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Huffman Coding
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Huffman Coding

¢ Huffman (1951)
« Uses frequencies of symbols in a string to
build a variable rate prefix code.
— Each symbol is mapped to a binary string.
— More frequent symbols have shorter codes.
— No code is a prefix of another.
« Example: a 0
b 100
c 101
d 11
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Variable Rate Code Example

e Example: a 0,b 100,c 101,d 11

» Coding:
— aabddcaa = 16 bits
- 001001111 101 0 0= 14 bits

» Prefix code ensures unique decodability.
-00100111110100

—aabddcaa

» Morse Code an example of variable rate
code. E=. andZ=__

CSE 589 - Lecture 11 - Spring 1999 3

Huffman Tree for a Prefix Code
« Example: a 0,b 100,c 101,d 11

Leaves are labeled with

{0 \(1 symbols.
0 1
QO

The code of a symbol is the
sequence of labels on the

0 1 path from the root to the
symbol.
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Encoding and Decoding

» Encoding: send the code, then the encoded
data
— X = aabddcaa
- ¢(x) =,a0,b100,c101,d11,0010011111010 O,
Huffman code code of x
» Decoding: Build the Huffman tree, then use it
to decode. o

repeat
start at root of tree
repeat
if node is not a leaf
if read bit = 1 then go right
else go left
report leaf
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Cost of a Huffman Tree
* Letpy, p,, -, Py, be the probabilities for the
symbols a;, a,, ... ,a,, respectively.
 Define the cost of the Huffman tree T to be

cm=Y pr

where r; is the Iength':0f the path from the root
to a,.

* C(T) is the expected length of the code of a
symbol coded by the tree T.
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Example of Cost

* Example: a 1/2,b 1/8,c 1/8,d 1/4

C(M=1x12+3x1/8+3x1/8+2x1/4=175
a b c
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Optimal Huffman Tree

* Input: Probabilities p;, p,, ..., p, for symbols

a,, &, ... ,a,, respectively.

¢ Output: A Huffman tree that minimizes the

average number of bits to code a symbol.
That is, minimizes

m
cm= Z pir
where r, is the length of the path from the root

to a.
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Optimality Principle 1
* In an optimal Huffman tree a lowest
probability symbol has maximum distance
from the root.

— If not exchanging a lowest probability symbol with
one at maximum distance will lower the cost.

T T p smallest
k T p<q
e |< <h

p l q
a P
C(T") = C(T) + hp - hg + kq - kp = C(T) - (h-K)(a-p) < C(T)
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Optimality Principle 2

« The second lowest probability is a sibling of
the the smallest in some optimal Huffman
tree.

— If not, we can move it there not raising the cost.

T T p smallest T
K —‘7 g 2nd smallest
e q<r

q k<h r
l%
q p

C(T") = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)
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Optimality Principle 3

» Assuming we have an optimal Huffman tree T
whose two lowest probability symbols are
siblings at maximum depth, they can be
replaced by a new symbol whose probability is
the sum of their probabilities.

— The resulting tree is optimal for the new symbol set.

T
p smallest
q 2nd smallest
q+p

C(T) = C(T) + (h-1)(p+q) - hp -hg = C(T) - (p+q)
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Optimality Principle 3 (cont’)

« If T" were not optimal then we could find a
lower cost tree T”. This will lead to a lower
cost tree T" for the original alphabet.

T ™ ™

a+p
q+p q p

C(T")=C(T")+p+q<C(T)+p+q=C(T) which is a contradiction
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Huffman Tree Algorithm

form a node for each symbol a; with weight p;;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

minl := delete-min;

min2 := delete-min;

create a new node n;

n.weight := minl.weight + min2.weight;

n.left ;= min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

« P(a) =.4, P(b)=.1, P(c)=3, P(d)=.1, P(e)=.1

4 1 3 1 1
& b @ [¢
4 2 3 1
[al O [d]
[b] [e]
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Example of Huffman Tree Algorithm (2)

3

4 2 1
[l O d]
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Example of Huffman Tree Algorithm (3)

4 3 3
[a] O
@ O
[b] [e]
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Example of Huffman Tree Algorithm (4)
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Optimal Huffman Code

average number of bits per symbol is
A4Xx1+.1x4+.3x2+.1x3+.1x4=21

a
b 1110
c 10

d 110
e 1111
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Huffman Code vs. Entropy
*+ P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
Entropy

H =-(.4 xlog,(.4) +.1 x log,(.1) + .3 x log,(.3)
+.1xlog,(.1) +.1 xlog,(.1))
= 2.05 bits per symbol

Huffman Code
HC=4x1+.1x4+.3x2+.1x3+.1x4

= 2.1 bits per symbol
pretty good!
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Quiality of the Huffman Code

* The Huffman code is within one bit of the
entropy lower bound.

H<HC<H+1
Huffman code does not work well with a two
symbol alphabet.
— Example: P(0) = 1/100, P(1) = 99/100

— HC =1 bits/symbol
0 Q 1

[l [of

— H =-((1/100)*log,(1/100) + (99/100)l0g,(99/100))
= .08 bits/symbol
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Extending the Alphabet
» Assuming independence P(ab) = P(a)P(b), so
we can lump symbols together.
» Example: P(0) = 1/100, P(1) = 99/100

— P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

HC = 1.03 bits/symbol (2 bit symbol)
=515 bits/bit

Still not that close to H = .08 bits/bit
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Including Context

* Suppose we add a one symbol context. That

is in compressing a string x,X,...x, we want to
take into account X, when encoding .

— New model, so entropy based on just independent
probabilities of the symbols doesn't hold. The new
entropy model (2nd order entropy) has for each
symbol a probability for each other symbol

following it.
— Example: {a,b,c} next
a h c
al4 2 4
previplai 9 o
cll .1 .8
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Multiple Codes

Code for first symbol
a 00
b 01
c 10

©

o Blo ©obmp
:>U
Nt
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Notes on Huffman Codes
Time to design Huffman Code is O(n log n)
where n is the number of symbols.

Typically, for compressing a string the
probabilities are chosen as the actual
frequencies of the symbols in the string.

Huffman works better for larger alphabets.

There are adaptive (one pass) Huffman
coding algorithms. No need to transmit code.

Huffman is still popular. Itis simple and it
works.
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Arithmetic Coding

« Huffman coding works well for larger alphabets
and gets to within one bit of the entropy lower
bound. Can we do better. Yes

« Basic idea in arithmetic coding:

— represent each string x of length n by an interval A in
[0,1).

— The width of the interval A represents the probability
of x occurring.

— The interval A can itself be represented by any
number, called a tag, within the half open interval.

— The significant bits of the tag is the code of x.
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Example of Arithmetic Coding (1)

0 1. tag must be in the half open interval.
2. tag can be chosen to be (I+r)/2.
13 |a 3. code must be significant bits of tag.
23|, bha 15/27 .100011100...
bb 19/27 .101101000...
1 tag = 17/27 = .101000010...

code =101
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Example of Arithmetic Coding (2)

0
13 |a
E 11/27 .011010000...
ba
bab
23 . 15/27 .100011100...
tagl = 13/27 =.011110110...
codel = 0111
1

tag2 = 14/27 = .100001001...
code2 =1
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