CSE 589

Applied Algorithms
Spring 1999

Huffman Coding
Arithmetic Coding

Huffman Coding

¢ Huffman (1951)
« Uses frequencies of symbols in a string to
build a variable rate prefix code.
— Each symbol is mapped to a binary string.
— More frequent symbols have shorter codes.
— No code is a prefix of another.
« Example: a 0
b 100
c 101
d 11

CSE 589 - Lecture 11 - Spring 1999 2

Variable Rate Code Example

e Example: a 0,b 100,c 101,d 11

» Coding:
— aabddcaa = 16 bits
- 001001111 101 0 0= 14 bits

» Prefix code ensures unique decodability.
-00100111110100

—aabddcaa

» Morse Code an example of variable rate
code. E=. andZ=__

CSE 589 - Lecture 11 - Spring 1999 3

Huffman Tree for a Prefix Code
« Example: a 0,b 100,c 101,d 11

Leaves are labeled with

{0 \(1 symbols.
0 1
QO

The code of a symbol is the
sequence of labels on the

0 1 path from the root to the
symbol.
CSE 589 - Lecture 11 - Spring 1999 4

Encoding and Decoding

» Encoding: send the code, then the encoded
data
— X = aabddcaa
- ¢(x) =,a0,b100,c101,d11,0010011111010 O,
Huffman code code of x
» Decoding: Build the Huffman tree, then use it
to decode. o

repeat
start at root of tree
repeat
if node is not a leaf
if read bit = 1 then go right
else go left
report leaf
CSE 589 - Lecture 11 - Spring 1999 5

Cost of a Huffman Tree
* Letpy, p,, -, Py, be the probabilities for the
symbols a;, a,, ... ,a,, respectively.
 Define the cost of the Huffman tree T to be

cm=Y pr

where r; is the Iength':0f the path from the root
to a,.

* C(T) is the expected length of the code of a
symbol coded by the tree T.

CSE 589 - Lecture 11 - Spring 1999 6




Example of Cost

* Example: a 1/2,b 1/8,c 1/8,d 1/4

C(M=1x12+3x1/8+3x1/8+2x1/4=175
a b c

CSE 589 - Lecture 11 - Spring 1999 7

Optimal Huffman Tree

* Input: Probabilities p;, p,, ..., p, for symbols

a,, &, ... ,a,, respectively.

¢ Output: A Huffman tree that minimizes the

average number of bits to code a symbol.
That is, minimizes

m
cm= Z pir
where r, is the length of the path from the root

to a.

CSE 589 - Lecture 11 - Spring 1999 8

Optimality Principle 1
* In an optimal Huffman tree a lowest
probability symbol has maximum distance
from the root.

— If not exchanging a lowest probability symbol with
one at maximum distance will lower the cost.

T T p smallest
k T p<q
e |< <h

p l q
a P
C(T") = C(T) + hp - hg + kq - kp = C(T) - (h-K)(a-p) < C(T)

CSE 589 - Lecture 11 - Spring 1999 9

Optimality Principle 2

« The second lowest probability is a sibling of
the the smallest in some optimal Huffman
tree.

— If not, we can move it there not raising the cost.

T T p smallest T
K —‘7 g 2nd smallest
e q<r

q k<h r
l%
q p

C(T") = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

CSE 589 - Lecture 11 - Spring 1999 10

Optimality Principle 3

» Assuming we have an optimal Huffman tree T
whose two lowest probability symbols are
siblings at maximum depth, they can be
replaced by a new symbol whose probability is
the sum of their probabilities.

— The resulting tree is optimal for the new symbol set.

T
p smallest
q 2nd smallest
q+p

C(T) = C(T) + (h-1)(p+q) - hp -hg = C(T) - (p+q)
CSE 589 - Lecture 11 - Spring 1999 11

Optimality Principle 3 (cont’)

« If T" were not optimal then we could find a
lower cost tree T”. This will lead to a lower
cost tree T" for the original alphabet.

T ™ ™

a+p
q+p q p

C(T")=C(T")+p+q<C(T)+p+q=C(T) which is a contradiction

CSE 589 - Lecture 11 - Spring 1999 12




Huffman Tree Algorithm

form a node for each symbol a; with weight p;;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

minl := delete-min;

min2 := delete-min;

create a new node n;

n.weight := minl.weight + min2.weight;

n.left ;= min1;
n.right := min2;
insert(n)

return the last node in the priority queue.

