

Local Search Algorithms

- Start with an initial solution that is usually easy to find, but is not necessarily good.
- Repeatedly modify the current solution to a nearby one looking for better ones.

Every Spanning Tree is Reachable from Every Other

- Let T and T' be two spanning trees. We can move T closer to T ' by adding an edge from T ' to T and removing an edge in the cycle formed that is not in T .

Greedy Local Search

- Find the best neighbor and continue.

```
T := an initial tree;
best-cost := c(T);
repeat
    cost := best-cost;
    for each neighbor T' of T do
        if c(T') < best-cost then
        T := T';
        best-cost := c(T);
until (best-cost = cost)
return(T)
```


Potential of Local Search

- Since every spanning tree is reachable from any other, then starting with an arbitrary spanning tree we can move to an optimal one using local search.
- Impediment: there can be exponentially may spanning trees. The search space is exceedingly large.
- In what direction do we search.

Analysis of Greedy Local Search

- Assume n vertices, m edges and D is the sum of the squares of the degrees in G. $D \leq n^{2}$.
- There are at most D iterations in the algorithm.
- Each iteration consists of looking at each edge in the spanning tree and replacing it with some other edge, and checking for a cycle and computing costs. This is roughly $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time per iteration.
- Total time is $\mathrm{O}\left(\mathrm{D} \mathrm{n}^{2} \mathrm{~m}\right)=\mathrm{O}\left(\mathrm{n}^{4} \mathrm{~m}\right)$ (worst case).

Notes on Greedy Local Search

- Can be very effective for some problems. The worst case time is not that bad.
- Examining all the neighbors and choosing the best is sometimes called "steepest decent".
- An alternative is "random decent". Randomly choose a neighbor and move to it if its cost is smaller.
- Another alternative is "first decent". Try the neighbors in order and move to the first improvement.

CSE 589 - Lecture 6-Spring 1999

Double Moves

- Instead of just looking one move away, look two moves away to find a better spanning tree.
- Unfortunately, this incurs another huge factor of $\mathrm{n}^{2} \mathrm{~m}$.

Avoiding Local Minima
cost

Move number

Local Minimum Problem

- Greedy local search leads to a local minimum in the solution space, not necessarily a global minimum.

N-1 Move Strategy

- Start with all edges unlocked. For each move we lock the new edge that was added, until all edges are locked or no moves possible.
- We move even if the cost goes up!

- Pick the best in the sequence to be the new best tree.

Multiple Move Strategies

- Multiple move stategies were pioneered by Kernighan and Lin (1970).
- They have been proven to be very effective for the traveling salesman problem and the minimum cut graph partitioning problem.

Using Randomness to Avoid Local Minima

- We maintain a trial solution.
- Generate a random move from the trial solution.
- If the move would beat the trial solution then accept it as the new trial solution.
- If the move does not improve the solution then accept it with some small probability.
- This enables us to navigate the entire solution space and not get caught in a local minimum.

Heating and Cooling Helps (5)

Heating and Cooling Helps (9)

CSE 589 - Lecture 6 - Spring 1999
28

Annealing Concepts

- Solution space S, x in S is a solution
- $E(x)$ is the energy of x
- x has a neighborhood of nearby states
- T is the temperature
- Cooling schedule, in step t of the algorithm
- Fast cooling $T=a e^{-b t}$
- Slower cooling $T=a t^{-b}$

Applied to Load Balanced Spanning Tree

- A state is a spanning tree.
- T^{\prime} is a neighbor of T if it can be obtained by deletion of an edge in T and insertion of an edge not in T .
- Energy of a spanning tree T is its cost, $c(T)$. - If T^{\prime} is the random neighbor of T then $\mathrm{dE}=\mathrm{c}\left(\mathrm{T}^{\prime}\right)-\mathrm{c}(\mathrm{T})$.
- Probability of moving to a higher energy state is $\left.\mathrm{e}^{-(c(T)}-\mathrm{c}(\mathrm{T})\right) / \mathrm{kT}$
- Higher if either $\mathrm{c}\left(\mathrm{T}^{\prime}\right)$ - $\mathrm{c}(\mathrm{T})$ is small or T is large.
- Low if either $\mathrm{c}\left(\mathrm{T}^{\top}\right)-\mathrm{c}(\mathrm{T})$ is large or T is small.

Notes on Simulated Annealing

- Not a black box algorithm.
- Requires tuning the cooling parameters and the constant k in the probability expression $\mathrm{e}^{-\mathrm{dE} \mathrm{kT}}$.
- Has been shown to be very effective in finding good solutions for some optimization problems.
- Known to converge to optimal solution, but time of convergence is very large. Most likely converges to local optimum.
- Very little known about effectiveness generally.

CSE 589 - Lecture 6 - Spring 1999

Randomness and Relaxation

- Reduce problem to integer programming or integer semi-definite programming.
(Goemans and Williamson, 1994)
- Relax to linear programming or semi-definite programming yielding a non-integer solution. There are polynomial time algorithm for LP and SDP.
- Randomized rounding to achieve a good integer solution.
- Provable bounds on approximation.

Genetic Algorithms

- Maintain a population of solutions.
- Good solutions mate to obtain even better ones as children.
- Bad mutations are killed.

34

