Last time

$$
P C A
$$

principe

$$
\begin{aligned}
& \text { compoovents } \\
& \text { analysis }
\end{aligned}
$$

data dependent
dimensionderly reduction

Today

- SVD + applicatory
- Least squares
- maybe - peruptron alg.

$$
\begin{aligned}
\text { Projects } & \text { google form } \\
& \text { - presenting at minosot? }
\end{aligned}
$$

Credit for figures:
Roughgarden \& Valiant
Leskorec, Rajaraman, Ullman slides
Emily Fox (5446)
Kilian Weinberger ($\left.\begin{array}{c}\text { (st780 } \\ \text { Gravel }\end{array}\right)$

PCA \&SVD
have dati set $x_{1}, \ldots, x_{m} \quad x_{i} \in \mathbb{R}^{n}$

$$
x=\left(\begin{array}{c}
-x_{1}- \\
\vdots \\
-x_{m}-
\end{array}\right)
$$

$P\left(A\right.$: F.x K. find artwonernal vectors $\vec{V}_{1}, \cdots, \vec{v}_{k}$

$$
\text { s.t. } \quad x:=\sum_{j=1}^{k}\left(x_{i}, y_{j}\right) \overrightarrow{v_{j}}
$$

Find v, to $\min \frac{1}{m} \sum_{i=1}^{m} \operatorname{dist}\left(x_{i}, \operatorname{lne}\left(y_{1}\right)\right)^{2}$

$$
\equiv \max \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}, w_{i}\right)^{2} \quad \text { vaniance. }
$$

V. principal engenvector is marax $X^{\top} X$

$$
x^{\top} X\left(q_{1}=\lambda_{1} q_{1} \quad q_{1} \begin{array}{l}
\text { bestchoice } \\
\text { for } v_{i}
\end{array}\right.
$$

singulan value decorpeston SUD
\Rightarrow tells $u s$ best way to appreximate ow matrix with a "low rank" matrix
movies
can we reconsinct
$2\left[\begin{array}{ccc}7 & ? & ? \\ ? & 8 & ? \\ ? & 12 & 6 \\ ? & ? & 2 \\ 21 & 6 & ?\end{array}\right]$ missing entries?

Suppose assume that
this matrix is rank 1 every row is a multiple of every aten row.

Rank 1

$$
\mathbf{A}=\mathbf{u} \mathbf{v}^{\top}=\left[\begin{array}{ccc}
- & u_{1} \mathbf{v}^{\top} & - \\
- & u_{2} \mathbf{v}^{\top} & - \\
& \vdots & \\
- & u_{m} \mathbf{v}^{\top} & -
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} \mathbf{u} & v_{2} \mathbf{u} & \cdots & v_{n} \mathbf{u} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Rank 2.
$\mathbf{A}=\mathbf{u} \mathbf{v}^{\top}+\mathbf{w} \mathbf{z}^{\top}=\left[\begin{array}{ccc}- & u_{1} \mathbf{v}^{\top}+w_{1} \mathbf{z}^{\top} & - \\ - & u_{2} \mathbf{v}^{\top}+w_{2} \mathbf{z}^{\top} & - \\ \vdots & \\ - & u_{m} \mathbf{v}^{\top}+w_{m} \mathbf{z}^{\top} & -\end{array}\right]=\left[\begin{array}{cc}\mid & \mid \\ \mathbf{u} & \mathbf{w} \\ \mid & \mid\end{array}\right] \cdot\left[\begin{array}{lll}-\mathbf{v}^{\top} & - \\ - & \mathbf{z}^{\top} & -\end{array}\right] \leq$

Figure 1: Any matrix A of rank k can be decomposed into a long and skinny matrix times a short and long one.

SUD ga matrix man matrix

Figure 2: The singular value decomposition (SVD). Each sin
left singular vector in \mathbf{U}, and right singular vector in \mathbf{V}.
$\begin{aligned} & \text { diag entries } \\ & g_{\text {an called }}\end{aligned} \quad A=\sum_{i=1}^{m i m}=s_{i} s_{i} u_{i} v_{i}^{\top}$
singular value o

$$
S_{1} \geqslant s_{2} \geq \ldots \geq 0
$$

can be computed in $\operatorname{mm}\left(O\left(m^{2} n\right), O\left(n^{2} n\right)\right)$ time.

