
1

CSE 589
Applied Algorithms

Spring 1999

Data Compression
Information Theory

CSE 589 - Lecture 9 - Spring 1999 2

Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding.

• Compression ratio =
– is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed

CSE 589 - Lecture 9 - Spring 1999 3

Why Compress
• Conserve storage space
• Reduce time for transmission

– Faster to encode, send, then decode than to send
the original

• Progressive transmission
– Some compression techniques allow us to send

the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer

CSE 589 - Lecture 9 - Spring 1999 4

Lossless Compression
• Data is not lost - the original is really needed.

– text compression

– compression of computer binaries to fit on a floppy

• Compression ratio typically no better than 4:1
for lossless compression.

• Major techniques include
– Huffman coding

– Arithmetic coding

– Dictionary techniques (Ziv,Lempel 1977,1978)

– Sequitur (Nevill-Manning, Witten 1996)
– Standards - Morse code, Braille, Unix compress,

gzip, zip, GIF, JBIG, JPEG

CSE 589 - Lecture 9 - Spring 1999 5

Lossy Compression
• Data is lost, but not too much.

– audio
– video

– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite
high fidelity results.

• Major techniques include
– Vector Quantization

– Wavelets

– Transforms
– Standards - JPEG, MPEG

CSE 589 - Lecture 9 - Spring 1999 6

Information Theory

• Developed by Shannon in the 1940’s and 50’s
• Attempts to explain the limits of communication

using probability theory.
• Example: Suppose English text is being sent

– Suppose a “t” is received. Given English, the next
symbol being a “z” has very low probability, the
next symbol being a “h” has much higher probability.
Receiving a “z” has much more information in it than
receiving a “h”. We already knew it was more likely
we would receive an “h”.

2

CSE 589 - Lecture 9 - Spring 1999 7

0

1

2

3

4

5

6

7

0.
0

1

0.
0

8

0.
1

5

0.
2

2

0.
2

9

0.
3

6

0.
4

3

0.
5

0.
5

7

0.
6

4

0.
7

1

0.
7

8

0.
8

5

0.
9

2

0.
9

9

x

y

-log(x)

First-order Information
• Suppose we are given symbols {a1, a2, ... , am}.
• P(ai) = probability of symbol ai occurring in the

absence of any other information.
– P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = -log2 P(ai) bits is the information in bits
of ai.

CSE 589 - Lecture 9 - Spring 1999 8

Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
– inf(a) = -log2(1/8) = 3

– inf(b) = -log2(1/4) = 2

– inf(c) = -log2(5/8) = .678

• Receiving an “a” has more information than
receiving a “b” or “c”.

CSE 589 - Lecture 9 - Spring 1999 9

Entropy
• The entropy is defined for a probability

distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code
up a symbol, given all we know is the probability
distribution of the symbols.

• H is the Shannon lower bound on the average
number of bits to code a symbol in this source
model.

• Stronger models of entropy include context.

))((log)(2
1

i

m

i
i aPaPH ∑

=

−=

CSE 589 - Lecture 9 - Spring 1999 10

Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.
– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
– H = -3* (1/3)*log2(1/3) = 1.6 bits/symbol

• {a, b, c} with a 1, b 0, c 0 (best case)
– H = -1*log2(1) = 0

• Note that the standard coding of 3 symbols
takes 2 bits.

CSE 589 - Lecture 9 - Spring 1999 11

Entropy Curve

• Suppose we have two symbols with probabilities
x and 1-x, respectively.

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

probability of first symbol

en
tr

op
y

-(x log x + (1-x)log(1-x))

CSE 589 - Lecture 9 - Spring 1999 12

First-Order Entropy of a String
• Suppose we are given a string x1x2...xn in an

alphabet {a1,a2,...,am} where P(ai) is the
probability of symbol i.

• The first-order entropy of x1x2...xn is

• H(x1x2...xn) is a lower bound on the number of
bits to code the string x1x2...xn given only the
probabilities of the symbols. This is the
Shannon lower bound.

))((log)()inf()()(2
11

21 i

n

i
i

n

i
iin xPxPxxPxxxH ∑∑

==

−==L

3

CSE 589 - Lecture 9 - Spring 1999 13

Shannon Lower Bound

• Suppose we are given an algorithm that
compresses a string x of length n and the
algorithm only uses the frequencies of the
symbols {a1,a2,...,am} in the string as input.

• Let c(x) be the compressed result represented
in bit.

nHxHxc =≥)()(

)(log2
1 n

n

n

n
H i

m

i

i∑
=

−=where and ni is the frequency of ai.

CSE 589 - Lecture 9 - Spring 1999 14

Example 1

• x =1 1 1 1 1 0 1 1 1 1 0 1
– P(0) = 2/12 (from frequencies)

– P(1) = 10/12 (from frequencies)

• H = -((2/12) log2(2/12) + (10/12) log2(10/12))= .65
• Lower bound of 12 x .65 = 7.8 bits
• Standard for a two symbol alphabet is 1 bits per

symbol or 12 bits.
• There is a potential gain in some algorithm.

CSE 589 - Lecture 9 - Spring 1999 15

Example 2

• x =1 2 3 4 5 4 5 6 7 8 7 8
– P(1) = P(2) = P(3) = P(6) = 1/12 (from frequencies)

– P(4) = P(5) = P(7) = P(8) = 2/12 (from frequencies)

• H = -((4/12) log2(1/12) + (8/12) log2(2/12))= 2.92
• Lower bound of 12 x 2.92 = 35.02 bits
• Standard for an 8 symbol alphabet is 3 bits per

symbol or 36 bits.
• No compression algorithm will give us much.

CSE 589 - Lecture 9 - Spring 1999 16

Example 2 with Context

• x =1 2 3 4 5 4 5 6 7 8 7 8
• define xk+1 = xk +rk

• r = 1 1 1 1 -1 1 1 1 1 -1 1 (residual)
• Compression Algorithm

– represent x as x1, r1, r2, ..., r11

– Compress this sequence.

– 3 bits for x1 and less than 11 bits for the rest, for
less than 14 bits instead of 35.02 bits.

• This algorithm does not use just the
frequencies of the symbols, but uses
correlation between adjacent symbols.

CSE 589 - Lecture 9 - Spring 1999 17

Huffman Coding

• Huffman (1951)
• Uses frequencies of symbols in a string to

build a variable rate prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.
– No code is a prefix of another.

• Example: a 0
 b 100
 c 101
 d 11

CSE 589 - Lecture 9 - Spring 1999 18

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11
• Coding:

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

• Morse Code an example of variable rate
code. E = . and Z = _ _ . .

