CSE 589

Applied Algorithms
Spring 1999

3-Colorability
Branch and Bound

3-Colorability

« Input: Graph G = (V,E) and a number k.
¢ Qutput: Determine if all vertices can be
colored with 3 colors such that no two

adjacent vertices have the same color.

Not 3-colorable

3-colorable
CSE 589 - Lecture 5 - Spring 1999 2

3-CNF-Sat <, 3-Color

» Given a 3-CNF formula F we have to show
how to construct in polynomial time a graph G
such that:

— F is satisfiable implies G is 3-colorable
— G is 3-colorable implies F is satisfiable

CSE 589 - Lecture 5 - Spring 1999

The Gadget

« This is a classic reduction that uses a “gadget”.

« Assume the outer vertices are colored at most two
colors. The gadget is 3-colorable if and only if the
outer vertices are not all the same color.

CSE 589 - Lecture 5 - Spring 1999 4

Properties of the Gadget

» Three colorable if and only if outer vertices
not all the same color.

Not 3 colorable Is 3 colorable

CSE 589 - Lecture 5 - Spring 1999

Reduction by Example
F=(xOyOz)0-xO0yOz) O(=xO-y0O-2)

CSE 589 - Lecture 5 - Spring 1999 6

Satisfaction Example x=1
F=(xOyO2) O(-x0yOz) O(-x0-yO-2) y=1
z=0

CSE 589 - Lecture 5 - Spring 1999 7

Satisfaction Example x=1
F=(xOyO2)O(-x0yOz) O(-x0-~yO-2) y=1
z=0

CSE 589 - Lecture 5 - Spring 1999 8

Non-Satisfaction Example x=o0
F=(xO0yOz) O(-x0ydz) O(-x0-y0-2) y=0
z=0

CSE 589 - Lecture 5 - Spring 1999 9

Naming the Gadget

CSE 589 - Lecture 5 - Spring 1999 10

General Construction

k
F=(a;0a,0a;) where a 0{X,~%,..., X, 7%}
i=1

G=(,E) where

V ={r,g,b} O{x,%,...,%,,7 %} O{O,,U;,T;,I;,N;,R :1<i <k}
E={{r.g}.{9.b}.{b,r}}

O{{x, >} %, 71}

Of{x. b {-%. b} {x, B {~ %, b} }

0{O 11U NITL R NT{NL RY{R, 1} :1<i <k}
O{{a;,0} {a, Ui} {a, T}:1si<k}

0{{0,. g} .{U;. g}.{T;, g} :1=i <k}

CSE 589 - Lecture 5 - Spring 1999 11

Reductions

[3-CNF-sat| [Clique] [3-Partition]

Bin Packing

Subset Sum

CSE 589 - Lecture 5 - Spring 1999 12

Exact Cover

* Input: Aset U={u,u,,...,u} and subsets

» Output: Determine if there is set of pairwise
disjoint set that union to U, that is, a set X
such that:

i,jO0Xandi#jimplies§nS =¢

Us=u

iox

CSE 589 - Lecture 5 - Spring 1999 13

Example of Exact Cover
U ={a,b,c,d,e f,g,h,i}

{a,c,& {a f,g},{b,d}{b, f,h} {ehi},{f,h,i},{d,0g,i}
Exact Cover

{ac.g.{b f,h.{d.g.i}

CSE 589 - Lecture 5 - Spring 1999 14

3-Partition

+ Input: A set of numbers A={&,a,,...,8,} and

number B with the properties that B/4< g < B/2
and 3m
a =mB.

» Output: Determine if A can be partitioned into S,
S,...., §,such that for all i

éaj =B.
]

Note: each § must contain exactly 3 elements.

CSE 589 - Lecture 5 - Spring 1999 15

Example of 3-Partition

« A={26, 29, 33, 33, 33, 34, 35, 36, 41}
e B=100,m=3
¢ 3-Partition

— 26,33, 41

- 29,36, 35

—33,33,34

CSE 589 - Lecture 5 - Spring 1999 16

Bin Packing

« Input: A set of numbers A={a,,a,,...,a,,} and
numbers B (capacity) and K (number of bins).

» Output: Determine if A can be partitioned into S;,
S,,..., & such that for all i

;%SB
]

CSE 589 - Lecture 5 - Spring 1999 17

Bin Packing Example

« A={2,2,3,3,3,4,4,4,5,5,5}
¢« B=10,K=4
« Bin Packing
-3,3,4
-2,3,5
55 Perfect fit!
-2,4,4

CSE 589 - Lecture 5 - Spring 1999 18

Coping with NP-Completeness

Given a problem appears to be hard what do
you do?
— Try to find a good algorithm for it.