Suppose we want the "bost"rank k approx to A

Figure 3: Low rank approximation via SVD. Recall that \mathbf{S} is non-zero only on its diagonal, and the diagonal entries of S are sorted from high to low. Our low rank approximation is
$\mathbf{A}_{k}=\mathbf{U}_{k} \mathbf{S}_{k} \mathbf{V}_{k}^{\top}$. $\mathbf{A}_{k}=\mathbf{U}_{k} \mathbf{S}_{k} \mathbf{V}_{k}^{\top}$.

$$
A_{k}=m\left[u_{k}^{k}\left[\begin{array}{l}
k \\
s_{k}
\end{array}\right]\left\{v_{k}^{n}\right]\right.
$$

Tum
This loo-reok appose is optimal in $\left\{\begin{array}{l}\text { the sere that } \forall \text { matrix } A(m \times n) \\ \text { and rank target } k \geqslant 1 \\ \text { and anyotren rank matrix } B(m \times n)\end{array}\right.$ $\underbrace{\left\|A-A_{K}\right\|_{F}^{2}}_{\uparrow} \leqslant\|A-B\|_{F}^{2}$

$$
\begin{aligned}
& \left.\sum_{i, j}\left(a_{i j}-a_{i j}^{k}\right)^{2} \leq \sum_{i, j}\|M\|_{F}^{2}=\sum_{i j} \sum_{i j} m_{i j}^{2}\right)^{2} \text { Frobenius }
\end{aligned}
$$

Relaranship between PCA \& SUD. $(A B)^{T}=B^{\top} N^{T}$

$$
\begin{aligned}
& X^{\top} X=Q D Q^{\top} \quad X=U S V^{\top} \\
& =\uparrow \quad X^{\top} X=\left(U S U^{\top}\right)^{\top} U S V^{\top} \\
& q_{1}=v_{1} \\
& =\begin{array}{l}
V^{\pi} S^{\top} \underbrace{U}_{S} U S V^{\top} \\
\\
=V^{\top}
\end{array} \\
& \lambda_{1}=s_{1}^{2} \\
& \underline{\underline{x^{\top} x}}=v \frac{S^{2} v^{\top}}{=} \\
& X X^{\top}=U S^{2} U^{\top} \\
& x x_{i j}^{\top} \\
& X=\sin \left(\left.\right|^{\text {proders. }}\right) \\
& \underset{i m_{\text {mas }}}{x_{i}}=\sum_{j=1}^{k}\left(x_{i}, y_{j}\right) \vec{v}_{j}
\end{aligned}
$$

Applicaton 1: Dencisiry.
Suppose A is arank k mame.

$$
C=A+\underset{T}{N}
$$

Ther laim is if ravian 9 roise suffiuntly snall.
then $\left\|C_{K}-A\right\|_{F}^{2}$ small w.h.p.

$$
A=\sum_{i=1}^{k} s_{i} \mu_{i} v_{i}^{\top} \quad \text { in } C \quad \begin{gathered}
T \\
s_{j} \ll s_{1}, \ldots s_{k} \\
j>k
\end{gathered}
$$

Thm: $\hat{A} m \times n$ mamx gindep r.v.'s whose vaniances are bounded by σ^{2}

If $\hat{A})=E(\hat{A})$
is rank k tren w.h.p.

Collaborthe Filtening recompendotrs
ground twim.
assumption: R is rank k

$$
\left.\begin{array}{c}
\text { humer } \\
\text { violence } \\
\text { ramance } \\
\text { indie } \\
\vdots
\end{array}\right]
$$

R is rark k
Assure that tree is $P=\left[p_{i j}\right]$
s.t. preb that isme is a rahing available for that
entry is $p_{i j}$

Let's assure we know P.

$$
15{ }_{\text {moses}}
$$

Define

$$
\begin{aligned}
& \hat{R}=\left\{\begin{array}{cc}
\frac{R_{i j}^{?}}{p_{i j}} & \begin{array}{cc}
\text { if eny } \\
(i, j) \\
\text { plesent }
\end{array} \\
0 & 0 . w .
\end{array}\right. \\
& E\left(\hat{R}_{i i j}=R_{i j}\right. \\
& =p_{i j} \frac{R_{i j}}{p_{i j}}+\left(1-p_{i j}\right)^{0}
\end{aligned}
$$

$$
=R_{i j}^{\text {Pij }} \quad \Longrightarrow \hat{R}_{K} \text { is verylose }
$$

Assume P itself is low rank
mores

see rating there and O

$$
\begin{aligned}
& E(\hat{P})={ }^{-P} \\
& \Rightarrow \hat{P}_{k} \text { very lase to } P
\end{aligned}
$$

Linear regression.

