CSEP 521 Applied Algorithms

Richard Anderson Lecture 8 Network Flow

Announcements

- · Reading for this week
 - 6.8, 7.1, 7.2 [7.3-7.4 will not be covered] - Next week: 7.5-7.12
- Final exam, March 18, 6:30 pm. At UW.
 - 2 hours
 - In class (CSE 303 / CSE 305)
 - Comprehensive
 - 67% post midterm, 33% pre midterm

Bellman-Ford Shortest Paths Algorithm

- Computes shortest paths from a starting vertex
- Allows negative cost edges
 Negative cost cycles identified
- Runtime O(nm)
- · Easy to code

Bellman Ford Algorithm, Version 2

foreach w

M[0, w] = infinity;

M[0, v] = 0; for i = 1 to n-1

foreach w

 $M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))$

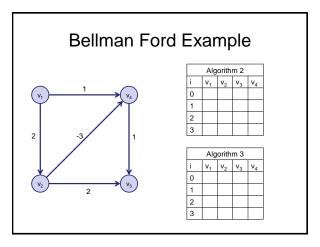
Bellman Ford Algorithm, Version 3

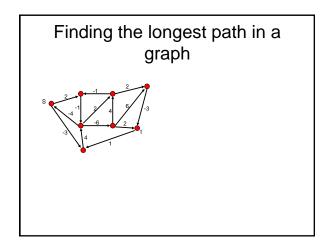
foreach w

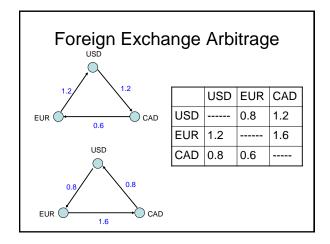
M[w] = infinity;

M[v] = 0;

- for i = 1 to n-1 foreach w
 - $M[w] = min(M[w], min_x(M[x] + cost[x,w]))$





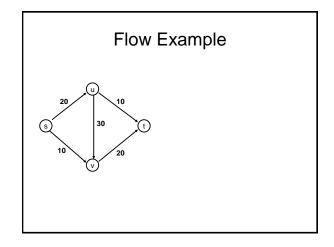


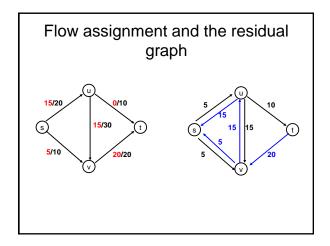
Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

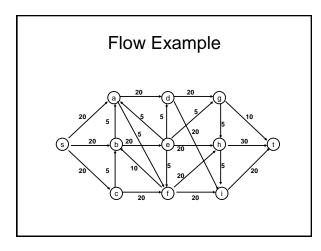
- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- · Value of a flow

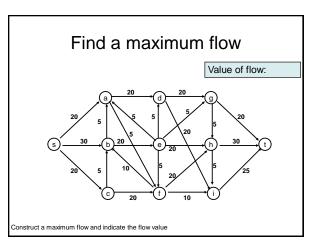


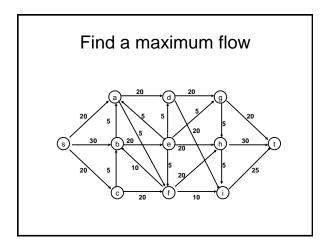


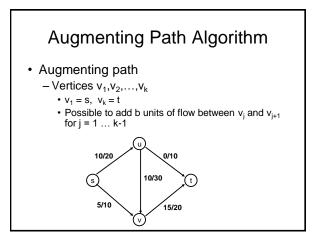
Network Flow Definitions

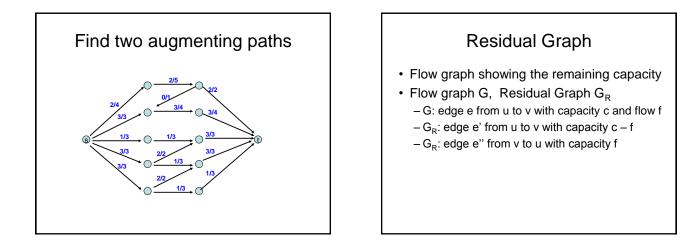
- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \ge 0$
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