CSE 589 - Lecture 11 - Spring 1999 13

Example of Huffman Tree Algorithm (1)

« P(a) =.4, P(b)=.1, P(c)=3, P(d)=.1, P(e)=.1

4 1 3 1 1
& b @ [¢
4 2 3 1
[al O [d]
[b] [e]
CSE 589 - Lecture 11 - Spring 1999 14

Example of Huffman Tree Algorithm (2)

3

4 2 1
[l O d]

CSE 589 - Lecture 11 - Spring 1999 15

Example of Huffman Tree Algorithm (3)

4 3 3
[a] O
@ O
[b] [e]
CSE 589 - Lecture 11 - Spring 1999 16

Example of Huffman Tree Algorithm (4)

CSE 589 - Lecture 11 - Spring 1999 17

Optimal Huffman Code

average number of bits per symbol is
A4Xx1+.1x4+.3x2+.1x3+.1x4=21

a
b 1110
c 10

d 110
e 1111

CSE 589 - Lecture 11 - Spring 1999 18




Huffman Code vs. Entropy
*+ P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
Entropy

H =-(.4 xlog,(.4) +.1 x log,(.1) + .3 x log,(.3)
+.1xlog,(.1) +.1 xlog,(.1))
= 2.05 bits per symbol

Huffman Code
HC=4x1+.1x4+.3x2+.1x3+.1x4

= 2.1 bits per symbol
pretty good!

CSE 589 - Lecture 11 - Spring 1999 19

Quiality of the Huffman Code

* The Huffman code is within one bit of the
entropy lower bound.

H<HC<H+1
Huffman code does not work well with a two
symbol alphabet.
— Example: P(0) = 1/100, P(1) = 99/100

— HC =1 bits/symbol
0 Q 1

[l [of

— H =-((1/100)*log,(1/100) + (99/100)l0g,(99/100))
= .08 bits/symbol

CSE 589 - Lecture 11 - Spring 1999 20

Extending the Alphabet
» Assuming independence P(ab) = P(a)P(b), so
we can lump symbols together.
» Example: P(0) = 1/100, P(1) = 99/100

— P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

HC = 1.03 bits/symbol (2 bit symbol)
=515 bits/bit

Still not that close to H = .08 bits/bit

CSE 589 - Lecture 11 - Spring 1999 21

Including Context

* Suppose we add a one symbol context. That

is in compressing a string x,X,...x, we want to
take into account X, when encoding .

— New model, so entropy based on just independent
probabilities of the symbols doesn't hold. The new
entropy model (2nd order entropy) has for each
symbol a probability for each other symbol

following it.
— Example: {a,b,c} next
a h c
al4 2 4
previplai 9 o
cll .1 .8
CSE 589 - Lecture 11 - Spring 1999 22

Multiple Codes

Code for first symbol
a 00
b 01
c 10

©

o Blo ©obmp
:>U
Nt

CSE 589 - Lecture 11 - Spring 1999 23

Notes on Huffman Codes
Time to design Huffman Code is O(n log n)
where n is the number of symbols.

Typically, for compressing a string the
probabilities are chosen as the actual
frequencies of the symbols in the string.

Huffman works better for larger alphabets.

There are adaptive (one pass) Huffman
coding algorithms. No need to transmit code.

Huffman is still popular. Itis simple and it
works.

CSE 589 - Lecture 11 - Spring 1999 24




Arithmetic Coding

« Huffman coding works well for larger alphabets
and gets to within one bit of the entropy lower
bound. Can we do better. Yes

« Basic idea in arithmetic coding:

— represent each string x of length n by an interval A in
[0,1).

— The width of the interval A represents the probability
of x occurring.

— The interval A can itself be represented by any
number, called a tag, within the half open interval.

— The significant bits of the tag is the code of x.

CSE 589 - Lecture 11 - Spring 1999 25

Example of Arithmetic Coding (1)

0 1. tag must be in the half open interval.
2. tag can be chosen to be (I+r)/2.
13 |a 3. code must be significant bits of tag.
23|, bha 15/27 .100011100...
bb 19/27 .101101000...
1 tag = 17/27 = .101000010...

code =101

CSE 589 - Lecture 11 - Spring 1999

26

Example of Arithmetic Coding (2)

0
13 |a
E 11/27 .011010000...
ba
bab
23 . 15/27 .100011100...
tagl = 13/27 =.011110110...
codel = 0111
1

tag2 = 14/27 = .100001001...
code2 =1

CSE 589 - Lecture 11 - Spring 1999 27