Model-
How we assume the world works

\qquad

Simple linear regression model

(x_{i}, y_{i}) pairs.

Find bestchoice

 for ω_{0}, w_{1}

Many possible inputs

- Square feet
- \# bathrooms
- \# bedrooms
- Lot size
- Year built
- ...
"Cost" of using a given line

RSS for multiple regression

Supervised learning. \& Pesceptron Algorithm labeled data: use that to core up $\omega^{\top} x+b<0$ with a way to gie answers on
 data haven't seen. $\left(\vec{x}_{i}, y_{i}\right)$ binary classification. label for each pit $\{-1,1\}$

$$
\omega^{\top} x+b>0
$$

$\exists \vec{\omega} \& b$ sit.

$$
y_{i=1} \quad \Rightarrow \quad w^{\top} x+b>0
$$

Objector: fincome
Simplify life by getty rid g addutre cost b.

$$
\begin{array}{ll}
y=1 & w^{\top} x>0 \\
y=-1 & w^{\top} x<0
\end{array}
$$

make a mistake of $\mid y_{i} w^{\top} x_{i} \leq 0$

$$
\begin{aligned}
& w \cdot x+b \geqq 0 \\
& w^{\prime \prime \cdot x^{\prime}} \geq 0
\end{aligned}
$$

$m=$ \#mistales were mole suffr

```
Initialize \(\vec{w}=\overrightarrow{0}\)
while TRUE do
    \(m=0\)
\(\rightarrow\) for \(\left(x_{i}, y_{i}\right) \in D\) do
            if \(y_{i}\left(\vec{w}^{T} \cdot \vec{x}_{i}\right) \leq 0\) then made mishit
                    \(\vec{w} \leftarrow \vec{w}+y_{i} \vec{i}_{i} \longleftarrow\)
            \(m \leftarrow m+1\)
        end if
    end for
            break
    end if
end while
```

 if \(m=0\) then // If the most recent \(\vec{w}\) gave 0 misclassifications
 // Initialize $\vec{w} \cdot \vec{w}=\overrightarrow{0}$ misclassifies everything.
// Keep looping
// Count the number of misclassifications, m
// Loop over each (data, label) pair in the dataset, D
// If the pair $\left(\overrightarrow{x_{i}}, y_{i}\right)$ is misclassified
// Update the weight vector \vec{w}
// Counter the number of misclassification
// If the most recent \vec{w} gave 0 misclassifications
// Break out of the while-loop
// Otherwise, keep looping!

Illustration of a Perceptron update. (Left:) The hyperplane defined by \mathbf{w}_{t} misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point \mathbf{x} is chosen and used for an update. Because its label is -1 we need to subtract \mathbf{x} from \mathbf{w}_{t}. (Right:) The udpated hyperplane $\mathbf{w}_{t+1}=\mathbf{w}_{t}-\mathbf{x}$ separates the two classes and the Perceptron algorithm has converged.

γ is colld tha maggin

$$
=\min _{(x, y)}\left|x_{i}^{\top} w^{0}\right|
$$

Thm: $m \leq \frac{1}{6^{2}}$
Locon at 2 quamtites.
(2)

$$
\begin{aligned}
& \left(\omega+y^{*}\right)^{\top}\left(\omega+y^{x}\right) \\
& =\omega^{\omega} \omega+2 y^{\pi} \omega+y^{2} y^{\top} x \leq 1
\end{aligned}
$$

$$
\begin{aligned}
m \gamma^{6} & \leq \sqrt{m} \\
m^{2} \gamma^{\gamma^{2}} & \leq m \\
m & \leq \frac{1}{\gamma^{2}}
\end{aligned}
$$

Bad example for peruptron aby

