CSEP 521
 Applied Algorithms

Richard Anderson

Lecture 9

Network Flow Applications

Announcements

- Reading for this week
- 7.5-7.12. Network flow applications
- Next week: Chapter 8. NP-Completeness
- Final exam, March 18, 6:30 pm. At UW.
- 2 hours
- In class (CSE 303 / CSE 305)
- Comprehensive
- 67% post midterm, 33% pre midterm

Network Flow

Review

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows f(e) to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{C}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Find a maximum flow

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
$-G$: edge e from u to v with capacity c and flow f
$-G_{R}$: edge e' from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Residual Graph

Augmenting Path Lemma

- Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$: sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
- Sum of flows out of S minus sum of flows into S
- $\operatorname{Flow}(\mathrm{S}, \mathrm{T})<=\operatorname{Cap}(\mathrm{S}, \mathrm{T})$

Ford Fulkerson MaxFlow MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Shows that a cut is the dual of the flow
- Proves that the augmenting paths algorithm finds a maximum flow
- Gives an algorithms for finding the minimum cut

Better methods of for constructing a network flow

- Improved methods for finding augmenting paths or blocking flows
- Goldberg's Preflow-Push algorithm
- Text, section 7.4

Applications of Network Flow

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the path in a directed graph to the problem of finding a shortest path in a directed graph

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Multi-source network flow

- Multi-source network flow
- Sources $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Sinks $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{j}}$
- Solve with Single source network flow

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA	\bigcirc	303
PB	\bigcirc	321
CC		326
DG		401
AK	O	421

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Theorem

- The maximum number of edge disjoint paths equals the minimum number of edges whose removal separates s from t

Finding vertex disjoint paths

Construct a maximum cardinality set of vertiex disjoint paths

Network flow with vertex capacities

Balanced allocation Problem 9, Page 419

- To make a long story short:
- N injured people
- K hospitals
- Assign each person to a hospital with 30 minutes drive
- Assign N/K patients to each hospital

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, $B F, C E, C E, C E, C F$, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC, $B C, B C, B C, B D, B E, B E$,

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$

(T)

Solving problems with a minimum cut

- Image Segmentation
- Open Pit Mining / Task Selection Problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S , T cut is the sum of the capacities of all edges going from S to T

Image Segmentation

- Separate foreground from background
- Reduction to min-cut problem
S, T is a cut if S, T is a partition of the vertices with
s in S and t in T

The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning i to the foreground, j to the background or vice versa
- A : foreground, B : background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} P_{i j}$

Pixel graph to flow graph
 (s)

(${ }^{+}$

Mincut Construction

Open Pit Mining

Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Mine Graph

Determine an optimal mine

Generalization

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each v in V has a profit $p(v)$
- A set F if feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to maximize the profit

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Precedence graph construction

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t
 with finite capacity edges

Show a finite value cut with at least two vertices on each side of the cut

Finite

The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

Setting the costs

- If $p(v)>0$,
$-\operatorname{cap}(v, t)=p(v)$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
- If $p(v)<0$
$-\operatorname{cap}(s, v)=-p(v)$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$
- If $p(v)=0$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Enumerate all finite s,t cuts and show their capacities

Minimum cut gives optimal solution Why?

Computing the Profit

- $\operatorname{Cost}(W)=\Sigma_{\{w \text { in } W ; p(w)<0\}}-p(w)$
- Benefit $\left.(W)=\Sigma_{\{w \text { in } W ; ~} p(w)>0\right\} p(w)$
- $\operatorname{Profit}(W)=\operatorname{Benefit}(W)-\operatorname{Cost}(W)$
- Maximum cost and benefit
$-\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
$-\mathrm{B}=\operatorname{Benefit}(\mathrm{V})$

Express Cap(S,T) in terms of B, C, $\operatorname{Cost}(\mathrm{T})$, Benefit(T), and Profit(T)

Summary

- Construct flow graph
- Infinite capacity for precedence edges
- Capacities to source/sink based on cost/benefit
- Finite cut gives a feasible set of tasks
- Minimizing the cut corresponds to maximizing the profit
- Find minimum cut with a network flow algorithm

