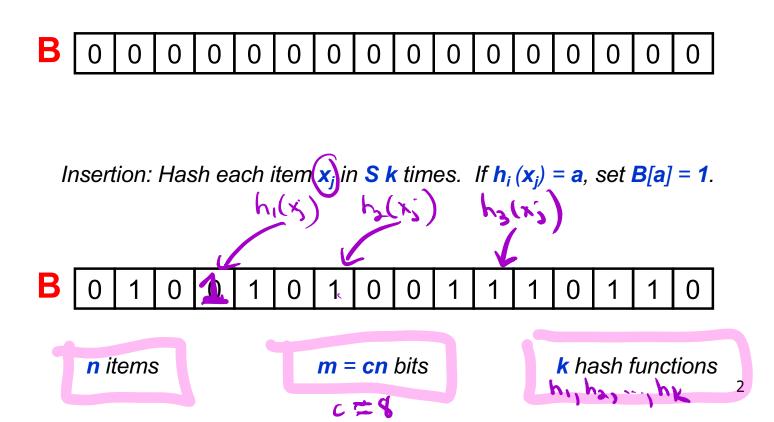
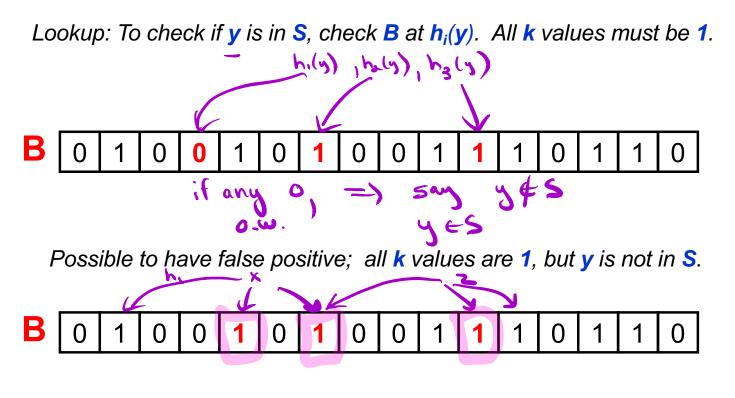
Bloom Filters


Given a set S = {x₁,x₂,x₃,...,x_n} on a universe U, want to answer queries of the form:
 Is y∈S ?

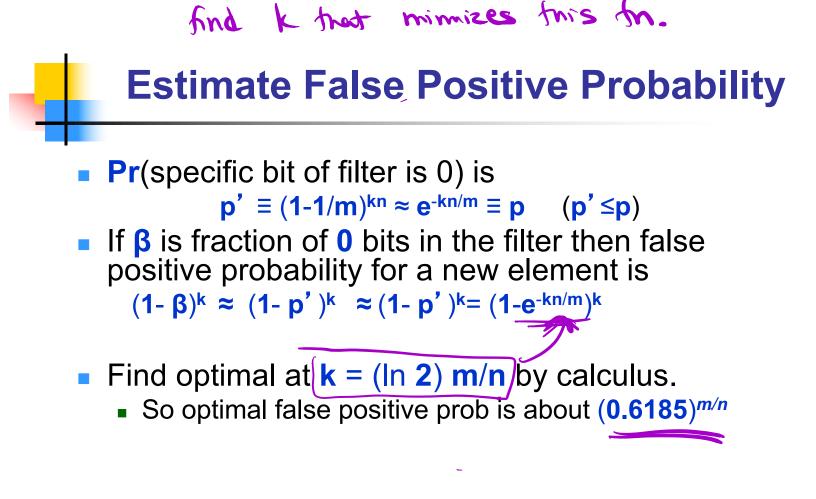
- Bloom filter provides an answer in
 - "Constant" time (to hash).
 - Very small amount of space.
 - But with small probability of a false positive
 - Particularly useful when the answer is usually NO
 - When care a lot about space.

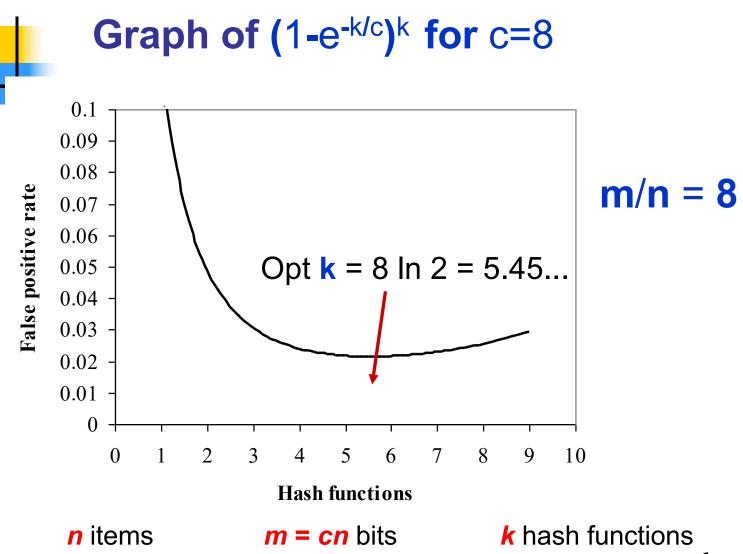


 $h: U \rightarrow 0_{1}, m$

Start with an **m** bit array, filled with 0s.

n items


m = cn bits


k hash functions

Purposes of analysis: size of table = C. #elts in set S storing

Estimate False Positive Probability

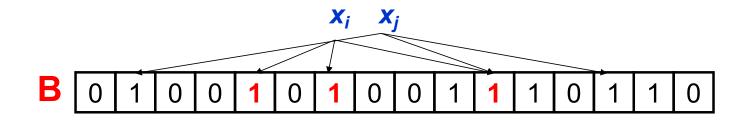
nitems
$$m = cn$$
 bits k hash functions
Assume hash functions completely random is yes?
Insufed elements $S=\{x_1, x_{3}, \dots, x_{n}\}$ into table. fulse positive
is upon up
Lockup (y) yes
 $R(false positive) = Rr(h_1(y) = h_2(y) = i)$ and elt is
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (1-1m)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (m-1)^{kn} = km$ in the set
 $Rr(specific bit in table is 0) = (m-1)^{kn} = (m-1)^{kn} = km$ is bit in table. It is bit is bit is bit in table is bit is bit

Applications

- Original (40 years ago) use:
 - Spellcheckers (false positive = misspelled word)
 - Forbidden passwords (false positive = no biggie)

Applications – More modern

In databases:


- Join: combine two tables with a common domain into a single table
- Semi-join: a join in distributed databases in which only the joining attribute from one site is transmitted to other and used for selection. The selected records sent back
- Bloom-join: a semi-join where we send only a Bloom filter of the joining attribute

Applications-modern

- Monitor all traffic going through a router, checking for signatures of bad behavior (e.g. strings associated to worms, viruses)
- Must be fast and simple operate at hardware/line speed.
- Use a Bloom filter for signatures.
- On positive: send off to analyzer for action
 - False positive = extra work on slow path.

Handling Deletions

 Bloom filters can handle insertions, but not deletions.

If deleting x_i means resetting 1's to 0's, then deleting x_i will "delete" x_j. Bloom filter numerous variations and applications

See papers on website.

The Bloom Filter principle: wherever a list or set is used, and space is at a premium, consider using a Bloom filter if the effect of false positives can be mitigated."