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NP-Completeness Theory

• Explains why some problems are hard and
probably not solvable in polynomial time.

• Invented by Cook in 1971.
• Popularized in an important paper by Karp in

1972.
• Standardized by Garey and Johnson in 1979

in “Computers and Intractability: A Guide to
the Theory of NP-Completeness”.
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NP

• NP stands for nondeterministic polynomial time.
• We consider the class of decision problems

(yes/no problems).
• A nondeterministic algorithm is one that can

make “guesses”.
• A decision problem is in NP if it can be solved

by a nondeterministic algorithm that runs in
polynomial time.
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Examples of Decision Problems in NP

• Hamiltonian Path
– Nondeterministic algorithm: guess a path

v1,v2,…vn then check no two vertices are the same
and that for each i < n there is an edge between vi
and vi+1.

• Graph Coloring
– input: Graph G = (V,E) and a number k.

– output: Determine if all vertices can be colored
with k colors such that no two adjacent vertices
have the same color.

– Algorithm: Guess a coloring and then check it.
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CNF-Satisfiability

• Input: A Boolean formula F in conjunctive
normal form.

• Output: Determine if F is satisfiable, that is,
there is some assignment to the variables
that makes the formula F true.

• Algorithm: Guess an assignment and check it.
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Subset Sum

• Input: Integers
• Output: Determine if there is subset

• Algorithm: Guess the subset X and check the
sum adds up to b.
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Decision Problems are Polynomial
Time Equivalent to their Reporting

Problems

• Example: Subset sum
– Decision Problem: Determine if a subset sum

exists.
– Reporting Problem: Determine if a subset sum

exists and report one if it does.

• Using decision to report
– Let subset-sum(A,b) return true if some subset of A

adds up to b.  Otherwise it returns false.
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Reporting Reduces to Decision
Assume that subset-sum ({a1,…,an},b) is true
X := the empty set;
for i = 1 to n do
    if subset-sum({ai+1,…,an},b - ai) then
        add i to X;
        b := b - ai;

Example:  3, 5, 2, 7, 4, 2, b = 11 
5, 2, 7, 4, 2, b = 11-3 --> yes, X = {3}, b = 8
2, 7, 4, 2, b = 8-5 --> no
7, 4, 2, b = 8-2 --> yes, X = {3,2}, b = 6
4, 2, b = 6-7 --> no
2, b = 6-4 --> yes, X = {3,2,4}, b = 2
b = 4 -2 --> yes, X ={3,2,4,2}
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Polynomial Time Reducibility

• Informal idea: A decision problem A is
polynomial time reducible to a decision
problem B if a polynomial time algorithm for B
can be used to construct a polynomial time
algorithm for A.

• Formally: A is polynomial time reducible to B if
there is a function f computable in polynomial
time such that for all x:
– x has A if and only if f(x) has B

• If A polynomial time reducible to B and B
solvable in polynomial time then so is A.
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Block Diagram to Decide A from B

Algorithm 
to compute f

x Algorithm 
to decide B

f(x) f(x) has B? x has A?

Algorithm to decide A
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Example of Polynomial Time
Reduction

• Hamiltonian path is polynomial time reducible
to spanning tree of degree 4.
– Given G = (V,E)

– Construct G’ = (V’,E’)

– f(G) = G’

– G has Hamiltonian path if and only if G’ has a
spanning tree of degree 4
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NP-Hardness

• Definition: A problem A is NP-hard if every
problem in NP is reducible to it in polynomial
time.

• If an NP-hard problem has a polynomial time
algorithm, then every problem in NP has a
polynomial time algorithm.

• To show a problem is NP-hard it suffices to
show that some NP-hard problem is reducible
to it.  Why? Transitivity of polynomial time
reduction.
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Transitivity of Polynomial Time
Reduction

• Define:              to mean that A is polynomial
time reducible to B.

• Transitivity:               and               implies
• Example:

– Every problem in NP is known to be polynomial
time reducible to Hamiltonian path.

– Hamiltonian path is polynomial time reducible to
spanning tree of degree 4.

– Therefore, every problem in NP is polynomial time
reducible to spanning tree of degree 4.

BA P≤

BA
P

≤ CB P≤ CA P≤
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NP-Completeness Definition

• Definition: A decision problem A is NP-complete if
– A is in NP

– A is NP-hard

• Example: Spanning tree of degree 4 is NP-
complete.
– Spanning tree of degree 4 is in NP.

– Hamiltonian path is a known NP-complete problem.

– Hamiltonian path is polynomial time reducible to
spanning tree of degree 4.
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Cook’s Theorem
• CNF-satisfiability is NP-complete

– Cook 1971

Proof formalizes the notion of a nondeterministic algorithm
as a nondeterministic Turing machine.  Cook then shows 
that a CNF-formula F can be produced in polynomial time
that describes the operation of the nondeterministic 
Turning machine.  The Turing machine halts in a “yes” 
state if and only if the formula F is satisfiable.   
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P vs NP

• Definition: P is the class of decision problems
that are solvable by a polynomial time
algorithm.

• Every problem in P is also in NP

• Famous Open Question:

NPP ⊆

?NPP =
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Probable Picture

P

NP-Complete

NP
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Clique Decision Problem

• Input: Undirected Graph G = (V,E) and a
number k.

• Output: Determine if G has a k-clique, that is,
there is a set of vertices U of size k such that
for each pair of vertices in U there is and
edge in E between them.
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Clique Example

4-clique
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Clique is NP-Complete

• Clique is in NP
– Nondeterministic algorithm: guess k vertices then

check that there is an edge between each pair of
them.

• Clique is NP-hard
– We reduce CNF-satisfiability to Clique in polynomial

time
– Given a CNF formula F we need to construct a

graph G and a number k with the property that F is
satisfiable if and only if G has a k-clique.  The
contstruction must be efficient, polynomial time.
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Construction by Example
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Construction by Example
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General Construction
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The Reduction Argument

• We must show
– F satisfiable implies G has a clique of size k.

• Given a satisfying assignment for F, for each
clause pick a literal that is satisfied.   Those
literals in the graph G form a k-clique.

– G has a clique of size k implies F is satisfiable.

• Given a k-clique in G, assign each literal in the
clique to be 1.  This yields a satisfying
assignment to F.
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Clique to Assignment
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Assignment to Clique
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3-CNF-Satifiability

• Input: A Boolean formula F with at most 3
literals per clause.

• Output: Determine if F is satisfiable.

• 3-CNF-Satisfiability is NP-complete
– This is probably the most used NP-complete

problem in reduction proofs showing other
decision problems are NP-hard.
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Reduction by Example

’)( 4321 FxxxxF ∧¬∨∨¬∨=
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Given

Construct

F is satisfiable if and only if H is satisfiable.

02 =x satisfies the first clause of F.

0,0,1 321 === zzz satisfy clauses 1,3, and 4 of H and

02 =x satisfies the clause 2 of H.


