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3-Colorability
Branch and Bound
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3-Colorability

• Input: Graph G = (V,E) and a number k.
• Output: Determine if all vertices can be

colored with 3 colors such that no two
adjacent vertices have the same color.

3-colorable Not 3-colorable
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3-CNF-Sat <P 3-Color

• Given a 3-CNF formula F we have to show
how to construct in polynomial time a graph G
such that:
– F is satisfiable implies G is 3-colorable

– G is 3-colorable implies F is satisfiable
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The Gadget
• This is a classic reduction that uses a “gadget”.
• Assume the outer vertices are colored at most two

colors.  The gadget is 3-colorable if and only if the
outer vertices are not all the same color.
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Properties of the Gadget

Not 3 colorable Is 3 colorable

• Three colorable if and only if outer vertices
not all the same color.
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Reduction by Example
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Satisfaction Example
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Satisfaction Example
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Non-Satisfaction Example
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Naming the Gadget

I N

R

T

UO

CSE 589 - Lecture 5 - Spring 1999 11

General Construction
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Reductions

CNF-Sat

3-CNF-Sat Clique

3-Color

Exact Cover

Subset Sum

3-Partition

Bin Packing
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Exact Cover

• Input: A set                            and subsets

• Output: Determine if there is set of pairwise
disjoint set that union to U, that is, a set X
such that:
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Example of Exact Cover

},,,,,,,,{ ihgfedcbaU =

},,{},,,{},,,{},,,{},,{},,,{},,,{ igdihfihehfbdbgfaeca

},,{},,,{},,,{ igdhfbeca

Exact Cover
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3-Partition

• Input: A set of numbers                              and
number B  with the properties that  B/4 < ai < B/2
and

• Output: Determine if A can be partitioned into S1,
S2,…, Sm such that for all i
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Note: each Si must contain exactly 3 elements.

CSE 589 - Lecture 5 - Spring 1999 16

Example of 3-Partition

• A = {26, 29, 33, 33, 33, 34, 35, 36, 41}
• B = 100, m = 3
• 3-Partition

– 26, 33, 41

– 29, 36, 35

– 33, 33, 34
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Bin Packing

• Input: A set of numbers                              and
numbers B (capacity) and K (number of bins).

• Output: Determine if A can be partitioned into S1,
S2,…, SK such that for all i
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Bin Packing Example

• A = {2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5}
• B = 10, K = 4
• Bin Packing

– 3, 3, 4

– 2, 3, 5

– 5, 5

– 2, 4, 4

Perfect fit!
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Coping with NP-Completeness

• Given a problem appears to be hard what do
you do?
– Try to find a good algorithm for it.

– Try to show its decision version is NP-complete or
NP-hard.

– Failing both, the problem probably is a hard one.

– For a hard problem there are many things to try.

• Branch-and-bound algorithm - for exact solution
• Approximate algorithm - heuristic

CSE 589 - Lecture 5 - Spring 1999 20

Load Balanced Spanning Tree
Cost Criteria

• Given a graph G = (V,E) and a spanning tree T.
– d(T) = max degree of any vertex of T

– c(T) = sum of the squares of the degrees

d(T) = 3
c(T) = 4*1 + 1*4 + 2*9 = 26

Advantage of c(T) is that
it has finer gradations.
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Deriving c(T)

• Every spanning tree on n vertices has n-1
edges.  Hence, the average number of edges
per vertex is d = 2(n-1)/n, about 2.

• Let di be the degree of vertex i.  The variance
in degree is

• Minimizing the variance is equivalent to
minimizing
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Examples of c(T)

c(T) = 9* 12 + 1*92 = 90 c(T) = 2*12 + 8*22  = 34 
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Another Example

c(T) = 2*1 + 5*4 = 22c(T) = 3*1 + 3*4 + 1*9 = 24
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Load Balanced Spanning Tree with
Minimum Variance

• Input: Undirected graph G = (V,E).
• Ouput: A spanning tree that minimizes the

sum of the squares of the degrees of the
vertices in the tree.
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Branch and Bound

• Start with an initial tree T with cost c(T).
• Systematically search through all forests by

recursively (branching) adding new edges to
the current forest.

• Discontinue a search if the forest cannot be
contained in a spanning tree of smaller cost.
(This is the bounding step).

• This is better than exhaustive search, but it is
still only valuable on very small problems.
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Example of Branch and Bound
Initial cost
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Bounding Condition

• Let c(F) be the cost of the current forest of k
trees where tree Ti had minimum degree vertex
di sorted smallest to largest. Let B be the best
cost of any tree so far.

• The lowest possible cost of any tree containing F
is

• If m(F) > B then do not continue searching from
F.
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Graphic of Bounding Condition

d1
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d1 < d2 < d3 < d4 < d5 
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Example of Bounding

di = 0,1,1,1
c(F) = 1*0 + 8*1 + 1*16 = 24
m(F) = 24 + 2(1*1 + 1*4) - 2(1*0 + 1*1)
            + (1*1 +1*4) - (1*0 + 1*1)
         = 36

F
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Branch and Bound Control
The edges of G are in an array E[1..m]
F is a set of indices of edges, initially empty
There is an initial Best-Tree with Best-Cost

LBST-Search(F)
    if F is a tree then
        if c(F) < Best-Cost then
            Best-Tree := F;
            Best-Cost := c(F);
    else {F is not a tree}
        for i = last-index-in(F) + 1 to m do
            if not(cycle(F,i)) and m(F,i) < Best-Cost then
               F := union(F,i);
               LBST-Search(F);
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Notes on Branch and Bound

• Branch and bound is still an exponential search.
To make it work well many efficiencies should be
made.
– Eliminate copy of the partial solution F on the

recursive call.

– Maintain cost of partial solution F and its sequence of
minimum degrees to make computation of m(F,i) fast.

– Use up tree for cycle checking.

– Reduce use of expensive bounding checks when
possible.

– Add more bounding checks


