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Wavelet Transform

• Wavelet Transform
– A family of transformations that filters the data into

low resolution data plus detail data.
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image

wavelet transformed
image
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Wavelet Transformed Barbara
(Enhanced)
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Wavelet Transformed Barbara
(Actual)

most of the
details are small
so they are 
very dark.
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Wavelet Compression Scheme
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Wavelet coder transmits wavelet transformed image in bit plane
order with the most significant bits first.  Compression happens 
when only some of the bit planes are transmitted.

coder

decoder

distorted
image

transformed
image
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Wavelet Coding Methods

• EZW - Shapiro, 1993
– Embedded Zero Tree coding.

• SPIHT - Said and Pearlman, 1996
– Set Partitioning in Hierarchical Trees coding.  Also

uses “zero trees”.

• ECECOW - Wu, 1997
– Embedded Conditional Entropy Coding of Wavelet

coefficients.

– Uses arithmetic coding with context.
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Rate-Fidelity Curve
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SPIHT coded Barbara

More bit planes of the wavelet transformed image that
is sent the higher the fidelity.
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Wavelet Transform
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A wavelet transform decomposes the image into a low resolution
version and details.  The details are typically very small so they can
be coded in very few bits.
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One Dimensional Haar Transform (1)
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y

x

y

How do we represent
two data points at lower resolution?
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average detail
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One Dimensional Haar Transform (2)
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Transform Inverse Transform

x = L - H
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detail
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One Dimensional Haar Transform (3)

L

H

Low 
Resolution 
Version

Detail
Note that the low resolution
version and the detail together
have the same number of 
values as  the original.
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One Dimensional Haar Transform (3)
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L = B[0..n/2-1]
H = B[n/2..n-1]
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One Dim. Haar Inverse Transform
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Two Dimensional Transform (1)
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Two Dimensional Transform (1)

LL

HL HH

LH horizontal
transform

vertical
transform

Transform 
each row in LL

Transform 
each column in
LLL and HLL

HL HH
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2 levels of transform gives 7 subbands.
k levels of transform gives 3k + 1 subbands.
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Two Dimensional Haar Transform

horizontal
transform

vertical 
transform

negative value
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Wavelet Transformed Image

2 levels of wavelet 
transform

1 low resolution
subband

6 detail subbands
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Wavelet Transform Details

• Conversion to reals.
– Convert gray scale to floating point.

– Convert color to Y U V and then convert each to
band to floating point.  Compress separately.

• After several levels (3-8) of transform we
have a matrix of floating point numbers called
the wavelet transformed image.

• Image compression does not usually use the
Haar filters, but uses the Daubechies 9/7
filters, or other wavelet filters.
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Haar Filters

low pass = 1/2, 1/2 high pass = -1/2, 1/2
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Daubechies 9/7 Filters
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Linear Time Complexity of 2D
Wavelet Transform

• Let n = number of pixels and let b be the
number of coefficients in the filters.

• One level of transform takes time
– O(bn)

• k levels of transform takes time proportional to
– bn + bn/4 + ... + bn/4k-1 < (4/3)bn.

• The wavelet transform is linear time when the
filters have constant size.
– The point of wavelets is to use constant size filters

unlike many other transforms.
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Wavelet Coding
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Wavelet coder transmits wavelet transformed image in bit plane
order with the most significant bits first.  Compression happens 
when only some of the bit planes are transmitted.
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Normalized Wavelet Transformed
Image

• Let B[0..n-1,0..n-1] be the wavelet
transformed image.

• Assume -1 < B[i,j] < 1 (by normalization)
• Define B[i,j,k], 0 < i,j < n is bit plane k.
• Encode in bit plane order.
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Significance
• if 2-k < |B[i,j]| then B[i,j] is significant in bit plane k.
• If B[i,j] is insignificant in bit plane k then

|B[i,j]| < 2-k

• The sign of B[i,j] must be output before B[i,j]
becomes significant. 
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Coding Ideas

• Key coding ideas:
– The values in first bit plane of the low resolution

subband (LL...LL) are very likely significant.

– The values in the leading bit planes of the detail
subbands are likely to be insignificant.

– Most values in the leading bit planes are
insignificant.

• Transmit the wavelet transformed image in bit
plane order taking advantage of the high
likelihood of insignificant values.
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The Zero Tree Method

• Invented by Shapiro, 1993, and refined by
Said and Pearlman, 1996.

If a bit plane value in a low 
resolution subband is insignificant 
then it is likely that the 
corresponding values in higher 
subbands are also insignificant 
in the same bit plane.

Such groups of insignificant
values are called zero
trees.
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Zero Tree Example

Values in a 
zero tree are
correlated.
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SPIHT Coding
• Runs in passes - one for each bit plane.
• Encoder maintains two data structures.

– S, a list of indices (i,j) such that B[i,j] is declared
significant in the current bit plane.

– Z, a stack of zero trees of two types.

• rootless (R)

• root-and-childless (RC)

– The nodes in a zero tree are insignificant in the
current bit plane. (ignore root in R and root and
children in RC)
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SPIHT Zero Trees

R

RC

root is on the list S

all other nodes are
insignificant in
current bit plane

Each zero tree can be
identified by its type 
and the index (i,j)
of its root.
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Initialization of SPIHT

• The lowest subband indices are put into S.
– If (i,j) in lowest subband then output sign (0 for -

and 1 for +) of B[i,j] and put (i,j) into S.

