

Approximate Matching

- Two DNA sequences approximately match if one can be transformed into the other by a short sequence of replacements and insertions of gaps.
- Example:
$-S=$ AGCATG
- $\mathrm{T}=\mathrm{AGATCGT}$
- Approximate matching
- is a gap
$-\mathrm{S}^{\prime}=\mathrm{A} G--\mathrm{CATG}$
$-\mathrm{T}^{\prime}=\mathrm{A}$ G A T C G T -

Scoring an Approximate Matching

- We need a way of scoring the quality of an approximate matching.
- A scoring function is a mapping σ from $\{A, C, G, T,-\}^{2}$ to integers.
- The quantity $\sigma(x, y)$ is the score of a pair of symbols, x and y.
- Example:
- $\sigma(x, y)=+2$ if $x=y$ and x in $\{A, C, G, T\}$
- $\sigma(x, y)=-1$ otherwise

CSE 589 - Lecture 18 - Spring 1999

DNA

- DNA is a large molecule that can be abstractly defined as a sequence of symbols from the set, A, C, G, T, called nucleotides.
- The human genome has about 3 billion nucleotides.
- A huge percentage of the genome is shared by all humans.
- Some of the variation makes us different.
- Some of the variation is inconsequential.
- The human genome is still being discovered.

Applications of Approximate Matching

- DNA string alignment.
- Given two similar DNA sequences find the best way to align them to the same length.
- DNA database searching.
- Find DNA sequences that are similar to the query.
- Approximate text matching for searching.
- agrep in unix
- Spell checking
- Find the words that most closely match the misspelled word.

$$
\text { CSE } 589 \text { - Lecture } 18 \text { - Spring } 1999
$$

Scoring Example

- Example:
$-S^{\prime}=A G--C A T G$
$-T^{\prime}=A G A T C G T-$
- Score $=4 \times 2+4 \times(-1)=4$
- Is this the best match between the two strings with this scoring function?
$-S=A G C A T G$
- $\mathrm{T}=\mathrm{AGATCGT}$

Approximate String Matching Problem

- Input: Two strings S and T in an alphabet Σ and a scoring function σ.
- Output: Two strings S' and T' in the alphabet $\Sigma^{\prime}=\Sigma$ union $\{-\}$ with the properties:
$-S=S$ ' with the -'s removed.
- T = T' with the -'s removed.
$-\left|S^{\prime}\right|=\left|T^{\prime}\right|$
- The score $\sum_{i=1}^{\left|S^{\bullet}\right|} \sigma\left(S^{\prime}[i], T{ }^{\prime}[i]\right)$ is maximized.

Dynamic Programming for Approximate String Matching

- Assume S has length m and T has length n.
- For all i and $j, 0 \leq i \leq m$ and $0 \leq j \leq n$, we find the maximum score for the sequences $\mathrm{S}[1 . . \mathrm{i}]$ and $\mathrm{T}[1 . \mathrm{.j}]$.
- The "dynamic program" fills in a $(m+1) \times(n+1)$ matrix M in increasing order of i and j with these maximum values.
- Once the dynamic program has completed we can recover the optimal string S' and T' from the matrix M .

CSE 589 - Lecture 18 - Spring 1999

Algorithms for Approximate String Matching

- $\mathrm{O}(\mathrm{mn})$ time and storage algorithm (using dynamic programming) invented by Needleman and Wunch, 1970.
- Fischer and Paterson, 1974, invented a very similar algorithm for computing the minimum edit distance between two strings.

