
1

CSE 589
Applied Algorithms

Spring 1999

3-Colorability
Branch and Bound

CSE 589 - Lecture 5 - Spring 1999 2

3-Colorability

• Input: Graph G = (V,E) and a number k.
• Output: Determine if all vertices can be

colored with 3 colors such that no two
adjacent vertices have the same color.

3-colorable Not 3-colorable

CSE 589 - Lecture 5 - Spring 1999 3

3-CNF-Sat <P 3-Color

• Given a 3-CNF formula F we have to show
how to construct in polynomial time a graph G
such that:
– F is satisfiable implies G is 3-colorable

– G is 3-colorable implies F is satisfiable

CSE 589 - Lecture 5 - Spring 1999 4

The Gadget
• This is a classic reduction that uses a “gadget”.
• Assume the outer vertices are colored at most two

colors. The gadget is 3-colorable if and only if the
outer vertices are not all the same color.

CSE 589 - Lecture 5 - Spring 1999 5

Properties of the Gadget

Not 3 colorable Is 3 colorable

• Three colorable if and only if outer vertices
not all the same color.

CSE 589 - Lecture 5 - Spring 1999 6

Reduction by Example
)()()(zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

2

CSE 589 - Lecture 5 - Spring 1999 7

Satisfaction Example
)()()(zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

1

1

=
=
=

z

y

x

CSE 589 - Lecture 5 - Spring 1999 8

Satisfaction Example
)()()(zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

1

1

=
=
=

z

y

x

CSE 589 - Lecture 5 - Spring 1999 9

Non-Satisfaction Example
)()()(zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

0

0

=
=
=

z

y

x

CSE 589 - Lecture 5 - Spring 1999 10

Naming the Gadget

I N

R

T

UO

CSE 589 - Lecture 5 - Spring 1999 11

General Construction

)(
1

321I
k

i
iii aaaF

=

∨∨= },,,,{ 11 nnij xxxxa ¬¬∈ Kwhere

),(EVG = where

}1:},{},,{},,{{

}1:},{},,{},,{{

}1:},{},,{},,{},,{},,{},,{{

}},{},,{,},,{},,{{

}},{,},,{{

}},{},,{},,{{

}1:,,,,,{},,,,{},,{

321

11

11

11

kigTgUgO

kiTaUaOa

kiIRRNNIRTNUIO

bxbxbxbx

xxxx

rbbggrE

kiRNITUOxxxxbgrV

iii

iiiiii

iiiiiiiiiiii

nn

nn

iiiiiinn

≤≤∪
≤≤∪

≤≤∪
¬¬∪

¬¬∪
=

≤≤∪¬¬∪=

K

K

K

CSE 589 - Lecture 5 - Spring 1999 12

Reductions

CNF-Sat

3-CNF-Sat Clique

3-Color

Exact Cover

Subset Sum

3-Partition

Bin Packing

3

CSE 589 - Lecture 5 - Spring 1999 13

Exact Cover

• Input: A set and subsets

• Output: Determine if there is set of pairwise
disjoint set that union to U, that is, a set X
such that:

},,,{ 21 nuuuU K=
USSS m ⊆,,, 21 K

US

SSimpliesjiandXji

mX

Xi
i

ji

=

=∩≠∈
⊆

∈
U

K

φ,

},,2,1{

CSE 589 - Lecture 5 - Spring 1999 14

Example of Exact Cover

},,,,,,,,{ ihgfedcbaU =

},,{},,,{},,,{},,,{},,{},,,{},,,{ igdihfihehfbdbgfaeca

},,{},,,{},,,{ igdhfbeca

Exact Cover

CSE 589 - Lecture 5 - Spring 1999 15

3-Partition

• Input: A set of numbers and
number B with the properties that B/4 < ai < B/2
and

• Output: Determine if A can be partitioned into S1,
S2,…, Sm such that for all i

},,,{ 321 maaaA K=

.
3

1

mBa
m

i
i =∑

=

.Ba
iSj

j =∑
∈

Note: each Si must contain exactly 3 elements.

CSE 589 - Lecture 5 - Spring 1999 16

Example of 3-Partition

• A = {26, 29, 33, 33, 33, 34, 35, 36, 41}
• B = 100, m = 3
• 3-Partition

– 26, 33, 41

– 29, 36, 35

– 33, 33, 34

CSE 589 - Lecture 5 - Spring 1999 17

Bin Packing

• Input: A set of numbers and
numbers B (capacity) and K (number of bins).

• Output: Determine if A can be partitioned into S1,
S2,…, SK such that for all i

},,,{ 321 maaaA K=

.Ba
iSj

j ≤∑
∈

CSE 589 - Lecture 5 - Spring 1999 18

Bin Packing Example

• A = {2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5}
• B = 10, K = 4
• Bin Packing

– 3, 3, 4

– 2, 3, 5

– 5, 5

– 2, 4, 4

Perfect fit!

