CSE 589

Applied Algorithms
Spring 1999

NP-Completeness

NP-Completeness Theory

Explains why some problems are hard and
probably not solvable in polynomial time.
Invented by Cook in 1971.

Popularized in an important paper by Karp in
1972.

Standardized by Garey and Johnson in 1979
in “Computers and Intractability: A Guide to
the Theory of NP-Completeness”.

CSE 589 - Lecture 4 - Spring 1999 2

NP

» NP stands for nondeterministic polynomial time.

* We consider the class of decision problems
(yes/no problems).

* A nondeterministic algorithm is one that can
make “guesses”.

A decision problem is in NP if it can be solved
by a nondeterministic algorithm that runs in
polynomial time.

CSE 589 - Lecture 4 - Spring 1999 3

Examples of Decision Problems in NP

Hamiltonian Path

— Nondeterministic algorithm: guess a path
Vy,Vy,...V, then check no two vertices are the same
and that for each i < n there is an edge between v;
and v,,,.

Graph Coloring

— input: Graph G = (V,E) and a number k.

— output: Determine if all vertices can be colored
with k colors such that no two adjacent vertices
have the same color.

— Algorithm: Guess a coloring and then check it.

CSE 589 - Lecture 4 - Spring 1999 4

CNF-Satisfiability

* Input: A Boolean formula F in conjunctive
normal form.

(xO0yOz)O(-x0ydz)O(=-x0O-yO=2)
» Output: Determine if F is satisfiable, that is,

there is some assignment to the variables
that makes the formula F true.

x=14y=02z=1
(10001) O(-10001) O(-10-00-1)
* Algorithm: Guess an assignment and check it.

CSE 589 - Lecture 4 - Spring 1999 5

Subset Sum

Input: Integers &, a,,...,a,,b
Output: Determine if there is subset
X 0{12,..,n}

with the property ; a=b

Algorithm: Guess the subset X and check the
sum adds up to b.

CSE 589 - Lecture 4 - Spring 1999 6

Decision Problems are Polynomial
Time Equivalent to their Reporting
Problems

» Example: Subset sum

— Decision Problem: Determine if a subset sum
exists.

— Reporting Problem: Determine if a subset sum
exists and report one if it does.
* Using decision to report

— Let subset-sum(A,b) return true if some subset of A
adds up to b. Otherwise it returns false.

CSE 589 - Lecture 4 - Spring 1999 7

Reporting Reduces to Decision

Assume that subset-sum ({a,,...,a,},b) is true
X :=the empty set;
fori=1tondo
if subset-sum({a;, ,,...,a,},b - &) then
addito X;
b:=b-a;

x
m
3

=3

e: 3,5,2,7,4,2,b=11
4,2,b=11-3-->yes, X={3},b=8
2,b=8-5-->no

b=8-2-->yes, X={3,2},b=6
=6-7-->no

6-4 -->yes, X={3,2,4},b=2

-2 -->yes, X ={3,2,4,2}

CSE 589 - Lecture 4 - Spring 1999 8

ocnoANNOm
(= NN
loNvas~N

N

Polynomial Time Reducibility

Informal idea: A decision problem Ais
polynomial time reducible to a decision
problem B if a polynomial time algorithm for B
can be used to construct a polynomial time
algorithm for A.

Formally: A is polynomial time reducible to B if
there is a function f computable in polynomial
time such that for all x:

— xhas Aif and only if f(x) has B

* If A polynomial time reducible to B and B
solvable in polynomial time then so is A.

CSE 589 - Lecture 4 - Spring 1999 9

Block Diagram to Decide A from B

Algorithm to decide A

X Algorithm f(x) | Algorithm | f(x) has B?| x has A?
to compute f to decide B
CSE 589 - Lecture 4 - Spring 1999 10

Example of Polynomial Time
Reduction

» Hamiltonian path is polynomial time reducible
to spanning tree of degree 4.

— Given G = (V,E)
— Construct G’ = (V',E)
-f(G) =G

— G has Hamiltonian path if and only if G’ has a
spanning tree of degree 4

CSE 589 - Lecture 4 - Spring 1999 11

NP-Hardness

« Definition: A problem Ais NP-hard if every
problem in NP is reducible to it in polynomial
time.

 If an NP-hard problem has a polynomial time
algorithm, then every problem in NP has a
polynomial time algorithm.

¢ To show a problem is NP-hard it suffices to
show that some NP-hard problem is reducible
to it. Why? Transitivity of polynomial time
reduction.

CSE 589 - Lecture 4 - Spring 1999 12

Transitivity of Polynomial Time
Reduction
» Define: A<, B to mean that A is polynomial
time reducible to B.
« Transitivity: A<, B and B<. C implies A<, C
» Example:

— Every problem in NP is known to be polynomial
time reducible to Hamiltonian path.

