
1

CSEP 521

Applied Algorithms

Richard Anderson

Lecture 8

Network Flow

Announcements

• Reading for this week

– 6.8, 7.1, 7.2 [7.3-7.4 will not be covered]

– Next week: 7.5-7.12

• Final exam, March 18, 6:30 pm. At UW.

– 2 hours

– In class (CSE 303 / CSE 305)

– Comprehensive

• 67% post midterm, 33% pre midterm

Bellman-Ford Shortest Paths

Algorithm
• Computes shortest paths from a starting

vertex

• Allows negative cost edges

– Negative cost cycles identified

• Runtime O(nm)

• Easy to code

Bellman Ford Algorithm,

Version 2
foreach w

 M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]))

Bellman Ford Algorithm,

Version 3
foreach w

 M[w] = infinity;

M[v] = 0;

for i = 1 to n-1

 foreach w

 M[w] = min(M[w], minx(M[x] + cost[x,w]))

Bellman Ford Example

Algorithm 2

i v1 v2 v3 v4

0

1

2

3

Algorithm 3

i v1 v2 v3 v4

0

1

2

3

v1

v2 v3

v4

2

1

-3

2

1

2

Finding the longest path in a

graph

S

t

2

2

2

1

-3

-6

2 -3 4

4

-1 6

-1

-4

Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CAD EUR

1.2 1.2

0.6

USD

CAD EUR

0.8 0.8

1.6

Network Flow Outline

• Network flow definitions

• Flow examples

• Augmenting Paths

• Residual Graph

• Ford Fulkerson Algorithm

• Cuts

• Maxflow-MinCut Theorem

Network Flow Definitions

• Capacity

• Source, Sink

• Capacity Condition

• Conservation Condition

• Value of a flow

Flow Example

u

s t

v

20

20

30

10

10

http://en.wikipedia.org/wiki/Image:Waterpipes.jpeg

3

Flow assignment and the residual

graph

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

 10

5 20

15

15

5

Network Flow Definitions

• Flowgraph: Directed graph with distinguished

vertices s (source) and t (sink)

• Capacities on the edges, c(e) >= 0

• Problem, assign flows f(e) to the edges such

that:

– 0 <= f(e) <= c(e)

– Flow is conserved at vertices other than s and t

• Flow conservation: flow going into a vertex equals the flow

going out

– The flow leaving the source is a large as possible

Flow Example

a

s

d

b

c f

e

g

h

i

t

20

5

20 20

20

20

20

5 5

5
20

5 10

20

5

20

20

5

20

20

5

5

10

30

Find a maximum flow

a

s

d

b

c f

e

g

h

i

t

25

5

20 20

20

30

20

5 5

5
20

5 10

20

5

20

10

5

20

20

5

5

20

30

Value of flow:

Construct a maximum flow and indicate the flow value

Find a maximum flow

a

s

d

b

c f

e

g

h

i

t

25

5

20 20

20

30

20

5 5

5
20

5 10

20

5

20

10

5

20

20

5

5

20

30

Augmenting Path Algorithm

• Augmenting path

– Vertices v1,v2,…,vk

• v1 = s, vk = t

• Possible to add b units of flow between vj and vj+1
for j = 1 … k-1

u

s t

v

10/20

15/20

10/30

0/10

5/10

4

Find two augmenting paths

s t

2/5

0/1

3/4

3/3

2/4

1/3

3/3

3/3

2/2

3/4

1/3 3/3

2/2 3/3

1/3

1/3
2/2

1/3

Residual Graph

• Flow graph showing the remaining capacity

• Flow graph G, Residual Graph GR

– G: edge e from u to v with capacity c and flow f

– GR: edge e’ from u to v with capacity c – f

– GR: edge e’’ from v to u with capacity f

Residual Graph

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

 10

5 20

15

15

5

Build the residual graph

s

d

e

g

h

t

3/5

2/4

3/3

1/5 1/5

1/1

1/1

3/3

2/5

s

d

e

g

h

t

Residual graph:

Augmenting Path Lemma

• Let P = v1, v2, …, vk be a path from s to t with

minimum capacity b in the residual graph.

