

3-CNF-Sat $\leq_{p} 3$-Color

- Given a 3-CNF formula F we have to show how to construct in polynomial time a graph G such that:
- F is satisfiable implies G is 3 -colorable
- G is 3-colorable implies F is satisfiable

Properties of the Gadget

- Three colorable if and only if outer vertices not all the same color.

Not 3 colorable

Is 3 colorable

3-Colorability

- Input: Graph $G=(V, E)$ and a number k.
- Output: Determine if all vertices can be colored with 3 colors such that no two adjacent vertices have the same color

3-colorable
CSE 589 - Lecture 5 - Spring 1999
Not 3-colorable

The Gadget

- This is a classic reduction that uses a "gadget".
- Assume the outer vertices are colored at most two colors. The gadget is 3 -colorable if and only if the outer vertices are not all the same color.

CSE 589 - Lecture 5 - Spring 1999

Naming the Gadget

General Construction$\begin{aligned} F & =\bigcap_{i=1}^{k}\left(a_{i 1} \vee a_{i 2} \vee a_{i 3}\right) \text { where } a_{i j} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} \\ G & =(V, E) \quad \text { where } \\ V & =\{r, g, b\} \cup\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} \cup\left\{O_{i}, U_{i}, T_{i}, I_{i}, N_{i}, R_{i}: 1 \leq i \leq k\right\} \\ E & =\{\{r, g\},\{g, b\},\{b, r\}\} \\ & \cup\left\{\left\{x_{1}, \neg x_{1}\right\}, \ldots,\left\{x_{n}, \neg x_{n}\right\}\right\} \\ & \cup\left\{\left\{x_{1}, b\right\},\left\{\neg x_{1}, b\right\}, \ldots,\left\{x_{n}, b\right\},\left\{\neg x_{n}, b\right\}\right\} \\ & \cup\left\{\left\{O_{i}, T_{i}\right\},\left\{U_{i}, N_{i}\right\},\left\{T_{i}, R_{i}\right\},\left\{I_{i}, N_{i}\right\},\left\{N_{i}, R_{i}\right\},\left\{R_{i}, I_{i}\right\}: 1 \leq i \leq k\right\} \\ & \cup\left\{\left\{a_{i}, O_{i}\right\},\left\{a_{i 2}, U_{i}\right\},\left\{a_{i 3}, T_{i}\right\}: 1 \leq i \leq k\right\} \\ & \cup\left\{\left\{O_{i}, g\right\},\left\{U_{i}, g\right\},\left\{T_{i}, g\right\}: 1 \leq i \leq k\right\} \end{aligned}$

Exact Cover

- Input: A set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and subsets

$$
S_{1}, S_{2}, \ldots, S_{m} \subseteq U
$$

- Output: Determine if there is set of pairwise disjoint set that union to U, that is, a set X such that:

$$
X \subseteq\{1,2, \ldots, m\}
$$

$i, j \in X$ and $i \neq j$ implies $S_{i} \cap S_{j}=\phi$

$$
\bigcup_{i \in X} S_{i}=U
$$

3-Partition

- Input: A set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ and number B with the properties that $B / 4<a_{i}<B / 2$ and

$$
\sum_{i=1}^{3 m} a_{i}=m B .
$$

- Output: Determine if A can be partitioned into S_{1}, S_{2}, \ldots, S_{m} such that for all i

$$
\sum_{j \in S_{i}} a_{j}=B .
$$

Note: each S_{i} must contain exactly 3 elements.

Bin Packing

- Input: A set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ and numbers B (capacity) and K (number of bins).
- Output: Determine if A can be partitioned into S_{l}, S_{2}, \ldots, S_{K} such that for all i

$$
\sum_{j \in S_{i}} a_{j} \leq B .
$$

Example of Exact Cover

$$
U=\{a, b, c, d, e, f, g, h, i\}
$$

$\{a, c, e\},\{a, f, g\},\{b, d\},\{b, f, h\},\{e, h, i\},\{f, h, i\},\{d, g, i\}$ Exact Cover

$$
\{a, c, e\},\{b, f, h\},\{d, g, i\}
$$

Example of 3-Partition

- $A=\{26,29,33,33,33,34,35,36,41\}$
- $B=100, m=3$
- 3-Partition
- 26, 33, 41
- 29, 36, 35
- 33, 33, 34

Bin Packing Example

- $A=\{2,2,3,3,3,4,4,4,5,5,5\}$
- $B=10, K=4$
- Bin Packing
- 3, 3, 4
-2, 3, 5
$-5,5 \quad$ Perfect fit!
- 2, 4, 4