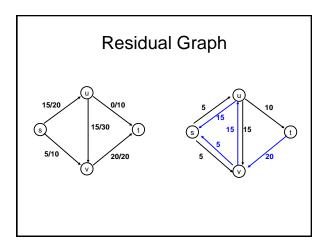


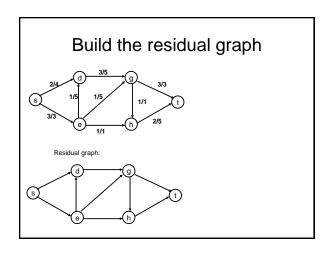


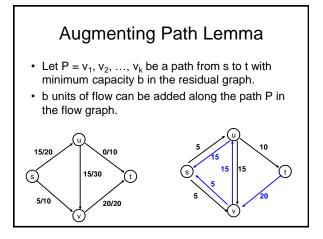












Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?
 - _
 - .

Ford-Fulkerson Algorithm (1956)

while not done

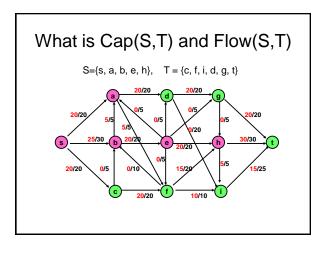
Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along in G

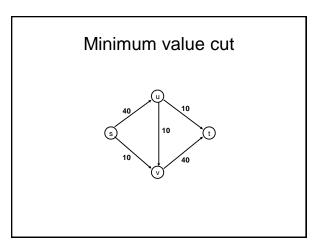
If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

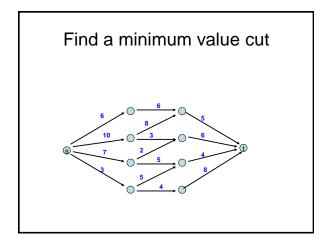
Cuts in a graph

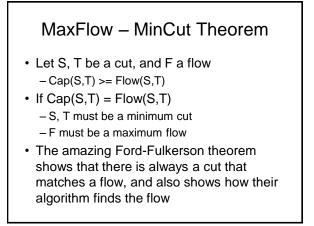
- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S

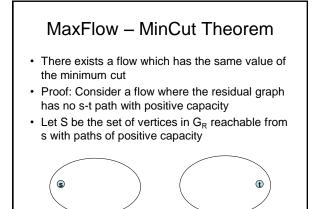
 Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

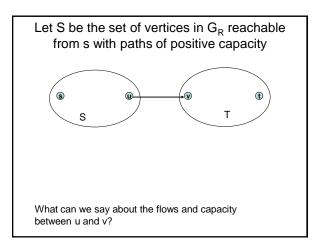






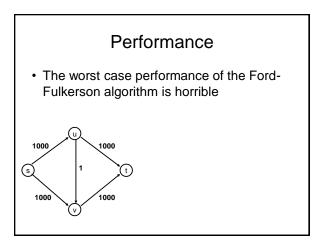






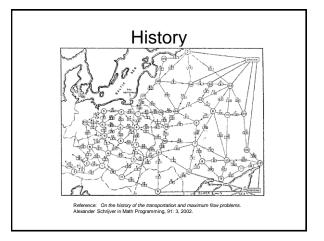
Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $-O(m^2log(C))$ time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- · Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow



Problem Reduction

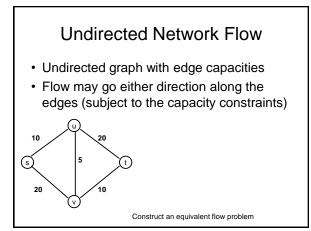
- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

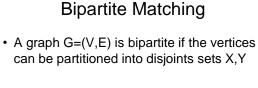
Problem Reduction Examples

• Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem





- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