— Try to show its decision version is NP-complete or
NP-hard.

— Failing both, the problem probably is a hard one.

— For a hard problem there are many things to try.
« Branch-and-bound algorithm - for exact solution
« Approximate algorithm - heuristic

CSE 589 - Lecture 5 - Spring 1999 19

Load Balanced Spanning Tree
Cost Criteria

» Given a graph G = (V,E) and a spanning tree T.
— d(T) = max degree of any vertex of T
— ¢(T) = sum of the squares of the degrees

dm=3
o(T) = 41 + 1*4 + 2*9 = 26

Advantage of c(T) is that
it has finer gradations.

CSE 589 - Lecture 5 - Spring 1999 20

Deriving c(T)

» Every spanning tree on n vertices has n-1
edges. Hence, the average number of edges
per vertex is d = 2(n-1)/n, about 2.

* Let d; be the degree of vertex i. The variance
in degree is

Z(di —d)Hn:(de—dz)/n
» Minimizing the variance is equivalent to
minimizing n Q2

CSE 589 - Lecture 5 - Spring 1999 21

Examples of c(T)

c(T) = 9% 12 + 1*92 = 90 c(T) = 2%12 + 8*22 =34

CSE 589 - Lecture 5 - Spring 1999 22

Another Example

C(T) =3*1+3*4+1*9=24 C(T) = 2%1 + 5% = 22

CSE 589 - Lecture 5 - Spring 1999 23

Load Balanced Spanning Tree with
Minimum Variance
* Input: Undirected graph G = (V,E).
¢ Quput: A spanning tree that minimizes the

sum of the squares of the degrees of the
vertices in the tree.

CSE 589 - Lecture 5 - Spring 1999 24

Branch and Bound

« Start with an initial tree T with cost c(T).

» Systematically search through all forests by
recursively (branching) adding new edges to
the current forest.

 Discontinue a search if the forest cannot be
contained in a spanning tree of smaller cost.
(This is the bounding step).

» This is better than exhaustive search, but it is
still only valuable on very small problems.

CSE 589 - Lecture 5 - Spring 1999 25

Example of Branch and Bound

Initial cost
N :

oy

e N
S
Elo

CSE 589 - Lecture 5 - Spring 1999 26

- N
SEESTESEESEINS

Bounding Condition

» Let c(F) be the cost of the current forest of k
trees where tree T; had minimum degree vertex
d; sorted smallest to largest. Let B be the best
cost of any tree so far.

» The lowest possible cost of any tree containing F
is

m(F) =C(F)+2k§(d‘ +1)? —2§d? + _k (d, +1? —id%

« If m(F) > B then do not continue searching from
F.

CSE 589 - Lecture 5 - Spring 1999 27

Graphic of Bounding Condition
d4

d,<d,<d;<d,<dg

CSE 589 - Lecture 5 - Spring 1999 28

Example of Bounding
F

d=0111
C(F) = 1*0 + 8*1 + 1*16 = 24
M(F) = 24 + 2(1*1 + 1*4) - 2(1*0 + 1*1)
+ (1% +1%4) - (1*0 + 1*1)
=36

CSE 589 - Lecture 5 - Spring 1999 29

Branch and Bound Control

The edges of G are in an array E[1..m]
F is a set of indices of edges, initially empty
There is an initial Best-Tree with Best-Cost

LBST-Search(F)
if F is a tree then
if ¢(F) < Best-Cost then
Best-Tree := F;
Best-Cost := c(F);
else {F is not a tree}
for i = last-index-in(F) + 1 to m do
if not(cycle(F,i)) and m(F,i) < Best-Cost then

F := union(F,i);
LBST-Search(F);
CSE 589 - Lecture 5 - Spring 1999 30

Notes on Branch and Bound

« Branch and bound is still an exponential search.
To make it work well many efficiencies should be
made.

— Eliminate copy of the partial solution F on the
recursive call.

— Maintain cost of partial solution F and its sequence of
minimum degrees to make computation of m(F,i) fast.
— Use up tree for cycle checking.

— Reduce use of expensive bounding checks when
possible.

— Add more bounding checks

CSE 589 - Lecture 5 - Spring 1999 31

