CSEP 521 Applied Algorithms

Richard Anderson Lecture 7 Dynamic Programming

Announcements

• Reading for this week - 6.1-6.8

Review from last week

Counting electoral votes

Dynamic Programming Examples

• Examples

- Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
- Linebreaking with hyphenationCompare with HW problem 6, Pg 317
- String approximation

 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards

 b_i = (p_i, v_i), v_i: value of placing billboard at position p_i
- Constraint:
 - At most one billboard every five miles
- Example
 - $-\{(6,5), (8,6), (12, 5), (14, 1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input $b_1, \, \dots, \, b_n$, where $b_i = (p_i, \, v_i)$, position and value of billboard i

Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from sub problems?

Solution			
j = 0;	// j is five miles behind the current position		
	// the last valid location for a billboard, if one placed at P[k]		
for k := 1 t	o n		
	while (P[j] < P[k] - 5)		
	j := j + 1;		
	j := j - 1;		
	Opt[k] = Max(Opt[k-1] , V[k] + Opt[j]);		

Input $b_1, \, \dots, \, b_n$, where $bi = (p_i, \, v_i)$, position and value of billboard i

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

 Pen(i, j) – penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

• Key technical idea – Number the breaks between words/syllables

String approximation

 Given a string S, and a library of strings B = {b₁, ...b_m}, construct an approximation of the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S

 MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Target string $S = s_i s_2...s_n$ Library of strings $B = \{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])

 How is the solution determined from sub problems?

Target string S = s,s₂...s_n Library of strings B = $\{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Solution

for i := 1 to n $Opt[k] = Opt[k-1] + \delta;$ for j := 1 to |B| $p = i - len(b_i);$ $Opt[k] = min(Opt[k], Opt[p-1] + \gamma MisMatch(p, j));$

Longest Common Subsequence

- C=c₁...c_a is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec

attacggct

occurrence

tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

· Align sequences with gaps CAT TGA AT

CAGAT AGGA

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{xx} = 0$ and $\delta_x > 0$

LCS Optimization

- $A = a_1 a_2 \dots a_m$
- $B = b_1 b_2 ... b_n$
- Opt[j, k] is the length of $LCS(a_1a_2...a_i, b_1b_2...b_k)$

If $a_j = b_k$, Opt[j,k] = 1 + Opt[j-1, k-1]

If $a_j != b_k$, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Give the Optimization Recurrence for the String Alignment Problem

- Charge $\boldsymbol{\delta}_x$ if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Opt[j, k] =

Let $a_j = x$ and $b_k = y$ Express as minimization

Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in O(nm) time and O(n+m) space

- Divide and conquer algorithm
- · Recomputing values used to save space

A = **RRSSRTTRTS** B=RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),...,LCS_{5,9}(A,B)

A = **RRSSRTTRTS** B=RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),...,LCS_{5,9}(A,B)

j	left	right	
0	0	4	
1	1	4	
2	1	3	
3 4	2	3	
	3	3	
5	3	2	
6	3	2	
7	3	1	
8	4	1	
9	4	0	

Divide and Conquer

- $-LCS(a_{m/2+1}...a_m,b_{j+1}...b_n)$ yield optimal solution
- Recurse

Memory Efficient LCS Summary

- We can afford O(nm) time, but we can't afford O(nm) space
- If we only want to compute the length of the LCS, we can easily reduce space to O(n+m)
- Avoid storing the value by recomputing values
 - Divide and conquer used to reduce problem sizes

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- · General case handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
 - O(mn) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

• Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- Opt₀(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w

$$\label{eq:model} \begin{split} M[0,\,w] &= \text{infinity};\\ M[0,\,v] &= 0;\\ \text{for i = 1 to n-1}\\ & \text{foreach } w\\ M[i,\,w] &= \text{min}_x(M[i\text{-}1,x] + \text{cost}[x,w]); \end{split}$$

Algorithm, Version 2

foreach w

M[0, w] = infinity;

M[0, v] = 0; for i = 1 to n-1

foreach w

 $M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))$

Algorithm, Version 3

foreach w M[w] = infinity; M[v] = 0; for i = 1 to n-1 foreach w $M[w] = min(M[w], \ min_x(M[x] + cost[x,w]))$

Correctness Proof for Algorithm 3

- Key lemma at the end of iteration i, for all w, M[w] <= M[i, w];
- Reconstructing the path:
 Set P[w] = x, whenever M[w] is updated from vertex x