Max Score Recurrence	
- Define $M[i, j]=$ maximum score for a match between $\mathrm{S}[1 . . \mathrm{i}]$ and $\mathrm{T}[1 . . \mathrm{j}]$.	
$M[i, 0]=\sum_{k=1}^{1} \sigma(S[k],-)$	string
$M[0, j]=\sum_{k=1}^{j} \sigma(-, T[k])$ $M[i, j]=\max \{$	
$M[i-1, j-1]+\sigma(S[i], T[j])$,	
$M[i-1, j]+\sigma(S[i],-)$,	
$M[i, j-1]+\sigma(-, T[j])\}$	
CSE 599 - Ledure	10

The Dynamic Programming Pattern

$\mathrm{d}=\mathrm{a}+2$ if $\mathrm{s}=\mathrm{t}$
=a-1 otherwise
$h=c-1$
$\mathrm{v}=\mathrm{b}-1$
$x=\max (d, h, v)$

Dynamic Program Example (3)

$\mathrm{S}=$ AGCATG	scoring function
$\mathrm{T}=$ AGATCGT	+2 for exact match
	-1 otherwise

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

0	-1	-2	-3	-4	-5	-6	-7

Dynamic Program Example (2)

$\mathrm{S}=$ AGCATG	scoring function
$\mathrm{T}=$ AGATCGT	+2 for exact match
	-1 otherwise

Dynamic Program Example (4)

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
A G A T C G T

1	A	-1	2	1	0	-1	-2	-3	-4	
	G	-2	1	4	3	2	1	0	-1	
		C	-3	0	3	3	2	4	3	2

2	G	-2	1	4	3	2	1	0
	-1							
	C	-3	0	3	3	2	4	3
		2						
		-4		5				

4	A	-4	-1	2	5	4	3	3	2

5	T	-5	-2	1	4	7	6	5	
	G	-6	-3	0	3	6	6		

CSE 589 - Lecture 18 - Spring 1999

Dynamic Program Example (5)

Dynamic Programming Order

for $\mathrm{i}=1$ to m do
By column

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{n} \text { do }
$$ for $\mathrm{j}=1$ to n do

$$
\text { for } i=1 \text { to } \mathrm{m} \text { do }
$$ M[i,j] := $\mathrm{M}[i, \mathrm{j}]:=$.

Which order is best?

How to Find the Matching

- To find S^{\prime} and T^{\prime} we build a matching graph.

If the answer is yes, include the corresponding edge.

Computing the Matching Graph (2)
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Computing the Matching Graph

	$\begin{array}{cccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & A & G & A & T & C & G & T \\ \hline \end{array}$								
0	0	-1	-2	-3	-4	-5	-6		7
1 A	-1	2	1	0	-1	-2	-3		4
2 G	-2	1	4	3	2	1	0		-1
3 C	-3	0	3	3	2	4	3		2
4 A	-4	-1	2	5	4	3	3		2
5 T	-5	-2	1	4			5		5
6 G	-6	-3	0	3	6	6			

Computing the Matching Graph (1)
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Computing the Matching Graph (3)

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

CSE 589 - Lecture 18 - Spring 1999

Computing the Matching Path

Algorithm to find Matching

- Follow any path in the matching graph starting at (m, n).
- The path will end up at $(0,0)$.
- Output each pair (i,j) visited to make a list of pairs forming a matching path.

Creating the Matching

P	
0	$(0,0)$
1	$(1,1)$
2	$(2,2)$
3	$(3,2)$
4	$(4,3)$
5	$(5,4)$
6	$(5,5)$
7	$(6,6)$
8	$(6,7)$

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
$S=A G C A T G$
$T=A G A T C G T$
$S^{\prime}=A \mathrm{G} C \mathrm{~A} T-\mathrm{G}-$
$T^{\prime}=A G-A T C G T$

Score $=5 \times 2+3 \times(-1)=7$

Approximate String Searching

- Input: Query string Q and target string Tin an alphabet Σ and a scoring function σ, and a minimum score r.
- Output: The set of k such that for some $i \leq k$ score $(Q, T[i . . k]) \geq r$. That is, an approximate match of some substring of T that ends at index k has a score of at least r.
- score (X, Y) is the maximum score for all matchings between X and Y .

