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Local Search
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Local Search Algorithms

• Start with an initial solution that is usually
easy to find, but is not necessarily good.

• Repeatedly modify the current solution to a
nearby one looking for better ones.
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Neighborhood of a Solution

Cut an edge breaking
tree into two trees.

Add an edge joining the
two parts together again.

c(T) = 26 c(T) = 24

move
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Add an edge forming 
a cycle.

Delete an edge in the
cycle.

c(T) = 26 c(T) = 24

move

Equivalent Move
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Recall Cost
c(T) = 26 c(T) = 24

move

c(T) = sum of squares of the degrees of the vertices in T
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Solution Space

Moves are
reversible.



2

CSE 589 - Lecture 6 - Spring 1999 7

Every Spanning Tree is Reachable
from Every Other

• Let T and T’ be two spanning trees.  We can
move T closer to T’ by adding an edge from
T’ to T and removing an edge in the cycle
formed that is not in T’.

T T’

….
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Potential of Local Search

• Since every spanning tree is reachable from
any other, then starting with an arbitrary
spanning tree we can move to an optimal one
using local search.

• Impediment: there can be exponentially may
spanning trees.  The search space is
exceedingly large.

• In what direction do we search.
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Greedy Local Search

T := an initial tree;
best-cost := c(T);
repeat
    cost := best-cost;
    for each neighbor T’ of T do
       if c(T’) < best-cost then
          T := T’;
          best-cost := c(T);
until (best-cost = cost)
return(T)         

• Find the best neighbor and continue.
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Greedy Example (1)

90 76
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Greedy Example (2)

76

60

64
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Analysis of Greedy Local Search

• Assume n vertices, m edges and D is the sum
of the squares of the degrees in G. D < n2.

• There are at most D iterations in the algorithm.
• Each iteration consists of looking at each edge

in the spanning tree and replacing it with some
other edge, and checking for a cycle and
computing costs.  This is roughly O(n2m) time
per iteration.

• Total time is O(D n2m) = O(n4m) (worst case).
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Notes on Greedy Local Search

• Can be very effective for some problems.
The worst case time is not that bad.

• Examining all the neighbors and choosing the
best is sometimes called “steepest decent”.

• An alternative is “random decent”.  Randomly
choose a neighbor and move to it if its cost is
smaller.

• Another alternative is “first decent”.  Try the
neighbors in order and move to the first
improvement.
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 Local Minimum Problem

• Greedy local search leads to a local minimum
in the solution space, not necessarily a global
minimum.

Local minimum
Global minimum

Solution Surface
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Double Moves

• Instead of just looking one move away, look
two moves away to find a better spanning tree.

• Unfortunately, this incurs another huge factor
of n2m.
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N -1 Move Strategy
• Start with all edges unlocked. For each move

we lock the new edge that was added, until
all edges are locked or no moves possible.

• We move even if the cost goes up!

• Pick the best in the sequence to be the new
best tree.
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Avoiding Local Minima

Move number

cost
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Multiple Move Strategies

• Multiple move stategies were pioneered by
Kernighan and Lin (1970).

• They have been proven to be very effective
for the traveling salesman problem and the
minimum cut graph partitioning problem.
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Using Randomness to Avoid Local
Minima

• We maintain a trial solution.
– Generate a random move from the trial solution.

– If the move would beat the trial solution then
accept it as the new trial solution.

– If the move does not improve the solution then
accept it with some small probability.

• This enables us to navigate the entire
solution space and not get caught in a local
minimum.
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Simulated Annealing

• Kirkpatrick (1984)
• Analogy from thermodynamics.
• The best crystals are found by annealing.

– First heat up the material to let it bounce from
state to state.

– Slowly cool down the material to allow it to
achieve its minimum energy state.
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Heating and Cooling Helps (1)

Local minimum
Global minimum
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Heating and Cooling Helps (2)

Local minimum
Global minimum
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Heating and Cooling Helps (3)

Local minimum
Global minimum
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Heating and Cooling Helps (5)

Local minimum
Global minimum
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Heating and Cooling Helps (6)

Local minimum
Global minimum
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Heating and Cooling Helps (7)

Local minimum
Global minimum
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Heating and Cooling Helps (8)

Local minimum
Global minimum
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Heating and Cooling Helps (9)

Local minimum
Global minimum
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Annealing Concepts

• Solution space S, x in S is a solution
• E(x) is the energy of x
• x has a neighborhood of nearby states
• T is the temperature
• Cooling schedule, in step t of the algorithm

– Fast cooling

– Slower cooling

btaeT −=
batT −=
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Metropolis Algorithm

initialize T to be hot;
choose a starting state;
repeat
    generate a random move
    evaluate the change in energy dE
    if dE < 0 then accept the move
    else accept the move with probability e-dE/kT

    update T
until T is very small (frozen)
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Applied to Load Balanced Spanning
Tree

• A state is a spanning tree.
• T’ is a neighbor of T if it can be obtained by

deletion of an edge in T and insertion of an edge
not in T.

• Energy of a spanning tree T is its cost, c(T).
– If T’ is the random neighbor of T then dE = c(T’) - c(T).

• Probability of moving to a higher energy state is
e-(c(T’) -c(T))/kT

– Higher if either c(T’) - c(T) is small or T is large.
– Low if either c(T’) - c(T) is large or T is small.
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Notes on Simulated Annealing

• Not a black box algorithm.
– Requires tuning the cooling parameters and the

constant k in the probability expression e-dE/kT.

• Has been shown to be very effective in
finding good solutions for some optimization
problems.

• Known to converge to optimal solution, but
time of convergence is very large.  Most likely
converges to local optimum.

• Very little known about effectiveness
generally.
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Randomness and Relaxation
• Reduce problem to integer programming or

integer semi-definite programming.
(Goemans and Williamson, 1994)
– Relax to linear programming or semi-definite

programming yielding a non-integer solution.
There are polynomial time algorithm for LP and
SDP.

– Randomized rounding to achieve a good integer
solution.

– Provable bounds on approximation.
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Genetic Algorithms

• Maintain a population of solutions.
– Good solutions mate to obtain even better ones as

children.
– Bad mutations are killed.

Include all edges

Break cycles that
don’t include both 
parents’ edges


