
1

CSE 589
Applied Algorithms

Spring 1999

Cache Performance
Mergesort
Heapsort

CSE 589 - Lecture 8 - Spring 1999 2

Recursive Mergesort

A[1..n] is to be sorted;
B[1..n] is an auxiliary array;

Mergesort(i,j) {sorts the subarray A[i..j] }
 if i < j then
 k := (i+j)/2;
 Mergesort(i,k);
 Mergesort(k+1,j);
 Merge A[i..k] with A[k+1..j] into B[i..j];
 Copy B[i..j] into A[i..j];

CSE 589 - Lecture 8 - Spring 1999 3

Mergesort Call Tree

CSE 589 - Lecture 8 - Spring 1999 4

Merging Pattern of Recursive
Mergesort

1/2 cache size

CSE 589 - Lecture 8 - Spring 1999 5

Notes on Recursive Mergesort

• Oblivious recursion.
– The subarrays that are merged do not depend on

the particular keys, just on the number of keys.

• Lots of copying from the auxiliary array to the
source arrays.

• Recursion is elegant, but is it really needed?
• Sorting very small arrays should be done in-

place.

CSE 589 - Lecture 8 - Spring 1999 6

Reorder the Merging Steps

2

CSE 589 - Lecture 8 - Spring 1999 7

Interative Mergesort

in-place sort groups of 4;
merge sorted groups of 4 in A into sorted groups of 8 in B;
merge sorted groups of 8 in B into sorted groups of 16 in A;
merge sorted groups of 16 in A into sorted groups of 32 in B;
.

in the end if the sorted array is B then copy it to A;

• Sort small groups in-place.
• Alternate the roles of A and B as the source

of the merging passes.
• Copy B to A if needed at the end.

CSE 589 - Lecture 8 - Spring 1999 8

Interative Mergesort Access Pattern

copy

CSE 589 - Lecture 8 - Spring 1999 9

Analysis of Access Pattern

• one pass to sort into groups of 4.
– Pass touches n key locations.

• log2(n/4) merge passes.
– Each pass touches 2n key locations, n in the

source array and n in the destination array.

• One copy pass if log2(n/4) is odd.
– Pass touches 2n key locations.

CSE 589 - Lecture 8 - Spring 1999 10

Performance of Iterative Mergesort

0

200

400

600

800

1000

1200

10
00

400
0

16
000

640
00

256
000

10
24

00
0

409
60

00

number of keys

cy
cl

e
s

pe
r

ke
y iterative mergesort

Alpha 250
2MB L2 cache
32 Byte cache line
4 keys/cache line

CSE 589 - Lecture 8 - Spring 1999 11

Cache Performance Matters

• Processor speeds increasing faster than
memory speeds.

• Cache miss penalties can be 100 cycles and
are growing.

• Algorithm design can be used to reduce
cache misses and improve overall
performance.

CSE 589 - Lecture 8 - Spring 1999 12

Cache Model

processor
cache

memory Direct mapped
cache

Cache line

Cache hit

Cache miss

Cache parameters
 Cache capacity
 Cache line size
 Set associativityblock or

line

3

CSE 589 - Lecture 8 - Spring 1999 13

Cache Miss Terminolgy

• Types of misses
– Compulsory miss: first time a memory block is read.

– Capacity miss: accessed data does not fit in cache.

– Conflict miss: several active memory blocks map to
the same place in the cache.

• Locality reduces cache misses
– temporal locality: a location that was recently

accessed is accessed again.

– Spatial locality: data on the same block are accessed
together.

CSE 589 - Lecture 8 - Spring 1999 14

Cache Conscious Mergesort
Execution Performance

0

200

400

600

800

1000

1200

10
00

40
00

16
00

0

64
00

0

25
60

00

10
24

00
0

40
96

00
0

number of keys

cy
cl

es
 p

er
 k

e
y

iterative mergesort

cache conscious
mergesort

Alpha 250
2MB L2 cache
32 Byte cache line
4 keys/cache line

CSE 589 - Lecture 8 - Spring 1999 15

Cache Conscious Mergesort

• Partition problem into “tiles” that fit in the
cache.

• Mergesort the tiles.
• Merge the tiles.
• Avoid copying by sorting in-place into groups

of 2 or 4 depending on whether log2(n/4) is
odd or even.

CSE 589 - Lecture 8 - Spring 1999 16

Cache Conscious Mergesort

sort in-place

merge

merge

merge

merge

merge

merge

sort in-place

merge

1/2 cache size

CSE 589 - Lecture 8 - Spring 1999 17

Traversal Analysis

Not in cache

In cache

1/B misses per access where B is number of access per line
CSE 589 - Lecture 8 - Spring 1999 18

Traversal Longer than Cache

cache size

.

.

.

4

CSE 589 - Lecture 8 - Spring 1999 19

Analysis of Cache Misses

• Parameters
– B keys per cache line

– C cache lines in the cache

– n keys with n >> BC

• Iterative Mergesort

+

+ 2mod

4
log

2

4
log

21
22

n

B

n

BB
cache misses per key

in-place sort merge passes copy

CSE 589 - Lecture 8 - Spring 1999 20

Iterative Mergesort Cache Misses

copy

CSE 589 - Lecture 8 - Spring 1999 21

Cache Conscious Merge Sort Analysis

+

BC

n

BB

2
log

22
2

cache misses per key

sort each tile final merge passes

Tile size is BC/2.
n/(BC/2) tiles to be merged in the end.
This take log2(n/(BC/2)) passes.

