

Announcements

- Reading for this week
-6.1-6.8

Weighted Interval Scheduling

Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50
Counting electoral votes

Opt[k] = fun(Opt[0], ..,Opt[k-1])

- How is the solution determined from sub problems?

Input b_{1}, \ldots, b_{n}, where $b i=\left(p_{i}, v_{i}\right)$, position and value of billboard

Billboard Placement

- Maximize income in placing billboards
$-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$: value of placing billboard at position p_{i}
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$

Dynamic Programming Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
- Avoid excessive white space
- Limit number of hyphens
- Avoid widows and orphans
- Etc.

String approximation

- Given a string S, and a library of strings B $=\left\{b_{1}, \ldots b_{m}\right\}$, construct an approximation of the string S by using copies of strings in B.
$B=\{a b a b, b b b a a a, c c b b, c c a a c c\}$
$S=$ abaccbbbaabbccbbccaabab

Penalty Function

- Pen(i, j) - penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

- Key technical idea
- Number the breaks between words/syllables

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
- MisMatch(i, j) - number of mismatched characters of b_{j}, when aligned starting with position ins.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?
Opt[k] = fun(Opt[0], ..,Opt[k-1])
- How is the solution determined from sub problems?

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

ocurranec	attacggct
occurrence	tacgacca

String Alignment Problem

- Align sequences with gaps

CAT TGA AT
CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{x x}=0$ and $\delta_{x}>0$

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence
If $a_{j}=b_{k}, O p t[j, k]=1+\operatorname{Opt}[j-1, k-1]$
If $a_{j}!=b_{k}, \operatorname{Opt}[j, k]=\max (\operatorname{Opt}[j-1, k]$, Opt $[j, k-1])$

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to charactery

Opt[j, k] =

Let $a_{j}=x$ and $b_{k}=y$
Express as minimization

Code to compute Opt[j,k]

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . \mathrm{n}]$
for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt $[\mathrm{i}, 0]:=0$;
for $\mathrm{j}:=1$ to $\mathrm{n} \quad$ Opt $[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $\mathrm{i}:=1$ to m

for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{$ Opt[i,j] := $1+\operatorname{Opt[i-1,j-1];Best[i,j]:=\operatorname {Diag};\} ,~}$ else if Opt[$[i-1, j]>=$ Opt $[i, j-1]$
$\{$ Opt $[\mathrm{i}, \mathrm{j}]:=$ Opt $[\mathrm{i}-1, \mathrm{j}]$, Best[i,j] := Left; \}
else $\quad\{$ Opt[[i, j] := Opt[[i, j-1], Best[i,j] := Down; \}

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Divide and Conquer Algorithm

- Where does the best path cross the

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and

$$
\mathrm{O}(\mathrm{n}+\mathrm{m}) \text { space }
$$

- Divide and conquer algorithm
- Recomputing values used to save space
middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

A = RRSSRTTRTS B=RTSRRSTST

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$
middle column?
$\mathrm{A}=$ RRSSRTTRTS
$\mathrm{B}=$ RTSRRSTST
Compute $\mathrm{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Computing the middle column

- From the left, compute $\operatorname{LCS}\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m} / 2}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}\right)$
- From the right, compute $\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j’s

- Note - this is space efficient

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Memory Efficient LCS Summary

- We can afford $O(n m)$ time, but we can't afford $O(n m)$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Avoid storing the value by recomputing values
- Divide and conquer used to reduce problem sizes

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n -1 edges

Shortest paths with a fixed number of edges

- Find the shortest path from v to w with exactly k edges

Express as a recurrence

- Opt $_{k}(w)=\min _{x}\left[\operatorname{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{C}_{\mathrm{xw}}\right]$
- $\mathrm{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

Algorithm, Version 3

foreach w
$\mathrm{M}[\mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $i=1$ to $n-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- $M[x]$ could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(v_{k}, v_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all w, M[w] <= M[i,w];
- Reconstructing the path:
-Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

Finding negative cost cycles

- What if you want to find negative cost cycles?