4

CSE 589 - Lecture 5 - Spring 1999 19

Coping with NP-Completeness

• Given a problem appears to be hard what do
you do?
– Try to find a good algorithm for it.

– Try to show its decision version is NP-complete or
NP-hard.

– Failing both, the problem probably is a hard one.

– For a hard problem there are many things to try.

• Branch-and-bound algorithm - for exact solution
• Approximate algorithm - heuristic

CSE 589 - Lecture 5 - Spring 1999 20

Load Balanced Spanning Tree
Cost Criteria

• Given a graph G = (V,E) and a spanning tree T.
– d(T) = max degree of any vertex of T

– c(T) = sum of the squares of the degrees

d(T) = 3
c(T) = 4*1 + 1*4 + 2*9 = 26

Advantage of c(T) is that
it has finer gradations.

CSE 589 - Lecture 5 - Spring 1999 21

Deriving c(T)

• Every spanning tree on n vertices has n-1
edges. Hence, the average number of edges
per vertex is d = 2(n-1)/n, about 2.

• Let di be the degree of vertex i. The variance
in degree is

• Minimizing the variance is equivalent to
minimizing

nddndd
n

i
i

n

i
i /)(/)(2

1

2

1

2 ∑∑
==

−=−

∑
=

n

i
id

1

2

CSE 589 - Lecture 5 - Spring 1999 22

Examples of c(T)

c(T) = 9* 12 + 1*92 = 90 c(T) = 2*12 + 8*22 = 34

CSE 589 - Lecture 5 - Spring 1999 23

Another Example

c(T) = 2*1 + 5*4 = 22c(T) = 3*1 + 3*4 + 1*9 = 24

CSE 589 - Lecture 5 - Spring 1999 24

Load Balanced Spanning Tree with
Minimum Variance

• Input: Undirected graph G = (V,E).
• Ouput: A spanning tree that minimizes the

sum of the squares of the degrees of the
vertices in the tree.

5

CSE 589 - Lecture 5 - Spring 1999 25

Branch and Bound

• Start with an initial tree T with cost c(T).
• Systematically search through all forests by

recursively (branching) adding new edges to
the current forest.

• Discontinue a search if the forest cannot be
contained in a spanning tree of smaller cost.
(This is the bounding step).

• This is better than exhaustive search, but it is
still only valuable on very small problems.

CSE 589 - Lecture 5 - Spring 1999 26

Example of Branch and Bound
Initial cost

12

2 2 2 2 2

0

6 6
6

10

CSE 589 - Lecture 5 - Spring 1999 27

Bounding Condition

• Let c(F) be the cost of the current forest of k
trees where tree Ti had minimum degree vertex
di sorted smallest to largest. Let B be the best
cost of any tree so far.

• The lowest possible cost of any tree containing F
is

• If m(F) > B then do not continue searching from
F.

∑∑∑∑
−=−=

−

=

−

=
−++−++=

k

ki
i

k

ki
i

k

i
i

k

i
i ddddFcFm

1

2

1

2
2

1

2
2

1

2)1(2)1(2)()(

CSE 589 - Lecture 5 - Spring 1999 28

Graphic of Bounding Condition

d1

d3
d2

d4

d5

d1 < d2 < d3 < d4 < d5

CSE 589 - Lecture 5 - Spring 1999 29

Example of Bounding

di = 0,1,1,1
c(F) = 1*0 + 8*1 + 1*16 = 24
m(F) = 24 + 2(1*1 + 1*4) - 2(1*0 + 1*1)
 + (1*1 +1*4) - (1*0 + 1*1)
 = 36

F

CSE 589 - Lecture 5 - Spring 1999 30

Branch and Bound Control
The edges of G are in an array E[1..m]
F is a set of indices of edges, initially empty
There is an initial Best-Tree with Best-Cost

LBST-Search(F)
 if F is a tree then
 if c(F) < Best-Cost then
 Best-Tree := F;
 Best-Cost := c(F);
 else {F is not a tree}
 for i = last-index-in(F) + 1 to m do
 if not(cycle(F,i)) and m(F,i) < Best-Cost then
 F := union(F,i);
 LBST-Search(F);

6

CSE 589 - Lecture 5 - Spring 1999 31

Notes on Branch and Bound

• Branch and bound is still an exponential search.
To make it work well many efficiencies should be
made.
– Eliminate copy of the partial solution F on the

recursive call.

– Maintain cost of partial solution F and its sequence of
minimum degrees to make computation of m(F,i) fast.

– Use up tree for cycle checking.

– Reduce use of expensive bounding checks when
possible.

– Add more bounding checks

