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Applied Algorithms
Spring 1999

Data Compression
Information Theory

Basic Data Compression Concepts

original compressed decompressed

y X

« Lossless compression X=X

— Also called entropy coding, reversible coding.
« Lossy compression X # X

— Also called irreversible coding.
« Compression ratio = ‘X‘/M

- ‘X‘ is number of bits in x.
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Why Compress

Conserve storage space
Reduce time for transmission

— Faster to encode, send, then decode than to send
the original

Progressive transmission

— Some compression techniques allow us to send
the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

Reduce computation
— Use less data to achieve an approximate answer
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Lossless Compression

 Data is not lost - the original is really needed.
— text compression
— compression of computer binaries to fit on a floppy
» Compression ratio typically no better than 4:1
for lossless compression.
» Major techniques include
— Huffman coding
— Arithmetic coding
— Dictionary techniques (Ziv,Lempel 1977,1978)
— Sequitur (Nevill-Manning, Witten 1996)

— Standards - Morse code, Braille, Unix compress,
gzip, zip, GIF, JBIG, JPEG
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Lossy Compression

Data is lost, but not too much.

— audio

— video

— still images, medical images, photographs
Compression ratios of 10:1 often yield quite
high fidelity results.

Major techniques include

— Vector Quantization

— Wavelets

— Transforms

— Standards - JPEG, MPEG
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Information Theory

« Developed by Shannon in the 1940’s and 50’s

« Attempts to explain the limits of communication
using probability theory.

» Example: Suppose English text is being sent
— Suppose a “t” is received. Given English, the next
symbol being a “z” has very low probability, the
next symbol being a “h” has much higher probability.
Receiving a “z” has much more information in it than
receiving a “h”. We already knew it was more likely
we would receive an “h”.
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First-order Information

» Suppose we are given symbols {a,, a,, ... , a,}.

* P(a;) = probability of symbol a; occurring in the
absence of any other information.
—P(a) +P(a)+..+P@,)=1

* inf(a;) = -log, P(a;) bits is the information in bits
of ;.

x
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Example

e {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
— inf(a) = -log,(1/8) = 3
— inf(b) = -log,(1/4) = 2
— inf(c) = -log,(5/8) = .678

* Receiving an “a” has more information than
receiving a “b” or “c”.
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Entropy

The entropy is defined for a probability
distribution over symbols {a,, a,, ... , a}-

H=-% P(a)log,(P(a))

» His the average number of bits required to code
up a symbol, given all we know is the probability
distribution of the symbols.

* His the Shannon lower bound on the average
number of bits to code a symbol in this source
model.

» Stronger models of entropy include context.
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Entropy Examples

e {a, b, c}with a 1/8, b 1/4, c 5/8.
— H=1/8*3 +1/4 *2 + 5/8* .678 = 1.3 bits/symbol

{a, b, c} with a 1/3, b 1/3, ¢ 1/3. (worst case)
— H =-3* (1/3)*log,(1/3) = 1.6 bits/symbol

e {a, b, c}withal,bO0,cO (bestcase)
— H=-1*l0g,(1) = 0

« Note that the standard coding of 3 symbols
takes 2 bits.
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Entropy Curve

* Suppose we have two symbols with probabilities
x and 1-x, respectively.
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First-Order Entropy of a String

* Suppose we are given a string X,X,...x, in an
alphabet {a,,a,,....a,} where P(a) is the
probability of symbol i.

The first-order entropy of X;%,...X, is

H (%% %) = Z P(X)inf(x) :—ip(x)logz(P(x»

* H(X%,...X,) is a lower bound on the number of
bits to code the string x;,X,...x, given only the
probabilities of the symbols. This is the
Shannon lower bound.
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Shannon Lower Bound

» Suppose we are given an algorithm that
compresses a string x of length nand the
algorithm only uses the frequencies of the
symbols {a,,a,,...,a,} in the string as input.

* Let c(x) be the compressed result represented
in bit.

|c(x)| = H (x) =nH

m
where H = —Zﬂlogz(l) and n; is the frequency of a;.
n n
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Example 1

x=111110111101

— P(0) = 2/12 (from frequencies)

— P(1) = 10/12 (from frequencies)

H =-((2/12) log,(2/12) + (10/12) log,(10/12))= .65
Lower bound of 12 x .65 = 7.8 bits

Standard for a two symbol alphabet is 1 bits per
symbol or 12 bits.

There is a potential gain in some algorithm.
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Example 2

x=123454567878

— P(1) = P(2) = P(3) = P(6) = 1/12 (from frequencies)

— P(4) = P(5) = P(7) = P(8) = 2/12 (from frequencies)
H = -((4/12) log,(1/12) + (8/12) log,(2/12))= 2.92
Lower bound of 12 x 2.92 = 35.02 bits

Standard for an 8 symbol alphabet is 3 bits per
symbol or 36 bits.

No compression algorithm will give us much.
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Example 2 with Context

x=123454567878

define X, = X, +ry

r=1111-11111-11 (residual)

Compression Algorithm

— represent X as Xy, fy, Iy, ..., 11

— Compress this sequence.

— 3 bits for x, and less than 11 bits for the rest, for
less than 14 bits instead of 35.02 bits.

This algorithm does not use just the

frequencies of the symbols, but uses

correlation between adjacent symbols.
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Huffman Coding

* Huffman (1951)
» Uses frequencies of symbols in a string to
build a variable rate prefix code.
— Each symbol is mapped to a binary string.
— More frequent symbols have shorter codes.
— No code is a prefix of another.
 Example: a 0
b 100
c 101
d 11
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Variable Rate Code Example

Example: a 0,b 100,c 101,d 11
Coding:

— aabddcaa = 16 bits

- 001001111101 0 0= 14 bits

Prefix code ensures unique decodability.
- 00100111110100

—aabddcaa

Morse Code an example of variable rate
code. E=. andZ=_ _
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