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CSEP 521 

Applied Algorithms 

Richard Anderson 

Lecture 8 

Network Flow 

Announcements 

• Reading for this week 

– 6.8, 7.1, 7.2  [7.3-7.4 will not be covered] 

– Next week: 7.5-7.12 

• Final exam,  March 18, 6:30 pm.  At UW. 

– 2 hours 

– In class  (CSE 303 / CSE 305) 

– Comprehensive 

• 67% post midterm,  33% pre midterm 

 

 

Bellman-Ford Shortest Paths 

Algorithm 
• Computes shortest paths from a starting 

vertex 

• Allows negative cost edges 

– Negative cost cycles identified 

• Runtime O(nm) 

• Easy to code 

 

Bellman Ford Algorithm, 

Version 2 
foreach w 

 M[0, w] = infinity; 

M[0, v] = 0; 

for i = 1 to n-1 

 foreach w 

  M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w])) 

 

Bellman Ford Algorithm, 

Version 3 
foreach w 

 M[w] = infinity; 

M[v] = 0; 

for i = 1 to n-1 

 foreach w 

  M[w] = min(M[w], minx(M[x] + cost[x,w])) 

 

Bellman Ford Example 

Algorithm 2 
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Finding the longest path in a 

graph 
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Network Flow Outline 

• Network flow definitions 

• Flow examples 

• Augmenting Paths 

• Residual Graph 

• Ford Fulkerson Algorithm 

• Cuts 

• Maxflow-MinCut Theorem 

Network Flow Definitions 

• Capacity  

 

• Source, Sink 

 

• Capacity Condition 

 

• Conservation Condition 

 

• Value of a flow 

Flow Example 
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Flow assignment and the residual 

graph 
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Network Flow Definitions 

• Flowgraph:  Directed graph with distinguished 

vertices s (source) and t (sink) 

• Capacities on the edges,  c(e) >= 0 

• Problem,  assign flows f(e) to the edges such 

that: 

– 0 <= f(e) <= c(e) 

– Flow is conserved at vertices other than s and t 

• Flow conservation: flow going into a vertex equals the flow 

going out 

– The flow leaving the source is a large as possible 

 

Flow Example 
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Find a maximum flow 
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Value of flow:            

Construct a maximum flow and indicate the flow value 

 

Find a maximum flow 
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Augmenting Path Algorithm 

• Augmenting path 

– Vertices v1,v2,…,vk 

• v1 = s,  vk = t 

• Possible to add b units of flow between vj and vj+1 
for j = 1 … k-1 
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Find two augmenting paths 
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Residual Graph 

• Flow graph showing the remaining capacity 

• Flow graph G,  Residual Graph GR 

– G: edge e from u to v with capacity c and flow f 

– GR: edge e’ from u to v with capacity c – f 

– GR: edge e’’ from v to u with capacity f 

 

 

Residual Graph 
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Build the residual graph 

s 

d 

e 

g 

h 

t 

3/5 

2/4 

3/3 

1/5 1/5 

1/1 

1/1 

3/3 

2/5 

s 

d 

e 

g 

h 

t 

Residual graph: 

 

Augmenting Path Lemma 

• Let P = v1, v2, …, vk be a path from s to t with 

minimum capacity b in the residual graph.   

• b units of flow can be added along the path P in 

the flow graph. 
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Proof 

• Add b units of flow along the path P 

• What do we need to verify to show we 

have a valid flow after we do this? 

–   

 

 

–   
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Ford-Fulkerson Algorithm (1956) 

while not done 

 Construct residual graph GR 

 Find an s-t path P in GR with capacity b > 0 

 Add b units along in G 

If the sum of the capacities of edges leaving S 

is at most C, then the algorithm takes at most 

C iterations 

Cuts in a graph 

• Cut:  Partition of V into disjoint sets S, T with s in 
S and t in T. 

• Cap(S,T): sum of the capacities of edges from   
S to T 

• Flow(S,T): net flow out of S 
– Sum of flows out of S minus sum of flows into S 

 

 

 

• Flow(S,T) <= Cap(S,T) 

What is Cap(S,T) and Flow(S,T) 
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Minimum value cut 
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MaxFlow – MinCut Theorem 

• Let S, T be a cut, and F a flow 

– Cap(S,T) >= Flow(S,T) 

• If Cap(S,T) = Flow(S,T) 

– S, T must be a minimum cut 

– F must be a maximum flow 

• The amazing Ford-Fulkerson theorem 

shows that there is always a cut that 

matches a flow, and also shows how their 

algorithm finds the flow 
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MaxFlow – MinCut Theorem 

• There exists a flow which has the same value of 

the minimum cut 

• Proof: Consider a flow where the residual graph 

has no s-t path with positive capacity 

• Let S be the set of vertices in GR reachable from 

s with paths of positive capacity 

s t 

Let S be the set of vertices in GR reachable 

from s with paths of positive capacity 

 

s t u v 

S T 

What can we say about the flows and capacity  

between u and v? 

Max Flow - Min Cut Theorem 

• Ford-Fulkerson algorithm finds a flow 

where the residual graph is disconnected, 

hence FF finds a maximum flow. 

 

• If we want to find a minimum cut, we begin 

by looking for a maximum flow. 

Performance 

• The worst case performance of the Ford-

Fulkerson algorithm is horrible 
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Better methods of finding 

augmenting paths 

• Find the maximum capacity augmenting 

path 

– O(m2log(C)) time algorithm for network flow 

• Find the shortest augmenting path 

– O(m2n) time algorithm for network flow 

• Find a blocking flow in the residual graph 

– O(mnlog n) time algorithm for network flow 

History 

Reference:  On the history of the transportation and maximum flow problems. 

Alexander Schrijver in Math Programming, 91: 3, 2002. 
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Problem Reduction 

• Reduce Problem A to Problem B 

– Convert an instance of Problem A to an instance of 

Problem B 

– Use a solution of Problem B to get a solution to 

Problem A 

• Practical 

– Use a program for Problem B to solve Problem A 

• Theoretical 

– Show that Problem B is at least as hard as Problem A 

Problem Reduction Examples 

• Reduce the problem of finding the 

Maximum of a set of integers to finding the 

Minimum of a set of integers 

Find the maximum of:   8,  -3,  2,  12, 1, -6 

Construct an equivalent minimization problem 

Undirected Network Flow 

• Undirected graph with edge capacities 

• Flow may go either direction along the 

edges (subject to the capacity constraints) 

u 

s t 

v 

10 

10 

5 

20 

20 

Construct an equivalent flow problem 

Bipartite Matching 

• A graph G=(V,E) is bipartite if the vertices 

can be partitioned into disjoints sets X,Y 

 

• A matching M is a subset of the edges that 

does not share any vertices 

 

• Find a matching as large as possible 

Application 

• A collection of teachers 

• A collection of courses 

• And a graph showing which teachers can 
teach which courses 
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Flow 
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Finding edge disjoint paths 

s 
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Construct a maximum cardinality set of  

edge disjoint paths 

 

Theorem 

• The maximum number of edge disjoint 

paths equals the minimum number of 

edges whose removal separates s from t 


