CSEP 521
 Applied Algorithms

Richard Anderson

Lecture 8

Network Flow

Announcements

- Reading for this week
- 6.8, 7.1, 7.2 [7.3-7.4 will not be covered]
- Next week: 7.5-7.12
- Final exam, March 18, 6:30 pm. At UW. - 2 hours
- In class (CSE 303 / CSE 305)
- Comprehensive
- 67% post midterm, 33% pre midterm

Bellman-Ford Shortest Paths Algorithm

- Computes shortest paths from a starting vertex
- Allows negative cost edges
- Negative cost cycles identified
- Runtime O(nm)
- Easy to code

Bellman Ford Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w

$$
M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)
$$

Bellman Ford Algorithm, Version 3

foreach w

$M[w]=$ infinity;

$$
\begin{aligned}
& M[v]=0 ; \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n}-1
\end{aligned}
$$

foreach w

$$
M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)
$$

Bellman Ford Example

Algorithm 2				
i	v_{1}	v_{2}	v_{3}	v_{4}
0				
1				
2				
3				

Algorithm 3				
i	v_{1}	v_{2}	v_{3}	v_{4}
0				
1				
2				
3				

Finding the longest path in a graph

Foreign Exchange Arbitrage USD

	USD	EUR	CAD
USD	------	0.8	1.2
EUR	1.2	------	1.6
CAD	0.8	0.6	-----

Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows f(e) to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{C}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Flow Example

Find a maximum flow

Value of flow:

Construct a maximum flow and indicate the flow value

Find a maximum flow

Augmenting Path Algorithm

- Augmenting path
- Vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$
- $\mathrm{v}_{1}=\mathrm{s}, \mathrm{v}_{\mathrm{k}}=\mathrm{t}$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1 \ldots \mathrm{k}$-1

Find two augmenting paths

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
$-G$: edge e from u to v with capacity c and flow f
$-G_{R}$: edge e' from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Residual Graph

Build the residual graph

Residual graph:

Augmenting Path Lemma

- Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$: sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
- Sum of flows out of S minus sum of flows into S
- $\operatorname{Flow}(\mathrm{S}, \mathrm{T})<=\operatorname{Cap}(\mathrm{S}, \mathrm{T})$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$$
S=\{s, a, b, e, h\}, \quad T=\{c, f, i, d, g, t\}
$$

Minimum value cut

Find a minimum value cut

MaxFlow - MinCut Theorem

- Let S, T be a cut, and F a flow
$-\operatorname{Cap}(\mathrm{S}, \mathrm{T})>=\operatorname{Flow}(\mathrm{S}, \mathrm{T})$
- If $\operatorname{Cap}(S, T)=\operatorname{Flow}(S, T)$
- S, T must be a minimum cut
- F must be a maximum flow
- The amazing Ford-Fulkerson theorem shows that there is always a cut that matches a flow, and also shows how their algorithm finds the flow

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v ?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

Performance

- The worst case performance of the FordFulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph - O(mnlog n) time algorithm for network flow

History

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA	\bigcirc	303
PB	\bigcirc	321
CC		326
DG		401
AK	O	421

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Theorem

- The maximum number of edge disjoint paths equals the minimum number of edges whose removal separates s from t

