

Variable Rate Code Example

- Example: a 0,b 100, c 101, d 11
- Coding:
- aabddcaa = 16 bits
- $00100111110100=14$ bits
- Prefix code ensures unique decodability.
- 001001111.10100

-aabddcaa
- Morse Code an example of variable rate code. $\mathrm{E}=$. and $\mathrm{Z}=$ \qquad
CSE 589 - Lecture 11 - Spring 1999

Huffman Tree for a Prefix Code

- Example: a 0, b 100, c 101, d 11

Leaves are labeled with symbols.

The code of a symbol is the sequence of labels on the path from the root to the symbol.

Cost of a Huffman Tree

- Let $p_{1}, p_{2}, \ldots, p_{m}$ be the probabilities for the symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Define the cost of the Huffman tree T to be

$$
C(T)=\sum_{i=1}^{m} p_{i} r_{i}
$$

where r_{i} is the length of the path from the root to a_{i}.

- $C(T)$ is the expected length of the code of a symbol coded by the tree T.

$0 \bigcirc 1$	start at root of tree
a $0 \bigcirc_{1}$	repeat
$Q_{1} \text { d }$	if node is not a leaf if read bit = 1 then go right
b c	else go left report leaf

Example of Cost

- Example: a $1 / 2$, b $1 / 8$, c $1 / 8$, d $1 / 4$

T

$$
C(T)=\begin{gathered}
1 \times 1 / 2+3 \times 1 / 8+3 \times 1 / 8+2 \times 1 / 4=1.75 \\
a
\end{gathered}
$$

CSE 589 - Lecture 11 - Spring 1999

Optimality Principle 1

- In an optimal Huffman tree a lowest probability symbol has maximum distance from the root.
- If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$$
C\left(T^{\prime}\right)=C(T)+h p-h q+k q-k p=C(T)-(h-k)(q-p)<C(T)
$$

$$
\text { CSE } 589 \text { - Lecture } 11 \text { - Spring } 1999
$$

Optimal Huffman Tree

- Input: Probabilities $p_{1}, p_{2}, \ldots, p_{m}$ for symbols $a_{l}, a_{2}, \ldots, a_{m}$, respectively.
- Output: A Huffman tree that minimizes the average number of bits to code a symbol. That is, minimizes

$$
C(T)=\sum_{i=1}^{m} p_{i} r_{i}
$$

where r_{i} is the length of the path from the root to a_{i}.

Optimality Principle 2

- The second lowest probability is a sibling of the the smallest in some optimal Huffman tree.
- If not, we can move it there not raising the cost.

Optimality Principle 3

- Assuming we have an optimal Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
- The resulting tree is optimal for the new symbol set.

Optimality Principle 3 (cont')

- If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T'" for the original alphabet.

$\mathrm{C}\left(\mathrm{T}^{\prime \prime \prime}\right)=\mathrm{C}\left(\mathrm{T}^{\prime \prime}\right)+\mathrm{p}+\mathrm{q}<\mathrm{C}\left(\mathrm{T}^{\prime}\right)+\mathrm{p}+\mathrm{q}=\mathrm{C}(\mathrm{T})$ which is a contradiction

Example of Huffman Tree Algorithm (1)

- $P(a)=.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1$

Example of Huffman Tree Algorithm (3)

Example of Huffman Tree Algorithm (4)

CSE 589 - Lecture 11 - Spring 1999
17

Huffman Code vs. Entropy

- $P(a)=.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1$

Entropy

$$
\begin{aligned}
\mathrm{H}= & -\left(.4 \times \log _{2}(.4)+.1 \times \log _{2}(.1)+.3 \times \log _{2}(.3)\right. \\
& \left.+.1 \times \log _{2}(.1)+.1 \times \log _{2}(.1)\right) \\
= & 2.05 \text { bits per symbol }
\end{aligned}
$$

Huffman Code

$$
\begin{aligned}
\mathrm{HC}= & .4 \times 1+.1 \times 4+.3 \times 2+.1 \times 3+.1 \times 4 \\
& =2.1 \text { bits per symbol } \\
& \text { pretty good! }
\end{aligned}
$$

Extending the Alphabet

- Assuming independence $P(a b)=P(a) P(b)$, so we can lump symbols together.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
$-P(00)=1 / 10000, P(01)=P(10)=99 / 10000$, $\mathrm{P}(11)=9801 / 10000$.

$\mathrm{HC}=1.03 \mathrm{bits} /$ symbol (2 bit symbol) $=.515 \mathrm{bits} / \mathrm{bit}$

Still not that close to $\mathrm{H}=.08$ bits/bit

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound.

$$
H \leq H C \leq H+1
$$

- Huffman code does not work well with a two symbol alphabet.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
- HC = 1 bits/symbol

$-\mathrm{H}=-\left((1 / 100)^{*} \log _{2}(1 / 100)+(99 / 100) \log _{2}(99 / 100)\right)$
$=.08 \mathrm{bits} /$ symbol
CSE 589 - Lecture 11 - Spring 1999

Including Context

- Suppose we add a one symbol context. That is in compressing a string $x_{1} x_{2} \ldots x_{n}$ we want to take into account x_{k-l} when encoding x_{k}.
- New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: $\{a, b, c\} \quad$ next

CSE 589 - Lecture 11 - Spring 1999

Notes on Huffman Codes

- Time to design Huffman Code is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where n is the number of symbols.
- Typically, for compressing a string the probabilities are chosen as the actual frequencies of the symbols in the string.
- Huffman works better for larger alphabets.
- There are adaptive (one pass) Huffman coding algorithms. No need to transmit code.
- Huffman is still popular. It is simple and it works.

Arithmetic Coding

- Huffman coding works well for larger alphabets and gets to within one bit of the entropy lower bound. Can we do better. Yes
- Basic idea in arithmetic coding:
- represent each string x of length n by an interval A in $[0,1)$.
- The width of the interval A represents the probability of x occurring.
- The interval A can itself be represented by any number, called a tag, within the half open interval.
- The significant bits of the tag is the code of x.

Example of Arithmetic Coding (1)

26

Example of Arithmetic Coding (2)