CSE 589 - Lecture 8 - Spring 1999 22

Cache Conscious Misses
sort in-place

merge

merge

merge

merge

merge

merge

sort in-place

merge

CSE 589 - Lecture 8 - Spring 1999 23

Simulated Cache Performance

0

2

4

6

8

10

12

100
0

400
0

160
00

640
00

25
60

00

10
24

00
0

40
960

00

number of keys

ca
ch

e
m

is
se

s
pe

r
ke

y

iterative mergesort

cache conscious
mergesort

Atom cache
simulation
2MB L2 cache
32 Byte cache line
4 keys/cache line

CSE 589 - Lecture 8 - Spring 1999 24

Instruction Counts

0
20
40
60
80

100
120
140
160
180
200

10
00

40
00

16
00

0

64
00

0

25
60

00

10
24

00
0

40
96

00
0

number of keys

in
st

ru
ct

io
n

s
p

er
 k

ey

iterative mergesort

cache conscious
mergesort

Atom
simulation

5

CSE 589 - Lecture 8 - Spring 1999 25

What About Recursive Mergesort?

1/2 cache size Cache hits
Cache misses

CSE 589 - Lecture 8 - Spring 1999 26

Notes on Cache Performance

• Before trying cache conscious algorithm design
you should ask if performance is really a
problem.
– if not, then don’t tinker

– if so, then check out the algorithm and data structures
first. Going from an n2 algorithm to a n log n algorithm
can make a world of difference.

– if the algorithm and data structures are basically good
then consider a cache conscious design.

CSE 589 - Lecture 8 - Spring 1999 27

Some Guiding Principles
• Sacrifice instructions for better cache

performance.
• Knowing architectural constants can lead to

better algorithms. Cache capacity, line size.
• Small memory footprints are good.

– Reduces capacity misses

• Block data into cache size pieces.
– Reduces capacity misses

• Fully utilize cache lines.
– Improves spatial locality

CSE 589 - Lecture 8 - Spring 1999 28

Heapsort

• Classic in-place, O(n log n) sorting algorithm.
• Uses the binary heap, an elegant priority

queue data structure (insert and delete-max)

25

1015

127 83

2 5 9

Perfectly balanced tree with
the heap property. Each node
is larger than its children.

CSE 589 - Lecture 8 - Spring 1999 29

Insert

• Add a new leaf and percolate up.

25

1015

127 83

2 5 9 20?

CSE 589 - Lecture 8 - Spring 1999 30

Insert (2)

• Add a new leaf and percolate up.

25

1015

7 83

2 5 9 12

20?

6

CSE 589 - Lecture 8 - Spring 1999 31

Insert (3)

• Add a new leaf and percolate up.

25

10

157 83

2 5 9 12

20?

CSE 589 - Lecture 8 - Spring 1999 32

Insert (3)

• Add a new leaf and percolate up.

25

1020

157 83

2 5 9 12

CSE 589 - Lecture 8 - Spring 1999 33

Delete-Max

• Remove the root then percolate last leaf
down.

25

1015

127 83

2 5 9

CSE 589 - Lecture 8 - Spring 1999 34

Delete-Max (2)

• Remove the root then percolate last leaf
down.

1015

127 83

2 5 9

CSE 589 - Lecture 8 - Spring 1999 35

Delete-Max (3)

• Remove the root then percolate last leaf
down.

1015

127 83

2 5

9?

CSE 589 - Lecture 8 - Spring 1999 36

Delete-Max (4)

• Remove the root then percolate last leaf
down.

15

10

127 83

2 5

9?

7

CSE 589 - Lecture 8 - Spring 1999 37

Delete-Max (5)

• Remove the root then percolate last leaf
down.

15

1012

7 83

2 5

9?

CSE 589 - Lecture 8 - Spring 1999 38

Delete-Max (5)

• Remove the root then percolate last leaf
down.

15

1012

97 83

2 5

CSE 589 - Lecture 8 - Spring 1999 39

Analysis of the Heap Operation

• Insert - O(log n) worst case.
– Each percolate up goes up at most log n levels.

– Often O(1) in practice because keys do not
percolate far.

• Delete-Max - O(log n) worst case.
– Percolates down tend to go close to the leaves of

the heap.

CSE 589 - Lecture 8 - Spring 1999 40

Implicit Pointers

25

1015

127 83

2 5 9

25 1015 127 83 2 5 9
0 1 2 3 4 5 6 7 8 9 10 11

0
1 2

3 4 5 6

7 8 9
parent of i is (i-1)/2

children of i are 2i+1, 2i+2

CSE 589 - Lecture 8 - Spring 1999 41

Heapsort

We will sort the array A[0..n-1] in-place
Build a heap in-place
For i = n-1 to 1
 A[i] := delete-max;

25 1015 127 83 2 5 9
0 1 2 3 4 5 6 7 8 9

15 1012 97 83 2 5 25

12 109 57 83 2 1525

10 89 57 23 121525

9 87 52 103 121525

Invariants
 Heap
 Sorted

<

Williams 1964