— Hamiltonian path is polynomial time reducible to
spanning tree of degree 4.

— Therefore, every problem in NP is polynomial time
reducible to spanning tree of degree 4.

CSE 589 - Lecture 4 - Spring 1999 13

NP-Completeness Definition

Definition: A decision problem A is NP-complete if
— Aisin NP

— Alis NP-hard

Example: Spanning tree of degree 4 is NP-
complete.

— Spanning tree of degree 4 is in NP.

— Hamiltonian path is a known NP-complete problem.

— Hamiltonian path is polynomial time reducible to
spanning tree of degree 4.

CSE 589 - Lecture 4 - Spring 1999 14

Cook’s Theorem

* CNF-satisfiability is NP-complete
— Cook 1971

Proof formalizes the notion of a nondeterministic algorithm
as a nondeterministic Turing machine. Cook then shows
that a CNF-formula F can be produced in polynomial time
that describes the operation of the nondeterministic
Turning machine. The Turing machine halts in a “yes”
state if and only if the formula F is satisfiable.

CSE 589 - Lecture 4 - Spring 1999 15

P vs NP

« Definition: P is the class of decision problems
that are solvable by a polynomial time
algorithm.

« Every problem in P is also in NP
PO NP

* Famous Open Question:

P=NP?

CSE 589 - Lecture 4 - Spring 1999 16

Probable Picture

NP-Complete,

NP

CSE 589 - Lecture 4 - Spring 1999 17

Clique Decision Problem

« Input: Undirected Graph G = (V,E) and a
number k.

¢ Output: Determine if G has a k-clique, that is,
there is a set of vertices U of size k such that
for each pair of vertices in U there is and
edge in E between them.

CSE 589 - Lecture 4 - Spring 1999 18

Clique Example

4-clique

CSE 589 - Lecture 4 - Spring 1999

Clique is NP-Complete
Clique is in NP

— Nondeterministic algorithm: guess k vertices then
check that there is an edge between each pair of
them.

 Cligue is NP-hard

— We reduce CNF-satisfiability to Clique in polynomial
time

— Given a CNF formula F we need to construct a
graph G and a number k with the property that F is
satisfiable if and only if G has a k-clique. The
contstruction must be efficient, polynomial time.

CSE 589 - Lecture 4 - Spring 1999 20

Construction by Example
F=(xOyOz) O(=-x0yOz)O(=-xO-yO-2)
/1

literal clause

CSE 589 - Lecture 4 - Spring 1999

Construction by Example

F=(xOyOz)0(=-xOyOz)O(=-xO-y0O-2)
x=1y=02z=1

CSE 589 - Lecture 4 - Spring 1999 22

General Construction
k

m
FelUay where 8 D067, X}

i=1j=1
G=(V,E) where literals
V={a :1si<k1<jsm}
E={{a,a,}:i#i"and,
a; and a,;. are not complementary}

k isthe number of clauses

CSE 589 - Lecture 4 - Spring 1999

The Reduction Argument

* We must show
— F satisfiable implies G has a clique of size k.

 Given a satisfying assignment for F, for each
clause pick a literal that is satisfied. Those
literals in the graph G form a k-clique.
— G has a clique of size k implies F is satisfiable.
« Given a k-clique in G, assign each literal in the

clique to be 1. This yields a satisfying
assignment to F.

CSE 589 - Lecture 4 - Spring 1999 24

Clique to Assignment
F=(xOyO2)O(-xOyO2)O(-xO-yO-2)

y=0,z=1

CSE 589 - Lecture 4 - Spring 1999 25

Assignment to Clique
F=(xOy)0(=-x0y) O(=-x0-y) O(xO~y)

G has no 4-clique

CSE 589 - Lecture 4 - Spring 1999 26

3-CNF-Satifiability

* Input: A Boolean formula F with at most 3
literals per clause.
» Output: Determine if F is satisfiable.

» 3-CNF-Satisfiability is NP-complete
— This is probably the most used NP-complete
problem in reduction proofs showing other
decision problems are NP-hard.

CSE 589 - Lecture 4 - Spring 1999 27

Reduction by Example
Given F =(x 0-x,0x%,0-x%,)OF

Construct H =(x, 0z)0(-x,0-202z)
0(x, 0-2,02) O(=x, 0~z) OF’
F is satisfiable if and only if H is satisfiable.
X, =0 satisfies the first clause of F.
z,=1,2,=0,2 =0 satisfy clauses 1,3, and 4 of H and

%, =0 satisfies the clause 2 of H.

CSE 589 - Lecture 4 - Spring 1999 28