• b units of flow can be added along the path P in

the flow graph.

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

 10

5 20

15

15

5

Proof

• Add b units of flow along the path P

• What do we need to verify to show we

have a valid flow after we do this?

–

–

5

Ford-Fulkerson Algorithm (1956)

while not done

 Construct residual graph GR

 Find an s-t path P in GR with capacity b > 0

 Add b units along in G

If the sum of the capacities of edges leaving S

is at most C, then the algorithm takes at most

C iterations

Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in
S and t in T.

• Cap(S,T): sum of the capacities of edges from
S to T

• Flow(S,T): net flow out of S
– Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

What is Cap(S,T) and Flow(S,T)

a

s

d

b

c f

e

g

h

i

t

15/25

5/5

20/20 20/20

20/20

25/30

20/20

5/5

20/20

0/5

20/20

15/20

10/10

20/20

5/5

20/20

30/30

S={s, a, b, e, h}, T = {c, f, i, d, g, t}

0/5

0/20

0/5

0/5

0/5

0/5

0/10

Minimum value cut

u

s t

v

40

40

10

10

10

Find a minimum value cut

s t

6

6

10

7

3

5

3 6

2
4

5

8
5

4

8

MaxFlow – MinCut Theorem

• Let S, T be a cut, and F a flow

– Cap(S,T) >= Flow(S,T)

• If Cap(S,T) = Flow(S,T)

– S, T must be a minimum cut

– F must be a maximum flow

• The amazing Ford-Fulkerson theorem

shows that there is always a cut that

matches a flow, and also shows how their

algorithm finds the flow

6

MaxFlow – MinCut Theorem

• There exists a flow which has the same value of

the minimum cut

• Proof: Consider a flow where the residual graph

has no s-t path with positive capacity

• Let S be the set of vertices in GR reachable from

s with paths of positive capacity

s t

Let S be the set of vertices in GR reachable

from s with paths of positive capacity

s t u v

S T

What can we say about the flows and capacity

between u and v?

Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow

where the residual graph is disconnected,

hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin

by looking for a maximum flow.

Performance

• The worst case performance of the Ford-

Fulkerson algorithm is horrible

u

s t

v

1000

1000

1

1000

1000

Better methods of finding

augmenting paths

• Find the maximum capacity augmenting

path

– O(m2log(C)) time algorithm for network flow

• Find the shortest augmenting path

– O(m2n) time algorithm for network flow

• Find a blocking flow in the residual graph

– O(mnlog n) time algorithm for network flow

History

Reference: On the history of the transportation and maximum flow problems.

Alexander Schrijver in Math Programming, 91: 3, 2002.

7

Problem Reduction

• Reduce Problem A to Problem B

– Convert an instance of Problem A to an instance of

Problem B

– Use a solution of Problem B to get a solution to

Problem A

• Practical

– Use a program for Problem B to solve Problem A

• Theoretical

– Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

• Reduce the problem of finding the

Maximum of a set of integers to finding the

Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

Undirected Network Flow

• Undirected graph with edge capacities

• Flow may go either direction along the

edges (subject to the capacity constraints)

u

s t

v

10

10

5

20

20

Construct an equivalent flow problem

Bipartite Matching

• A graph G=(V,E) is bipartite if the vertices

can be partitioned into disjoints sets X,Y

• A matching M is a subset of the edges that

does not share any vertices

• Find a matching as large as possible

Application

• A collection of teachers

• A collection of courses

• And a graph showing which teachers can
teach which courses

RA

PB

CC

DG

AK

303

321

326

401

421

Converting Matching to Network

Flow

t s

8

Finding edge disjoint paths

s
t

Construct a maximum cardinality set of

edge disjoint paths

Theorem

• The maximum number of edge disjoint

paths equals the minimum number of

edges whose removal separates s from t

