
1

CSE 589
Applied Algorithms

Spring 1999

Cache Performance
Mergesort
Heapsort
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Recursive Mergesort

A[1..n] is to be sorted;
B[1..n] is an auxiliary array;

Mergesort(i,j) {sorts the subarray A[i..j] }
    if i < j then
        k := (i+j)/2;
        Mergesort(i,k);
        Mergesort(k+1,j);
        Merge A[i..k] with A[k+1..j] into B[i..j];
        Copy B[i..j] into A[i..j];
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Mergesort Call Tree

CSE 589 - Lecture 8 - Spring 1999 4

Merging Pattern of Recursive
Mergesort

1/2 cache size
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Notes on Recursive Mergesort

• Oblivious recursion.
– The subarrays that are merged do not depend on

the particular keys, just on the number of keys.

• Lots of copying from the auxiliary array to the
source arrays.

• Recursion is elegant, but is it really needed?
• Sorting very small arrays should be done in-

place.
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Reorder the Merging Steps
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Interative Mergesort

in-place sort groups of 4;
merge sorted groups of 4 in A into sorted groups of 8 in B;
merge sorted groups of 8 in B into sorted groups of 16 in A;
merge sorted groups of 16 in A into sorted groups of 32 in B;
.

in the end if the sorted array is B then copy it to A;

• Sort small groups in-place.
• Alternate the roles of A and B as the source

of the merging passes.
• Copy B to A if needed at the end.
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Interative Mergesort Access Pattern

copy
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Analysis of Access Pattern

• one pass to sort into groups of 4.
– Pass touches n key locations.

• log2(n/4) merge passes.
– Each pass touches 2n key locations, n in the

source array and n in the destination array.

• One copy pass if log2(n/4) is odd.
– Pass touches 2n key locations.
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Performance of Iterative Mergesort
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Cache Performance Matters

• Processor speeds increasing faster than
memory speeds.

• Cache miss penalties can be 100 cycles and
are growing.

• Algorithm design can be used to reduce
cache misses and improve overall
performance.
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Cache Model

processor
cache

memory Direct mapped
cache

Cache line

Cache hit

Cache miss

Cache parameters
     Cache capacity
     Cache line size
     Set associativityblock or

line



3

CSE 589 - Lecture 8 - Spring 1999 13

Cache Miss Terminolgy

• Types of misses
– Compulsory miss: first time a memory block is read.

– Capacity miss: accessed data does not fit in cache.

– Conflict miss: several active memory blocks map to
the same place in the cache.

• Locality reduces cache misses
– temporal locality: a location that was recently

accessed is accessed again.

– Spatial locality: data on the same block are accessed
together.
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Cache Conscious Mergesort
Execution Performance
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Cache Conscious Mergesort

• Partition problem into “tiles” that fit in the
cache.

• Mergesort the tiles.
• Merge the tiles.
• Avoid copying by sorting in-place into groups

of 2 or 4 depending on whether log2(n/4) is
odd or even.
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Cache Conscious Mergesort
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Traversal Analysis

Not in cache

In cache

1/B misses per access where B is number of access per line
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Traversal Longer than Cache

cache size

.

.
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Analysis of Cache Misses

• Parameters
– B keys per cache line

– C cache lines in the cache

– n keys with n >> BC

• Iterative Mergesort
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Iterative Mergesort Cache Misses

copy
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Cache Conscious Merge Sort Analysis
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Simulated Cache Performance
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Instruction Counts
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What About Recursive Mergesort?

1/2 cache size Cache hits
Cache misses
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Notes on Cache Performance

• Before trying cache conscious algorithm design
you should ask if performance is really a
problem.
– if not, then don’t tinker

– if so, then check out the algorithm and data structures
first.  Going from an n2 algorithm to a n log n algorithm
can make a world of difference.

– if the algorithm and data structures are basically good
then consider a cache conscious design.
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Some Guiding Principles
• Sacrifice instructions for better cache

performance.
• Knowing architectural constants can lead to

better algorithms.  Cache capacity, line size.
• Small memory footprints are good.

– Reduces capacity misses

• Block data into cache size pieces.
– Reduces capacity misses

• Fully utilize cache lines.
– Improves spatial locality
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Heapsort

• Classic in-place, O(n log n) sorting algorithm.
• Uses the binary heap, an elegant priority

queue data structure (insert and delete-max)

25

1015

127 83

2 5 9

Perfectly balanced tree with
the heap property. Each node
is larger than its children.
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Insert

• Add a new leaf and percolate up.
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Insert (2)

• Add a new leaf and percolate up.
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Insert (3)

• Add a new leaf and percolate up.
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Insert (3)

• Add a new leaf and percolate up.
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Delete-Max

• Remove the root then percolate last leaf
down.
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Delete-Max (2)

• Remove the root then percolate last leaf
down.
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Delete-Max (3)

• Remove the root then percolate last leaf
down.
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2 5
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Delete-Max (4)

• Remove the root then percolate last leaf
down.
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Delete-Max (5)

• Remove the root then percolate last leaf
down.
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Delete-Max (5)

• Remove the root then percolate last leaf
down.
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Analysis of the Heap Operation

• Insert - O(log n) worst case.
– Each percolate up goes up at most log n levels.

– Often O(1) in practice because keys do not
percolate far.

• Delete-Max - O(log n) worst case.
– Percolates down tend to go close to the leaves of

the heap.

CSE 589 - Lecture 8 - Spring 1999 40

Implicit Pointers

25

1015

127 83

2 5 9

25 1015 127 83 2 5 9
0  1  2   3  4   5  6  7  8   9 10 11

0
1 2

3 4 5 6

7 8 9
parent of i is (i-1)/2

children of i are 2i+1, 2i+2
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Heapsort

We will sort the array A[0..n-1] in-place
Build a heap in-place
For i = n-1 to 1
    A[i] := delete-max;

25 1015 127 83 2 5 9
0  1  2   3  4   5  6  7  8   9 

15 1012 97 83 2 5 25

12 109 57 83 2 1525

10 89 57 23 121525

9 87 52 103 121525

Invariants
    Heap
    Sorted 

<

Williams 1964


