
1

CSE 589
Applied Algorithms

Spring 1999
Course Introduction
Depth First Search

CSE 589 - Lecture 1 - Spring 1999 2

Instructors

• Instructor
– Richard Ladner
– ladner@cs.washington.edu
– 206 543-9347

• TA
– Saurabh Sinha
– (saurabh@cs.washington.edu)

CSE 589 - Lecture 1 - Spring 1999 3

Resources

• 589 Course Web Page
– http://www.cs.washington.edu/education/courses/589/CurrentQtr/

• Papers and Sections from Books
• Recommended Algorithms Book

– Introduction to Algorithms by Cormen,
Leiserson, and Rivest

CSE 589 - Lecture 1 - Spring 1999 4

Engagement by Students

• Weekly Assignments
– Algorithm design and evaluation

• Project with a written report
– Evaluate several alternative approaches to

algorithmically solve a problem
– Must include readings from literature
– May include an implementation study
– May be done in small teams

CSE 589 - Lecture 1 - Spring 1999 5

Final Exam and Grading

• Thursday, June 10th, 6:30 - 8:20 pm
• Percentages

– Weekly Assignments 30%
– Project 30%
– Final 40%

CSE 589 - Lecture 1 - Spring 1999 6

Some Topics

• Network spanning tree (warm up)
• Cache conscious sorting
• Data Compression

• Computational Biology
• Computational Geometry

2

CSE 589 - Lecture 1 - Spring 1999 7

Along the Way

• Analysis of algorithms
• Data structures
• NP-completeness
• Dynamic programming
• Greedy algorithms
• Clustering algorithms
• Branch-and-bound algorithms
• Approximation algorithms
• Classics of algorithms

CSE 589 - Lecture 1 - Spring 1999 8

What We’ll Do Today

• Applied Algorithms - By example
• Broadcasting in a network
• Depth First Search

• Breadth First Search
• Minimum Spanning Tree

CSE 589 - Lecture 1 - Spring 1999 9

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

CSE 589 - Lecture 1 - Spring 1999 10

Modeling
• What kind of algorithm is needed

– Sorting or Searching
– Graph Problem
– Linear Programming
– Dynamic Programming
– Clustering
– Algebra

• Can I find an algorithm or do I have to
invent one

CSE 589 - Lecture 1 - Spring 1999 11

Broadcasting in a Network

• Network of Routers
– Organize the routers to efficiently

broadcast messages to each other

Incoming message
• Duplicate and send
to some neighbors.
• Eventually all routers
get the message

CSE 589 - Lecture 1 - Spring 1999 12

Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree
 - Connects all the vertices
 - No cycles

3

CSE 589 - Lecture 1 - Spring 1999 13

Undirected Graph

• G = (V,E)
– V is a set of vertices (or nodes)
– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}
E = {{1,2},{1,6},{1,5},{2,7},{2,3},
 {3,4},{4,7},{4,5},{5,6}}

2 and 3 are adjacent
2 is incident to edge {2,3}

CSE 589 - Lecture 1 - Spring 1999 14

Spanning Tree Problem

• Input: An undirected graph G = (V,E). G
is connected.

• Output: T contained in E such that
– (V,T) is a connected graph
– (V,T) has no cycles

CSE 589 - Lecture 1 - Spring 1999 15

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
 mark i;
 for each j adjacent to i do
 if j is unmarked then DFS(j)
end{DFS}

CSE 589 - Lecture 1 - Spring 1999 16

Example of Depth First Search

1
2

3

4

5

6

7

DFS(1)

CSE 589 - Lecture 1 - Spring 1999 17

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

CSE 589 - Lecture 1 - Spring 1999 18

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

4

CSE 589 - Lecture 1 - Spring 1999 19

Example Step 4

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)

CSE 589 - Lecture 1 - Spring 1999 20

Example Step 5

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)

CSE 589 - Lecture 1 - Spring 1999 21

Example Step 6

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)

CSE 589 - Lecture 1 - Spring 1999 22

Example Step 7

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
DFS(6)

Note that the edges traversed in the depth first
search form a spanning tree.

CSE 589 - Lecture 1 - Spring 1999 23

Spanning Tree Algorithm

ST(i: vertex)
 mark i;
 for each j adjacent to i do
 if j is unmarked then
 Add {i,j} to T;
 ST(j);
end{ST}

Main
T := empty set;
ST(1);
end{Main}

CSE 589 - Lecture 1 - Spring 1999 24

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

Evaluate

Wrong problem

Wrong model

Incorrect algorithm
poor performance

5

CSE 589 - Lecture 1 - Spring 1999 25

Evaluation Step Expanded

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

CSE 589 - Lecture 1 - Spring 1999 26

Correctness of ST Algorithm

• There are no cycles in T
– This is an invariant of the algorithm.
– Each edge added to T goes from a vertex

in T to a vertex not in T.

• If G is connected then eventually every
vertex is marked.

1 unmarked

CSE 589 - Lecture 1 - Spring 1999 27

Correctness (cont.)

• If G is connected then so is (V,T)

i

j

1

CSE 589 - Lecture 1 - Spring 1999 28

Data Structure Step

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

CSE 589 - Lecture 1 - Spring 1999 29

Edge List and Adjacency Lists

• List of edges

• Adjacency lists
1
2
3
4
5
6
7

2 5 6

1
2

5
1

1
6

2
7

2
3

3
4

7
4

5
6

5
7

3 1 7
2 4
3 7 5
6 1 7 4
1 5
4 5 2

5
4 1

2

3

4

5
6

7

CSE 589 - Lecture 1 - Spring 1999 30

Adjacency Matrix

0
1
0
0
1
1
0

1
2
3
4
5
6
7

1
0
1
0
0
0
1

0
1
0
1
0
0
0

0
0
1
0
1
0
1

1
0
0
1
0
1
1

1
0
0
0
1
0
0

0
1
0
1
1
0
0

1 2 3 4 5 6 7 1
2

3

4

5
6

7

6

CSE 589 - Lecture 1 - Spring 1999 31

Data Structure Choice
• Edge list

– Simple but does not support depth first
search

• Adjacency lists
– Good for sparse graphs
– Supports depth first search

• Adjacency matrix
– Good for dense graphs
– Supports depth first search

CSE 589 - Lecture 1 - Spring 1999 32

Spanning Tree with Adjacency
Lists

ST(i: vertex)
 M[i] := 1;
 v := G[i];
 while not(v = null)
 j := v.vertex;
 if M[j] = 0 then
 Add {i,j} to T;
 ST(j);
 v := v.next;
end{ST}

Main
 G is array of adjacency lists;
 M[i] := 0 for all i;
 T is empty;
 Spanning_Tree(1);
end{Main}

nextvertex

M is the marking array
Node of linked list

CSE 589 - Lecture 1 - Spring 1999 33

Performance Step

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

CSE 589 - Lecture 1 - Spring 1999 34

Performance of ST Algorithm

• n vertices and m edges
• Connected graph
• Storage complexity O(m)

• Time complexity O(m)

CSE 589 - Lecture 1 - Spring 1999 35

Other Uses of Depth First Search

• Popularized by Hopcroft and Tarjan
1973

• Connected components

• Biconnected components
• Strongly connected components in

directed graphs
• topological sorting of a acyclic directed

graphs

