] = fun(Opt[0],…,Opt[k-1]) 

• How is the solution determined from sub 

problems? 

Target string S = s1s2…sn 

Library of strings B = {b1,…,bm} 

MisMatch(i,j) = number of mismatched characters with b j when aligned 

starting at position i of S. 
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Solution 

for i := 1 to n 

 Opt[k] = Opt[k-1] + d; 

 for j := 1 to |B| 

  p = i – len(bj); 

  Opt[k] = min(Opt[k],  Opt[p-1] + g MisMatch(p, j)); 

   


