

Wavelet Transform

- Wavelet Transform
- A family of transformations that filters the data into low resolution data plus detail data.

Wavelet Coding Methods

- EZW - Shapiro, 1993
- Embedded Zero Tree coding.
- SPIHT - Said and Pearlman, 1996
- Set Partitioning in Hierarchical Trees coding. Also uses "zero trees".
- ECECOW - Wu, 1997
- Embedded Conditional Entropy Coding of Wavelet coefficients.
- Uses arithmetic coding with context.
coder transmits wavelet transformed image in bit plane

CSE 589 - Lecture 16 - Spring $1999 \quad 6$

Wavelet Transform Details

- Conversion to reals.
- Convert gray scale to floating point.
- Convert color to $Y \cup V$ and then convert each to band to floating point. Compress separately.
- After several levels (3-8) of transform we have a matrix of floating point numbers called the wavelet transformed image.
- Image compression does not usually use the Haar filters, but uses the Daubechies 9/7 filters, or other wavelet filters.

Linear Time Complexity of 2D Wavelet Transform

- Let $\mathrm{n}=$ number of pixels and let b be the number of coefficients in the filters.
- One level of transform takes time - O(bn)
- k levels of transform takes time proportional to $-\mathrm{bn}+\mathrm{bn} / 4+\ldots+\mathrm{bn} / 4^{k-1}<(4 / 3) \mathrm{bn}$.
- The wavelet transform is linear time when the filters have constant size.
- The point of wavelets is to use constant size filters unlike many other transforms.

CSE 589 - Lecture 16 - Spring 1999 when only some of the bit planes are transmitted.
CSE 589 - Lecture 16 - Spring 199922

Normalized Wavelet Transformed Image

- Let $\mathrm{B}[0 . . \mathrm{n}-1,0 . . \mathrm{n}-1]$ be the wavelet transformed image.
- Assume - $1<\mathrm{B}[i, \mathrm{j}]<1$ (by normalization)
- Define $B[i, j, k], 0 \leq i, j<n$ is bit plane k.
- Encode in bit plane order.

Significance

- if $2^{-k} \leq|B[i, j]|$ then $B[i, j]$ is significant in bit plane k.
- If $\mathrm{B}[i, j]$ is insignificant in bit plane k then $|B[i, j]|<2^{-k}$
- The sign of $B[i, j]$ must be output before $B[i, j]$ becomes significant.

Coding Ideas

- Key coding ideas:
- The values in first bit plane of the low resolution subband (LL...LL) are very likely significant.
- The values in the leading bit planes of the detail subbands are likely to be insignificant.
- Most values in the leading bit planes are insignificant.
- Transmit the wavelet transformed image in bit plane order taking advantage of the high likelihood of insignificant values.

The Zero Tree Method

- Invented by Shapiro, 1993, and refined by Said and Pearlman, 1996.

If a bit plane value in a low resolution subband is insignificant then it is likely that the
corresponding values in higher subbands are also insignificant in the same bit plane.

Such groups of insignificant values are called zero trees.

SPIHT Coding

- Runs in passes - one for each bit plane.
- Encoder maintains two data structures.
- S, a list of indices (i,j) such that $B[i, j]$ is declared significant in the current bit plane.
- Z, a stack of zero trees of two types.
- rootless (R)
- root-and-childless (RC)
- The nodes in a zero tree are insignificant in the current bit plane. (ignore root in R and root and children in RC)

SPIHT Zero Trees

\square root is on the list S

all other nodes are insignificant in current bit plane

Each zero tree can be identified by its type and the index (i,j) of its root.

Initialization of SPIHT

- The lowest subband indices are put into S.
- If (i,j) in lowest subband then output sign (0 for and 1 for +) of $B[i, j]$ and put ((i, j) into S.
- A stack Z of zero trees is formed using the lowest resolution subband indices as roots.
- If (i, j) in the lowest subband is a root of a zero tree of type R if i is odd or (i is even and j is odd).

Pass of SPIHT
```k-th pass We have list S of significant values and a stack Z of zero trees from the previous pass or the initialization. Sorting step. while Z is not empty do T := pop(Z); if T has an index that becomes significant in bit plane }k\mathrm{ then output 1; decompose(T); else output 0; push T on Z' Z := Z'; {At this point all indices in zero trees in Z are insignificant} Refinement step. for each (i,j) in S output the k-th significant bit, B[i,j,k].```
CSE 589 - Lecture 16-Spring 1999 91



SPIHT Coding Example: Initialization


SPIHT Coding Example: Zero Tree

## SPIHT Coding Example: Pass 1, Sorting Step (1)


$\square$ in S

36





## SPIHT Decoding

- The decoder emulates the encoder.
- The decoder maintains exactly the same data structures as the encoder.
- When the decoder has popped the Z stack to examine a zero tree it receives a bit telling it whether the tree is significant. The decoder can then do the right thing.


## Notes on Wavelet Compression

- Currently the best compression available for natural images.
- Excellent rate-fidelity curve.
- Encoder and decoder well matched in speed.
- SPIHT has good time complexity.
- Wavelet compressed image do not have the blockiness found in VQ and JPEG coded images.
- Arithmetic code doesn't add much.
- Wavelet compression is very practical
- JPEG 2000
- FBI fingerprint data base

CSE 589 - Lecture 16 - Spring 1999