Coping with NP-Completeness

- Given a problem appears to be hard what do you do?
- Try to find a good algorithm for it.
- Try to show its decision version is NP-complete or NP-hard.
- Failing both, the problem probably is a hard one.
- For a hard problem there are many things to try.
- Branch-and-bound algorithm - for exact solution
- Approximate algorithm - heuristic

Deriving c(T)

- Every spanning tree on n vertices has $n-1$ edges. Hence, the average number of edges per vertex is $d=2(n-1) / n$, about 2 .
- Let d_{i} be the degree of vertex i. The variance in degree is

$$
\sum_{i=1}^{n}\left(d_{i}-d\right)^{2} / n=\left(\sum_{i=1}^{n} d_{i}^{2}-d^{2}\right) / n
$$

- Minimizing the variance is equivalent to minimizing

$$
\sum_{i=1}^{n} d_{i}^{2}
$$

Load Balanced Spanning Tree Cost Criteria

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a spanning tree T .
$-d(T)=$ max degree of any vertex of T
$-c(T)=$ sum of the squares of the degrees

$d(T)=3$
$c(T)=4^{*} 1+1^{*} 4+2^{*} 9=26$
Advantage of $c(T)$ is that it has finer gradations.

Load Balanced Spanning Tree with Minimum Variance

- Input: Undirected graph $G=(\mathrm{V}, \mathrm{E})$.
- Ouput: A spanning tree that minimizes the sum of the squares of the degrees of the vertices in the tree.

Branch and Bound

- Start with an initial tree T with cost $\mathrm{c}(\mathrm{T})$.
- Systematically search through all forests by recursively (branching) adding new edges to the current forest.
- Discontinue a search if the forest cannot be contained in a spanning tree of smaller cost. (This is the bounding step).
- This is better than exhaustive search, but it is still only valuable on very small problems.

Bounding Condition

- Let $c(F)$ be the cost of the current forest of k trees where tree T_{i} had minimum degree vertex d_{i} sorted smallest to largest. Let B be the best cost of any tree so far.
- The lowest possible cost of any tree containing F is
$m(F)=c(F)+2 \sum_{i=1}^{k-2}\left(d_{i}+1\right)^{2}-2 \sum_{i=1}^{k-2} d_{i}^{2}+\sum_{i=k-1}^{k}\left(d_{i}+1\right)^{2}-\sum_{i=k-1}^{k} d_{i}^{2}$
- If $m(F) \geq B$ then do not continue searching from F.

Graphic of Bounding Condition

$$
d_{1} \leq d_{2} \leq d_{3} \leq d_{4} \leq d_{5}
$$

$$
\text { CSE } 589 \text { - Lecture } 5 \text { - Spring } 1999
$$

Example of Bounding $\begin{aligned} & \mathrm{d}_{\mathrm{i}}=0,1,1,1 \\ & \mathrm{c}(\mathrm{~F})= 1^{*} 0+8^{\star} 1+1^{*} 16=24 \\ & \mathrm{~m}(\mathrm{~F})= 24+2\left(1^{* 1}+1^{*} 4\right)-2\left(1^{*} 0+1^{*} 1\right) \\ &+\left(1^{*} 1+1^{*} 4\right)-\left(1^{*} 0+1^{*} 1\right) \\ &= 36 \end{aligned}$	29

Branch and Bound Control

The edges of G are in an array $E[1 . . \mathrm{m}]$
F is a set of indices of edges, initially empty
There is an initial Best-Tree with Best-Cost
LBST-Search(F)
if F is a tree then
if $\mathrm{c}(\mathrm{F})$ < Best-Cost then
Best-Tree := F; Best-Cost := c(F);
else $\{F$ is not a tree $\}$
for $\mathrm{i}=$ last-index-in $(F)+1$ to m do if not(cycle(F, i,) and $m(F, i)$ < Best-Cost then $\mathrm{F}:=$ union(F, i); LBST-Search(F);

CSE 589 - Lecture 5-Spring 199930

Notes on Branch and Bound

- Branch and bound is still an exponential search. To make it work well many efficiencies should be made.
- Eliminate copy of the partial solution F on the recursive call.
- Maintain cost of partial solution F and its sequence of minimum degrees to make computation of $m(F, i)$ fast.
- Use up tree for cycle checking.
- Reduce use of expensive bounding checks when possible.
- Add more bounding checks

