

NP

- NP stands for nondeterministic polynomial time.
- We consider the class of decision problems (yes/no problems).
- A nondeterministic algorithm is one that can make "guesses".
- A decision problem is in NP if it can be solved by a nondeterministic algorithm that runs in polynomial time.

CNF-Satisfiability

- Input: A Boolean formula F in conjunctive normal form.

$$
(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

- Output: Determine if F is satisfiable, that is, there is some assignment to the variables that makes the formula F true.

$$
x=1, y=0, z=1
$$

$(1 \vee 0 \vee 1) \wedge(\neg 1 \vee 0 \vee 1) \wedge(\neg 1 \vee \neg 0 \vee \neg 1)$

- Algorithm: Guess an assignment and check it.

NP-Completeness Theory

- Explains why some problems are hard and probably not solvable in polynomial time.
- Invented by Cook in 1971.
- Popularized in an important paper by Karp in 1972.
- Standardized by Garey and Johnson in 1979 in "Computers and Intractability: A Guide to the Theory of NP-Completeness".

Examples of Decision Problems in NP

- Hamiltonian Path
- Nondeterministic algorithm: guess a path $v_{1}, v_{2}, \ldots v_{n}$ then check no two vertices are the same and that for each $\mathrm{i}<\mathrm{n}$ there is an edge between v_{i} and $\mathrm{v}_{\mathrm{i}+1}$.
- Graph Coloring
- input: Graph $G=(V, E)$ and a number k.
- output: Determine if all vertices can be colored with k colors such that no two adjacent vertices have the same color.
- Algorithm: Guess a coloring and then check it. CSE 589 - Lecture 4 - Spring 1999

Decision Problems are Polynomial Time Equivalent to their Reporting Problems

- Example: Subset sum
- Decision Problem: Determine if a subset sum exists.
- Reporting Problem: Determine if a subset sum exists and report one if it does
- Using decision to report
- Let subset-sum (A, b) return true if some subset of A adds up to b. Otherwise it returns false.

Polynomial Time Reducibility

- Informal idea: A decision problem A is polynomial time reducible to a decision problem B if a polynomial time algorithm for B can be used to construct a polynomial time algorithm for A.
- Formally: A is polynomial time reducible to B if there is a function f computable in polynomial time such that for all x :
$-x$ has A if and only if $f(x)$ has B
- If A polynomial time reducible to B and B solvable in polynomial time then so is A.

Example of Polynomial Time Reduction

- Hamiltonian path is polynomial time reducible to spanning tree of degree 4
- Given $G=(V, E)$
- Construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
$-f(G)=G^{\prime}$
- G has Hamiltonian path if and only if G^{\prime} has a spanning tree of degree 4

```
Reporting Reduces to Decision
Assume that subset-sum ({a, ,\ldots,an},b) is true
X := the empty set;
for i=1 to n do
    if subset-sum({\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{n}{}},b-\mp@subsup{a}{i}{})\mathrm{ then}
        add i to X;
        b := b - a;
```

Example: $3,5,2,7,4,2, b=11$
$5,2,7,4,2, b=11-3-->$ yes, $X=\{3\}, b=8$
2, $7,4,2, b=8-5-->$ no
$7,4,2, b=8-2$--> yes, $X=\{3,2\}, b=6$
$4,2, b=6-7$--> no
$2, b=6-4$--> yes, $X=\{3,2,4\}, b=2$
$b=4-2$--> yes, $X=\{3,2,4,2\}$
CSE 589 - Lecture 4 - Spring 1999

Block Diagram to Decide A from B

NP-Hardness

- Definition: A problem A is NP-hard if every problem in NP is reducible to it in polynomial time.
- If an NP-hard problem has a polynomial time algorithm, then every problem in NP has a polynomial time algorithm.
- To show a problem is NP-hard it suffices to show that some NP-hard problem is reducible to it. Why? Transitivity of polynomial time reduction.

Transitivity of Polynomial Time Reduction

- Define: $A \leq_{p} B$ to mean that A is polynomial time reducible to B.
- Transitivity: $A \leq_{P} B$ and $B \leq_{P} C$ implies $A \leq_{P} C$
- Example:
- Every problem in NP is known to be polynomial time reducible to Hamiltonian path.
- Hamiltonian path is polynomial time reducible to spanning tree of degree 4.
- Therefore, every problem in NP is polynomial time reducible to spanning tree of degree 4.

Cook's Theorem

- CNF-satisfiability is NP-complete
- Cook 1971

Proof formalizes the notion of a nondeterministic algorithm as a nondeterministic Turing machine. Cook then shows that a CNF-formula F can be produced in polynomial time that describes the operation of the nondeterministic Turning machine. The Turing machine halts in a "yes" state if and only if the formula F is satisfiable.

NP-Completeness Definition

- Definition: A decision problem A is NP-complete if $-A$ is in NP
- A is NP-hard
- Example: Spanning tree of degree 4 is NPcomplete.
- Spanning tree of degree 4 is in NP.
- Hamiltonian path is a known NP-complete problem.
- Hamiltonian path is polynomial time reducible to spanning tree of degree 4.

P vs NP

- Definition: P is the class of decision problems that are solvable by a polynomial time algorithm.
- Every problem in P is also in NP

$$
P \subseteq N P
$$

- Famous Open Question:

$$
P=N P ?
$$

CSE 589 - Lecture 4 - Spring 1999

Clique Decision Problem

- Input: Undirected Graph $G=(\mathrm{V}, \mathrm{E})$ and a number k.
- Output: Determine if G has a k-clique, that is, there is a set of vertices U of size k such that for each pair of vertices in U there is and edge in E between them.

Clique is NP-Complete

- Clique is in NP
- Nondeterministic algorithm: guess k vertices then check that there is an edge between each pair of them.
- Clique is NP-hard
- We reduce CNF-satisfiability to Clique in polynomial time
- Given a CNF formula F we need to construct a graph G and a number k with the property that F is satisfiable if and only if G has a k -clique. The contstruction must be efficient, polynomial time.

The Reduction Argument

- We must show
- F satisfiable implies G has a clique of size k.
- Given a satisfying assignment for F, for each clause pick a literal that is satisfied. Those literals in the graph G form a k-clique.
- G has a clique of size k implies F is satisfiable.
- Given a k-clique in G, assign each literal in the clique to be 1. This yields a satisfying assignment to F.

3-CNF-Satifiability

- Input: A Boolean formula F with at most 3 literals per clause.
- Output: Determine if F is satisfiable.
- 3-CNF-Satisfiability is NP-complete
- This is probably the most used NP-complete problem in reduction proofs showing other decision problems are NP-hard.

Reduction by Example

Given $F=\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge F$,
Construct $H=\left(x_{1} \vee z_{1}\right) \wedge\left(\neg x_{2} \vee \neg z_{1} \vee z_{2}\right)$
$\wedge\left(x_{3} \vee \neg z_{2} \vee z_{3}\right) \wedge\left(\neg x_{4} \vee \neg z_{3}\right) \wedge F$,
F is satisfiable if and only if H is satisfiable. $x_{2}=0$ satisfies the first clause of F.
$z_{1}=1, z_{2}=0, z_{3}=0$ satisfy clauses 1,3 , and 4 of H and
$x_{2}=0$ satisfies the clause 2 of H.