Computing the Matching

Example of Multiple Paths

Search Algorithm

- We change the previous dynamic program slightly.

$$
\begin{aligned}
M[i, 0]= & \sum_{k=1}^{i} \sigma(Q[k],-) \\
M[0, j]= & 0 \quad \text { We don't care where the match begins in } \mathrm{T} \\
M[i, j]= & \max \{ \\
& M[i-1, j-1]+\sigma(Q[i], T[j]), \\
& M[i-1, j]+\sigma(Q[i],-), \\
& M[i, j-1]+\sigma(-, T[j])\}
\end{aligned}
$$

Choose all k such that $M[m, k] \geq r$ where m is the length of Q.

Example of Approximate Matching

$$
\begin{array}{lll}
\mathrm{Q}=\text { AGTA } & & \text { scoring function } \\
\mathrm{T}=\text { AGATCGTAGT } & \mathrm{r}=5 & \\
& +2 \text { for exact match } \\
-1 \text { otherwise }
\end{array}
$$

$$
\text { output is } 3,8,9,10
$$

Notes on Approximate Matching

- Time complexity O(mn)
- Storage complexity O(mn)
- Storage in the dynamic program can be reduced to $O(m+n)$ by just keeping the frontier.
- Recovering the matching can be done in time $\mathrm{O}(\mathrm{m}+\mathrm{n})$ cleverly.

Recovering the Matchings

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& \text { A G A T C G T A G T } \\
& \mathrm{Q}=\mathrm{AGTA} \\
& \mathrm{~T}=\text { AGATCGTAGT }
\end{aligned}
$$

DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones.

Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.

- Each clone is then tagged correspondingly.

Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.

$$
\text { input 1. }\{E, G\} \text { output }
$$

2. $\{F, G, H\}$
3. $\{\mathrm{A}, \mathrm{I}\}$
4. $\{C, D\}$
5. $\{\mathrm{E}, \mathrm{G}\}$

EGFHAIBDC
5 2- $8 \frac{6-3-7}{}{ }^{3} \frac{4 \text { - }}{10}$
6. $\{\mathrm{A}, \mathrm{H}, \mathrm{I}\}$
7. $\{\mathrm{B}, \mathrm{D}\}$
8. $\{F, H\}$
9. $\{A, B, D, I\}$
0. $\{C, D\}$

CSE 589 - Lecture 18 - Spring $1999 \quad 36$

Contiguous Ordering Problem

- Input: A universe U and a set $\mathrm{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots\right.$, $\left.S_{m}\right\}$ of subsets of U.
- Output: An ordering, $b_{1}, b_{2}, \ldots, b_{n}$, of U such that for all $i, S_{i}=\left\{b_{j}, b_{j+1}, \ldots, b_{j+k}\right\}$ for some j and k. That is each set in S is contiguous in the ordering of U.
- In this terminology the U is the set of tags and S is the set of tagged clones.

Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $\mathrm{O}(\mathrm{n}+\mathrm{s})$.
$-n$ is the size of the universe and s is the sum of the sizes of the sets.
- It requires a novel data structure called the $P Q$ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.
- A tag might be omitted from a clone
- A clone might be identified as having a tag when it doesn't
- A tag might be duplicated, not be unique.
- In all these cases finding the "best" ordering of the tags in an NP-hard problem.
- In our perfect world without errors, ordering can be done in linear time.

Contiguous Ordering Solutions

DNA Downside

- Tagging can have errors.

\qquad

PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
- Output: A PQ tree T with leaves U with the property that $\mathrm{PQ}(\mathrm{T})$ is the set of all orderings of U where each set in S is contiguous in the ordering.

Orderings Defined by a PQ Tree

- Given a PQ tree T the orderings defined by T is
$-\mathrm{PQ}(\mathrm{T})=\left\{\mathrm{F}\left(\mathrm{T}^{\prime}\right): \mathrm{T}^{\prime}\right.$ is equivalent to T$\}$

CSE 589 - Lecture 18 - Spring 1999

Example (12)
$U=\{A, B, C, D, E, F\}$
$S=\{\{A, C, E\},\{A, C, F\},\{B, D, E\}\}$

There are 8 orderings that are possible in keeping each of these sets contiguous

