

Significance

- if $2^{-k} \leq|B[i, j]|$ then $B[i, j]$ is significant in bit plane k.
- If $\mathrm{B}[i, \mathrm{j}]$ is insignificant in bit plane k then $|B[i, j]|<2^{-k}$
- The sign of $B[i, j]$ must be output before $B[i, j]$ becomes significant.

significant \triangle becomes significant CSE 589 - Lecture 17 - Spring 19993

Coding Ideas

- Key coding ideas:
- The values in first bit plane of the low resolution subband (LL...LL) are very likely significant.
- The values in the leading bit planes of the detail subbands are likely to be insignificant.
- Most values in the leading bit planes are insignificant.
- Transmit the wavelet transformed image in bit plane order taking advantage of the high likelihood of insignificant values.

CSE 589 - Lecture 17 - Spring 1999

Initialization of SPIHT

- The lowest subband indices are put into S .
- If (i, i, in lowest subband then output sign (0 for and 1 for +) of $B[i, j]$ and put ((i, j) into S .
- A stack Z of zero trees is formed using the lowest resolution subband indices as roots.
- If (i,j) in the lowest subband is a root of a zero tree of type R if i is odd or (i is even and j is odd).

SPIHT Coding Example: Initialization

SPIHT Coding Example: Pass 1,

 Sorting Step (2)

SPIHT Coding Example: Pass 1,
$s=0$
$Z=(R, 1,1)$
, (R,3,0), (R,2,0),(RC,0,1)
output 0
$S=(0,0),(0,1),(1,0),(1,1)$, $0,2),(0,3),(1,2),(1,3)$,
$(2,0),(2,1),(3,0),(3,1)$,
$Z=(4,2),(4,3),(5,2),(5,3)$
$Z^{\prime}=(R, 1,1),(R, 3,1),(R, 3,0)$, (R,2,0),(RC,0,1)
E589-Lecture 17 - Spring 1999 23

SPIHT Coding Example: Pass 1,

 Sorting Step (8)$S=(0,0),(0,1),(1,0),(1,1)$, $(0,2),(0,3),(1,2),(1,3)$ $(2,0),(2,1),(3,0),(3,1)$ $(4,2),(4,3),(5,2),(5,3)$
$Z=(R, 3,1),(R, 1,1)$
$Z^{\prime}=(R, 3,0),(R, 2,0),(R C, 0,1)$
($R, 3,1$) is insignificant
output 0
$S=(0,0),(0,1),(1,0),(1,1)$, $(0,2),(0,3),(1,2),(1,3)$, $(2,0),(2,1),(3,0),(3,1)$ $(2,0),(2,1),(3,0),(3,1)$,
$(4,2),(4,3),(5,2),(5,3)$
$Z=(R, 1,1)$
$Z=(R, 1,1),(R, 3,0),(R, 2,0),(R C, 0,1)$

SPIHT Coding Example: Pass 1, Refinement Step

SPIHT Decoding

- The decoder emulates the encoder.
- The decoder maintains exactly the same data structures as the encoder.
- When the decoder has popped the Z stack to examine a zero tree it receives a bit telling it whether the tree is significant. The decoder can then do the right thing.
- If it is significant then it does the decomposition.
- If it is not significant then it deduces a number of zeros in the current bit plane.

Notes on Wavelet Compression

- Currently the best compression available for natural images.
- Excellent rate-fidelity curve.
- Encoder and decoder well matched in speed.
- No training required.
- SPIHT has good time complexity.
- Wavelet compressed image do not have the blockiness found in VQ and JPEG coded images.
- Arithmetic code doesn't add much.
- Wavelet compression is very practical
- JPEG 2000
- FBI fingerprint database

CSE 589 - Lecture 17 - Spring 1999

Approximate Matching

- Two DNA sequences approximately match if one can be transformed into the other by a short sequence of replacements and insertions of gaps.
- Example:
$-\mathrm{S}=\mathrm{AGCATG}$
- $\mathrm{T}=\mathrm{AGATCGT}$
- Approximate matching
is a gap
$-S^{\prime}=A \mathrm{G}-\mathrm{CATG}$
$-T^{\prime}=A$ G A C G T -

DNA

- DNA is a large molecule that can be abstractly defined as a sequence of symbols from the set, A, C, G, T, called nucleotides.
- The human genome has about 3 billion nucleotides.
- A huge percentage of the genome is shared by all humans.
- Some of the variation makes us different.
- Some of the variation is inconsequential.
- The human genome is still being discovered.

Applications of Approximate Matching

- DNA string alignment.
- Given two similar DNA sequences find the best way to align them to the same length.
- DNA database searching.
- Find DNA sequences that are similar to the query.
- Approximate text matching for searching.
- agrep in unix
- Spell checking
- Find the words that most closely match the misspelled word.

Scoring an Approximate Matching

- We need a way of scoring the quality of an approximate matching.
- A scoring function is a mapping σ from $\{A, C, G, T,-\}^{2}$ to integers.
- The quantity $\sigma(x, y)$ is the score of a pair of symbols, x and y.
- Example:
- $\quad \sigma(x, y)=+2$ if $x=y$ and x in $\{A, C, G, T\}$
$-\sigma(x, y)=-1$ otherwise

Approximate String Matching Problem

- Input: Two strings S and T in an alphabet Σ and a scoring function σ.
- Output: Two strings S' and T' in the alphabet $\Sigma^{\prime}=\Sigma$ union $\{-\}$ with the properties:
$-\mathrm{S}=\mathrm{S}$ ' with the -'s removed.
$-\mathrm{T}=\mathrm{T}$ ' with the -'s removed.
$-\left|S^{\prime}\right|=\left|T^{\prime}\right|$
- The score $\sum_{i=1}^{\left|S^{\bullet}\right|} \sigma\left(S^{\prime}[i], T{ }^{\prime}[i]\right)$ is maximized.

Scoring Example

- Example:

$$
-S=A G--C A T G
$$

$$
-T=A G A T C G T-
$$

- Score $=4 \times 2+4 \times(-1)=4$
- Is this the best match between the two strings with this scoring function?

```
- S' = AGCATG
- T' = AGATCGT
```