• A stack Z of zero trees is formed using the
lowest resolution subband indices as roots.
– If (i,j) in the lowest subband is a root of a zero tree

of type R if i is odd or (i is even and j is odd).

root of a zero tree

lowest subband
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Pass of SPIHT
k-th pass
We have list S of significant values and a stack Z of
zero trees from the previous pass or the initialization. 
Sorting step.
    while Z is not empty do
        T := pop(Z);
        if T has an index that becomes significant in bit plane k then 
            output 1;
            decompose(T);
        else 
            output 0;
            push T on Z’
    Z := Z’; {At this point all indices in zero trees in Z are insignificant}
Refinement step.
    for each (i,j) in S output the k-th significant bit, B[i,j,k].
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Decomposition of R

R

Output the sign (0 for - and 1 for +) of each of the
children of the root and put them in S.  Push the RC
tree on the stack Z. Exception is when tree has no 
grandchildren.  In this case, the tree dies.
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Decomposition of RC

RC

Push each of the four trees
on the stack Z. 
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SPIHT Coding Example: Initialization

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

in S

Initial data structure:

S = (0,0), (0,1), (1,0), (1,1)

Z = (R,0,1), (R,1,0), (R,1,1)

Initial output:
0 1 1 1

sign(0,0) = -
sign(0,1) = +
sign(1,0) = +
sign(1,1) = +

CSE 589 - Lecture 16 - Spring 1999 35

SPIHT Coding Example: Zero Tree
0  1  2  3  4  5  6  7

0
1
2
3
4
5
6
7

in S

Example of zero tree (R,0,1)

(0,1)

(0,2)       (0,3)        (1,2)         (1,3)

(2,4)  (2,5)  (3,4)  (3,5)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7
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SPIHT Coding Example: Pass 1,
Sorting Step (1)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

became significant

S = (0,0), (0,1), (1,0), (1,1)

Z = (R,0,1), (R,1,0), (R,1,1)

(R,0,1) is significant
output 1

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3)
output 1101 for signs of these

Z = (RC,0,1), (R,1,0), (R,1,1)in S
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SPIHT Coding Example: Pass 1,
Sorting Step (2)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3)

Z = (RC,0,1), (R,1,0), (R,1,1)

(RC,0,1) is not significant
output 0

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3)

Z = (R,1,0), (R,1,1)
Z’ = (RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (3)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3)
Z = (R,1,0), (R,1,1)
Z’ = (RC,0,1)

(R,1,0) is significant
output 1

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
output 1100 for signs of these
Z = (RC,1,0), (R,1,1)
Z’ = (RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (4)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
Z = (RC,1,0), (R,1,1)
Z’ = (RC,0,1)

(RC,1,0) is significant
output 1

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
Z =  (R,2,0), (R,2,1), (R,3,0), 
        (R,3,1), (R,1,1)
Z’ = (RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (5)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
Z =  (R,2,0), (R,2,1), (R,3,0), 
        (R,3,1) (R,1,1)
Z’ = (RC,0,1)

(R,2,0) is not significant
output 0
S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
Z =  (R,2,1), (R,3,0), (R,3,1), (R,1,1)
Z’ = (R,2,0),(RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (6)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1)
Z =  (R,2,1), (R,3,0), (R,3,1), (R,1,1)
Z’ = (R,2,0),(RC,0,1)

(R,2,1) is significant
output 1
S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
output 1010 for signs of these
Z =  (R,3,0), (R,3,1), (R,1,1)
Z’ = (R,2,0),(RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (7)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =  (R,3,0), (R,3,1), (R,1,1)
Z’ = (R,2,0),(RC,0,1)

(R,3,0) is insignificant
output 0
S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =  (R,3,1), (R,1,1)
Z’ = (R,3,0), (R,2,0),(RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (8)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =  (R,3,1), (R,1,1)
Z’ = (R,3,0), (R,2,0),(RC,0,1)

(R,3,1) is insignificant
output 0
S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =  (R,1,1)
Z’ = (R,3,1), (R,3,0), (R,2,0),(RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Sorting Step (9)

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =  (R,1,1)
Z’ = (R,3,1), (R,3,0), (R,2,0),(RC,0,1)
(R,1,1) is insignificant
output 0
S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z =
Z’ = (R,1,1), (R,3,1), (R,3,0), 
       (R,2,0),(RC,0,1)

became significant

in S
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SPIHT Coding Example: Pass 1,
Refinement Step

0  1  2  3  4  5  6  7
0
1
2
3
4
5
6
7

S = (0,0), (0,1), (1,0), (1,1),
       (0,2), (0,3), (1,2), (1,3),
       (2,0), (2,1), (3,0), (3,1),
       (4,2), (4,3), (5,2), (5,3)
Z = (R,1,1), (R,3,1), (R,3,0), 
       (R,2,0),(RC,0,1)

output 1011011011101000
   one bit for each member of S.

37 total bits in pass 1 were output.
Initialization was 4 bits.

in S
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SPIHT Decoding

• The decoder emulates the encoder.
– The decoder maintains exactly the same data

structures as the encoder.

– When the decoder has popped the Z stack to
examine a zero tree it receives a bit telling it
whether the tree is significant. The decoder can
then do the right thing.
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Wavelet Compression Scheme

wavelet
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9/7 Daubechies wavelet filters for 3 to 8 levels.
SPIHT encoding does well for wavelet coding.
Arithmetic coding adds a small improvement.

coder

decoder

distorted
image

transformed
image
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Notes on Wavelet Compression

• Currently the best compression available for
natural images.
– Excellent rate-fidelity curve.
– Encoder and decoder well matched in speed.

– SPIHT has good time complexity.

– Wavelet compressed image do not have the
blockiness found in VQ and JPEG coded images.

– Arithmetic code doesn’t add much.

• Wavelet compression is very practical
– JPEG 2000

– FBI fingerprint data base


