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CSE 589
Applied Algorithms

Spring 1999

Data Compression
Information Theory
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Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding.

• Compression ratio =
–         is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed
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Why Compress
• Conserve storage space
• Reduce time for transmission

– Faster to encode, send, then decode than to send
the original

• Progressive transmission
– Some compression techniques allow us to send

the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer
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Lossless Compression
• Data is not lost - the original is really needed.

– text compression

– compression of computer binaries to fit on a floppy

• Compression ratio typically no better than 4:1
for lossless compression.

• Major techniques include
– Huffman coding

– Arithmetic coding

– Dictionary techniques (Ziv,Lempel 1977,1978)

– Sequitur (Nevill-Manning, Witten 1996)
– Standards - Morse code, Braille, Unix compress,

gzip, zip, GIF, JBIG, JPEG
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Lossy Compression
• Data is lost, but not too much.

– audio
– video

– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite
high fidelity results.

• Major techniques include
– Vector Quantization

– Wavelets

– Transforms
– Standards - JPEG, MPEG
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Information Theory

• Developed by Shannon in the 1940’s and 50’s
• Attempts to explain the limits of communication

using probability theory.
• Example: Suppose English text is being sent

– Suppose a “t” is received. Given English, the next
symbol being a “z” has very low probability,  the
next symbol being a “h” has much higher probability.
Receiving a “z” has much more information in it than
receiving a “h”.  We already knew it was more likely
we would receive an “h”.
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First-order Information
• Suppose we are given symbols {a1, a2, ... , am}.
• P(ai) = probability of symbol ai occurring in the

absence of any other information.
– P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = -log2 P(ai) bits is the information in bits
of ai.
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Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
– inf(a) = -log2(1/8) = 3

– inf(b) = -log2(1/4) = 2

– inf(c) = -log2(5/8) = .678

• Receiving an “a” has more information than
receiving a “b” or “c”.

CSE 589 - Lecture 9 - Spring 1999 9

Entropy
• The entropy is defined for a probability

distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code
up a symbol, given all we know is the probability
distribution of the symbols.

• H is the Shannon lower bound on the average
number of bits to code a symbol in this source
model.

• Stronger models of entropy include context.
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Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.
– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
– H = -3* (1/3)*log2(1/3) = 1.6 bits/symbol

• {a, b, c} with a 1, b 0, c 0 (best case)
– H = -1*log2(1) = 0

• Note that the standard coding of 3 symbols
takes 2 bits.
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Entropy Curve

• Suppose we have two symbols with probabilities
x and 1-x, respectively.
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First-Order Entropy of a String
• Suppose we are given a string x1x2...xn in an

alphabet {a1,a2,...,am} where P(ai) is the
probability of symbol i.

• The first-order entropy of x1x2...xn is

• H(x1x2...xn) is a lower bound on the number of
bits to code the string x1x2...xn given only the
probabilities of the symbols. This is the
Shannon lower bound.
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Shannon Lower Bound

• Suppose we are given an algorithm that
compresses a string x of length n and the
algorithm only uses the frequencies of the
symbols {a1,a2,...,am} in the string as input.

• Let c(x) be the compressed result represented
in bit.
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Example 1

• x =1 1 1 1 1 0 1 1 1 1 0 1
– P(0) = 2/12 (from frequencies)

– P(1) = 10/12 (from frequencies)

• H = -((2/12) log2(2/12) + (10/12) log2(10/12))= .65
• Lower bound of 12 x .65 = 7.8 bits
• Standard for a two symbol alphabet is 1 bits per

symbol or 12 bits.
• There is a potential gain in some algorithm.
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Example 2

• x =1 2 3 4 5 4 5 6 7 8 7 8
– P(1) = P(2) = P(3) = P(6) = 1/12 (from frequencies)

– P(4) = P(5) = P(7) = P(8) = 2/12 (from frequencies)

• H = -((4/12) log2(1/12) + (8/12) log2(2/12))= 2.92
• Lower bound of 12 x 2.92 = 35.02 bits
• Standard for an 8 symbol alphabet is 3 bits per

symbol or 36 bits.
• No compression algorithm will give us much.
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Example 2 with Context

• x =1 2 3 4 5 4 5 6 7 8 7 8
• define xk+1 = xk +rk

• r = 1 1 1 1 -1 1 1 1 1 -1 1 (residual)
• Compression Algorithm

– represent x as x1, r1, r2, ..., r11

– Compress this sequence.

– 3 bits for x1 and less than 11 bits for the rest, for
less than 14 bits instead of 35.02 bits.

• This algorithm does not use just the
frequencies of the symbols, but uses
correlation between adjacent symbols.
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Huffman Coding

• Huffman (1951)
• Uses frequencies of symbols in a string to

build a variable rate prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.
– No code is a prefix of another.

• Example:   a  0
                  b  100
                  c  101
                  d  11
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Variable Rate Code Example

• Example:   a  0, b  100, c  101, d  11
• Coding:

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

• Morse Code an example of variable rate
code.  E = .  and Z = _ _ . .


