

Why Compress

- Conserve storage space
- Reduce time for transmission
- Faster to encode, send, then decode than to send the original
- Progressive transmission
- Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
- Use less data to achieve an approximate answer

Basic Data Compression Concepts

Lossless Compression

- Data is not lost - the original is really needed.
- text compression
- compression of computer binaries to fit on a floppy
- Compression ratio typically no better than $4: 1$ for lossless compression.
- Major techniques include
- Huffman coding
- Arithmetic coding
- Dictionary techniques (Ziv,Lempel 1977,1978)
- Sequitur (Nevill-Manning, Witten 1996)
- Standards - Morse code, Braille, Unix compress, gzip, zip, GIF, JBIG, JPEG

CSE 589 - Lecture 9-Spring 19994

Lossy Compression

- Data is lost, but not too much.
- audio
- video
- still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
- Vector Quantization
- Wavelets
- Transforms
- Standards - JPEG, MPEG

CSE 589 - Lecture 9 - Spring 1999 5

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
- Suppose a " t " is received. Given English, the next symbol being a " z " has very low probability, the next symbol being a " h " has much higher probability. Receiving a " z " has much more information in it than receiving a " h ". We already knew it was more likely we would receive an "h".

First-order Information

- Suppose we are given symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
- $P\left(a_{i}\right)=$ probability of symbol a_{i} occurring in the absence of any other information.
$-P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{m}\right)=1$
- inf $\left(a_{i}\right)=-\log _{2} P\left(a_{i}\right)$ bits is the information in bits of a_{i}.

Entropy

- The entropy is defined for a probability distribution over symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

$$
H=-\sum_{i=1}^{m} P\left(a_{i}\right) \log _{2}\left(P\left(a_{i}\right)\right)
$$

- H is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- H is the Shannon lower bound on the average number of bits to code a symbol in this source model.
- Stronger models of entropy include context.

Entropy Curve

- Suppose we have two symbols with probabilities x and 1-x, respectively.

CSE 589 - Lecture 9-Spring 1999

Example

- $\{a, b, c\}$ with $P(a)=1 / 8, P(b)=1 / 4, P(c)=5 / 8$
$-\inf (\mathrm{a})=-\log _{2}(1 / 8)=3$
$-\inf (b)=-\log _{2}(1 / 4)=2$
$-\inf (\mathrm{c})=-\log _{2}(5 / 8)=.678$
- Receiving an "a" has more information than receiving a "b" or "c".

Entropy Examples

- $\{a, b, c\}$ with $1 / 8, b 1 / 4, ~ c 5 / 8$.
$-H=1 / 8 * 3+1 / 4 * 2+5 / 8^{*} .678=1.3$ bits/symbol
- $\{a, b, c\}$ with a $1 / 3, b 1 / 3, c 1 / 3$. (worst case) $-H=-3^{*}(1 / 3)^{*} \log _{2}(1 / 3)=1.6$ bits/symbol
- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with a 1, b $0, \mathrm{c} 0$ (best case) $-H=-1^{*} \log _{2}(1)=0$
- Note that the standard coding of 3 symbols takes 2 bits.

First-Order Entropy of a String

- Suppose we are given a string $x_{1} x_{2} \ldots x_{n}$ in an alphabet $\left\{a_{l}, a_{2}, \ldots, a_{m}\right\}$ where $P\left(a_{i}\right)$ is the probability of symbol i.
- The first-order entropy of $x_{l} x_{2} \ldots x_{n}$ is

$$
H\left(x_{1} x_{2} \cdots x_{n}\right)=\sum_{i=1}^{n} P\left(x_{i}\right) \inf \left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2}\left(P\left(x_{i}\right)\right)
$$

- $\mathrm{H}\left(x_{1} x_{2} \ldots x_{n}\right)$ is a lower bound on the number of bits to code the string $x_{1} x_{2} \ldots x_{n}$ given only the probabilities of the symbols. This is the Shannon lower bound.

Shannon Lower Bound

- Suppose we are given an algorithm that compresses a string x of length n and the algorithm only uses the frequencies of the symbols $\left\{a_{l}, a_{2}, \ldots, a_{m}\right\}$ in the string as input.
- Let $\mathrm{c}(\mathrm{x})$ be the compressed result represented in bit.

$$
|c(x)| \geq H(x)=n H
$$

where $H=-\sum_{i=1}^{m} \frac{n_{i}}{n} \log _{2}\left(\frac{n_{i}}{n}\right)$ and n_{i} is the frequency of a_{i}.

Example 2

- x=123454567878
$-P(1)=P(2)=P(3)=P(6)=1 / 12$ (from frequencies)
$-P(4)=P(5)=P(7)=P(8)=2 / 12$ (from frequencies)
- $\mathrm{H}=-\left((4 / 12) \log _{2}(1 / 12)+(8 / 12) \log _{2}(2 / 12)\right)=2.92$
- Lower bound of $12 \times 2.92=35.02$ bits
- Standard for an 8 symbol alphabet is 3 bits per symbol or 36 bits.
- No compression algorithm will give us much.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
- Each symbol is mapped to a binary string.
- More frequent symbols have shorter codes.
- No code is a prefix of another.
- Example: a 0
b 100
c 101
d 11
CSE 589 - Lecture 9 - Spring 1999

Example 1

- $x=111110111101$
$-P(0)=2 / 12$ (from frequencies)
$-P(1)=10 / 12$ (from frequencies)
- $\mathrm{H}=-\left((2 / 12) \log _{2}(2 / 12)+(10 / 12) \log _{2}(10 / 12)\right)=.65$
- Lower bound of $12 \times .65=7.8$ bits
- Standard for a two symbol alphabet is 1 bits per symbol or 12 bits.
- There is a potential gain in some algorithm.

Example 2 with Context

- $x=123454567878$
- define $x_{k+1}=x_{k}+r_{k}$
- $r=1111-11111$-11 (residual)
- Compression Algorithm
- represent x as $x_{1}, r_{1}, r_{2}, \ldots, r_{11}$
- Compress this sequence.
-3 bits for x_{1} and less than 11 bits for the rest, for less than 14 bits instead of 35.02 bits.
- This algorithm does not use just the frequencies of the symbols, but uses correlation between adjacent symbols.

Variable Rate Code Example

- Example: a 0,b 100, c 101, d 11
- Coding:
- aabddcaa = 16 bits
- 00100111110100 = 14 bits
- Prefix code ensures unique decodability.

- Morse Code an example of variable rate code. $\mathrm{E}=$. and $\mathrm{Z}=$

