
1

CSE 589
Applied Algorithms

Spring 1999

Huffman Coding
Arithmetic Coding

CSE 589 - Lecture 11 - Spring 1999 2

Huffman Coding

• Huffman (1951)
• Uses frequencies of symbols in a string to

build a variable rate prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.
– No code is a prefix of another.

• Example: a 0
 b 100
 c 101
 d 11

CSE 589 - Lecture 11 - Spring 1999 3

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11
• Coding:

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

• Morse Code an example of variable rate
code. E = . and Z = _ _ . .

CSE 589 - Lecture 11 - Spring 1999 4

Huffman Tree for a Prefix Code

• Example: a 0, b 100, c 101, d 11

b c

a

d

0

0

0

1

1

1

Leaves are labeled with
symbols.

The code of a symbol is the
sequence of labels on the
path from the root to the
symbol.

CSE 589 - Lecture 11 - Spring 1999 5

Encoding and Decoding

• Encoding: send the code, then the encoded
data
– x = aabddcaa

– c(x) = a0,b100,c101,d11,0010011111010 0

• Decoding: Build the Huffman tree, then use it
to decode.

Huffman code code of x

repeat
start at root of tree
 repeat
 if node is not a leaf
 if read bit = 1 then go right
 else go left
 report leaf

b c

a

d

0

0

0

1

1

1

CSE 589 - Lecture 11 - Spring 1999 6

Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the

symbols a1, a2, ... ,am, respectively.
• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T.

i

m

i
irpTC ∑

=

=
1

)(

2

CSE 589 - Lecture 11 - Spring 1999 7

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a b c d

CSE 589 - Lecture 11 - Spring 1999 8

Optimal Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A Huffman tree that minimizes the
average number of bits to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai.

i

m

i
irpTC ∑

=

=
1

)(

CSE 589 - Lecture 11 - Spring 1999 9

Optimality Principle 1
• In an optimal Huffman tree a lowest

probability symbol has maximum distance
from the root.
– If not exchanging a lowest probability symbol with

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k

CSE 589 - Lecture 11 - Spring 1999 10

Optimality Principle 2

• The second lowest probability is a sibling of
the the smallest in some optimal Huffman
tree.
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k

CSE 589 - Lecture 11 - Spring 1999 11

Optimality Principle 3
• Assuming we have an optimal Huffman tree T

whose two lowest probability symbols are
siblings at maximum depth, they can be
replaced by a new symbol whose probability is
the sum of their probabilities.
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h

CSE 589 - Lecture 11 - Spring 1999 12

Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’. This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction

3

CSE 589 - Lecture 11 - Spring 1999 13

Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
 min1 := delete-min;
 min2 := delete-min;
 create a new node n;
 n.weight := min1.weight + min2.weight;
 n.left := min1;
 n.right := min2;
 insert(n)
return the last node in the priority queue.

CSE 589 - Lecture 11 - Spring 1999 14

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

CSE 589 - Lecture 11 - Spring 1999 15

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3

CSE 589 - Lecture 11 - Spring 1999 16

Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6

CSE 589 - Lecture 11 - Spring 1999 17

Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1

CSE 589 - Lecture 11 - Spring 1999 18

Optimal Huffman Code

a

b

c

d

e

a 0
b 1110
c 10
d 110
e 1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1

4

CSE 589 - Lecture 11 - Spring 1999 19

Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
 + .1 x log2(.1) + .1 x log2(.1))
 = 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
 = 2.1 bits per symbol
 pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

CSE 589 - Lecture 11 - Spring 1999 20

Quality of the Huffman Code

• The Huffman code is within one bit of the
entropy lower bound.

• Huffman code does not work well with a two
symbol alphabet.
– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
 = .08 bits/symbol

1+≤≤ HHCH

1 0

10

CSE 589 - Lecture 11 - Spring 1999 21

Extending the Alphabet
• Assuming independence P(ab) = P(a)P(b), so

we can lump symbols together.
• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
 = .515 bits/bit

Still not that close to H = .08 bits/bit

CSE 589 - Lecture 11 - Spring 1999 22

Including Context
• Suppose we add a one symbol context. That

is in compressing a string x1x2...xn we want to
take into account xk-1 when encoding xk.
– New model, so entropy based on just independent

probabilities of the symbols doesn’t hold. The new
entropy model (2nd order entropy) has for each
symbol a probability for each other symbol
following it.

– Example: {a,b,c}
 a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

CSE 589 - Lecture 11 - Spring 1999 23

Multiple Codes

 a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a 00
b 01
c 10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8

CSE 589 - Lecture 11 - Spring 1999 24

Notes on Huffman Codes
• Time to design Huffman Code is O(n log n)

where n is the number of symbols.
• Typically, for compressing a string the

probabilities are chosen as the actual
frequencies of the symbols in the string.

• Huffman works better for larger alphabets.
• There are adaptive (one pass) Huffman

coding algorithms. No need to transmit code.
• Huffman is still popular. It is simple and it

works.

5

CSE 589 - Lecture 11 - Spring 1999 25

Arithmetic Coding

• Huffman coding works well for larger alphabets
and gets to within one bit of the entropy lower
bound. Can we do better. Yes

• Basic idea in arithmetic coding:
– represent each string x of length n by an interval A in

[0,1).

– The width of the interval A represents the probability
of x occurring.

– The interval A can itself be represented by any
number, called a tag, within the half open interval.

– The significant bits of the tag is the code of x.

CSE 589 - Lecture 11 - Spring 1999 26

Example of Arithmetic Coding (1)

a

b

bb

0

1

bba
15/27

19/27

.100011100...

.101101000...

tag = 17/27 = .101000010...
code = 101

1. tag must be in the half open interval.
2. tag can be chosen to be (l+r)/2.
3. code must be significant bits of tag.1/3

2/3

CSE 589 - Lecture 11 - Spring 1999 27

Example of Arithmetic Coding (2)

a

b

ba

0

1

bab
11/27

15/27

.011010000...

.100011100...

tag1 = 13/27 = .011110110...
code1 = 0111

tag2 = 14/27 = .100001001...
code2 = 1

1/3

2/3

