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Spring 1999

Prim’s Algorithm for MST
Load Balance Spanning Tree

Hamiltonian Path
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Performance of W-Union / PC-Find

• The time complexity of PC-Find is O(log n).
• An up tree formed by W-Union of height h has at

least 2h nodes. Inductive Proof.

h+1 h

Weight(T2) > 2h (ind. hyp.)
Weight(T1) > Weight(T2)
                   > 2h

Weight(T)   > 2h +2h =2h+1

T1
T2

T
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Worst Case for PC-Find

n/2 Weighted Unions

n/4 Weighted Unions
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Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then there
are k pointers on the longest path to root.
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Amortized Complexity

• For disjoint union / find with weighted union
and path compression.
– average time per operation is essentially a

constant.

–  worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but
over time the average cost per operation is
not.
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Recall Kruskal

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge {i,j} chosen in increasing order do
    u := PC-Find(i);
    v := PC-Find(j);
    if not(u = v) then 
        add {i,j} to A;
        W-Union(u,v);
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Evaluation of Kruskal

• Let G have n vertices and m edges.
• Sort the edges - O(m log m).
• Traverse the sorted edge list doing PC-Finds

and W-Unions - O(m α(m,n)).
• Total time is O(m log m).
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Prim’s Algorithm

• We maintain a single tree.
• For each vertex not in the tree maintain the

smallest edge to a vertex in the tree.
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Prim’s Algorithm 2
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Prim’s Algorithm 3
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Prim’s Algorithm 4
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Prim’s Algorithm 5
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Prim’s Algorithm 6
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Prim’s Algorithm 7
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Data Structures for Prim

• Adjacency Lists - we need to look at all the edges
from a newly added vertex.

• Array for the best edges in or to the tree.
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Data Structures for Prim
• Priority queue for all edges to the tree (blue edges).

– Insert, delete-min, delete (e.g. binary heap).
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Evaluation of Prim

• n vertices and m edges.
• Priority queue O(log n) per operation.
• O(m) priority queue operations.

– An edge is visited when a vertex incident to it joins
the tree.

• Time complexity is O(m log n).
• Storage complexity is O(m).

CSE 589 - Lecture 3 - Spring 1999 18

Kruskal vs Prim

• Kruskal
– Simple

– Good with sparse graphs - O(m log m)

• Prim
– More complicated

– Perhaps better with dense graphs - O(m log n)
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Load Balanced Spanning Tree (LBST)

• Input: An undirected graph G = (V,E) and
number k.

• Output: Determine if there is a spanning tree
(V,T) of G with the property that for each
vertex v there are at most k edges in T
incident to v.  If there is such a spanning tree
report it.  We call such a tree a spanning tree
of degree k.
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Spanning Tree of Degree 3
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Spanning Tree of Degree 2
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Optimization Version of LBST

• Input: An undirected graph G = (V,E).
• Output: A number k and a spanning tree (V,T)

of degree k. Furthermore, there is no
spanning tree of degree < k.
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Equivalence of two versions

• Reporting version can be easily reduced to the
optimization version.

• Optimization version can be reduced to the
reporting version by searching.  Assume a
function LBST(G,k) that returns a spanning tree
of degree k if there is one, else returns null.

k := 2;
repeat
    T:= LBST(G,k);
    if T = null then k := k +1 
until not(T = null)
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LBST Decision Problem

• Input: An undirected graph G = (V,E) and
number k.

• Output: Determine if G has a spanning tree of
degree k.

• We expect a yes/no answer only without
reporting a solution if the answer is yes.
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Classes of Problems

• Decision Problem: just yes or no. Is there a
solution or not.

• Reporting Problem: yes or no, and if yes then
report a solution.

• Optimization Problem: find a best solution for
some notion of best.
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Hamiltonian Path Decision Problem

• Input: Undirected Graph G =(V,E).
• Output: Determine if there is a path in G that

visits each node exactly once.

• Decision problem: Yes or No answer.
• This is a famous NP-complete problem.
• NP-complete problems do not appear to have

polynomial time algorithms.
• NP-complete problems are hard to solve!
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Hamiltonian Path Reducible to
Spanning Tree of Degree 2

• If there an algorithm to quickly determine if a
graph has a spanning tree of degree then
there is an algorithm to quickly solve the
Hamiltonian path problem.
– A spanning tree of degree 2 is a Hamiltonian path!

– These problems are essentially the same problem.
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Hamiltonian Path is Reducible
Spanning Tree of Degree k for any k

• Let G = (V,E) be an undirected graph.  We
can construct in polynomial time G’ = (V’,E’)
with the property that G has a Hamiltonian
path if and only if G’ has a spanning tree of
degree k.

• Thus, if there is a polynomial time algorithm
for the spanning tree problem then there is
also also for the Hamiltonian path problem.

• But there is likely no such algorithm!
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HP reducible to LBST of Degree 4

G G’

G has a Hamiltonian Path if and only if G’ has a spanning
tree of degree 4.
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HP reducible to LBST of Degree 4 (2)

G G’

G has a Hamiltonian Path if and only if G’ has spanning 
tree of degree 4.
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HP Reducible to LBST of Degree 4 (3)

),( EVG = },...,,{ 21 nuuuV =

}21,1:{’ , −≤≤≤≤∪= kjnivVV ji

}21,1:},{{’ , −≤≤≤≤∪= kjnivuEE jii

G has a Hamiltonian Path if and only if G’ a spanning
tree of degree k.

)’,’(’ EVG =
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HP reducible to LBST of Degree 4 (4)

G G’

Key fact: Any spanning tree in G’ must contain all the
new edges.


