CSE 589
Applied Algorithms Spring 1999

Contiguous Ordering - PQ Trees
Course Summary

DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10's of thousands of nucleotides long.

Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.

- Each clone is then tagged correspondingly.

Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.
clone tag
input 1. $\{E, G\}$

2.	$\{\mathrm{F}, \mathrm{G}, \mathrm{H}\}$	output
3.	$\{\mathrm{A}, \mathrm{I}\}$	
4. $\{\mathrm{C}, \mathrm{D}\}$	EGFHAIBDC	
5. $\{\mathrm{E}, \mathrm{G}\}$		5
6.	$\{\mathrm{A}, \mathrm{H}, \mathrm{I}\}$	5

6. $\{A, H, I\}$
7. $\{B, D\}$
8. $\{\mathrm{F}, \mathrm{H}\}$
9. $\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{I}\}$
10. $\{C, D\}$

CSE 589 - Lecture 19-Spring $1999 \quad 4$

Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $\mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{s})$.
$-n$ is the size of the universe, m is the number of sets, and s is the sum of the sizes of the sets.
- It requires a novel data structure called the $P Q$ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.

Orderings Defined by a PQ Tree

- Given a PQ tree T the orderings defined by T is
$-P Q(T)=\left\{F\left(T^{\prime}\right): T^{\prime}\right.$ is equivalent to $\left.T\right\}$

PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
- Output: A PQ tree T with leaves U with the property that $\mathrm{PQ}(\mathrm{T})$ is the set of all orderings of U where each set in S is contiguous in the ordering.

PQ Tree Restriction

- Let $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, S=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, and $T a$ PQ tree.
- We will define a function Restrict with the following properties:
- Restrict(T,S) is a PQ tree.
$-\mathrm{PQ}($ Restrict $(\mathrm{T}, \mathrm{S}))=\mathrm{PQ}(\mathrm{T})$ intersect $\mathrm{PQ}\left(\mathrm{T}^{\prime}\right)$ where

Marking Nodes

- Given a set S and $P Q$ tree T we can mark nodes either full or partial.
- A leaf is full if it is a member of S.
- A node is full if all its children are full.
- A node is partial if either it has both full and nonfull children or it has a partial child.
- A node is doubly partial if it has two partial children.

High Level PQ tree Algorithm

- Input is $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and subsets S_{1}, S_{2}, ..., S_{m} of U .
- Initialization:
$-T=P$ node with children $A_{1}, A_{2}, \ldots, A_{n}$
- Calculate m restrictions:
$-\operatorname{for} \mathrm{j}=1$ to m do
$\mathrm{T}:=\operatorname{Restrict}\left(\mathrm{T}, \mathrm{S}_{\mathrm{j}}\right)$
- At the end of iteration k :
$-\mathrm{PQ}(\mathrm{T})=$ the set of ordering of U where each set S_{1}, $\mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ are contiguous.

Restrict(T,S)

- Mark the full and partial nodes from the bottom up.
- In the process the marked leaves become contiguous.
- Locate the key node.
- Deepest node with the property that all its proper ancestors have exactly one partial child.
- Restrict the key node.
- In the process of restricting the key node we will have to recursively direct partial nodes.
- Directing a node returns a sequence of nodes.

Linear Number of Nodes Processed

- Let n be the size of the universe, m the number of sets, and s the sum of the sizes of the sets.
- Number of full nodes processed ≤ 2 s.
- Number of key nodes processed $=\mathrm{m}$.
- Number of partial nodes with partial children processed below the key node $\leq m+n$.
- Number of partial nodes with no partial children with not partial children $\leq 2 m$.
- Number of partial nodes processed above the key node $\leq m+n$.

Partials with Partial Children Below the Key Node

- Amortized complexity argument.
- Consider the quantities:
- $q=$ number of Q nodes, $\mathrm{cp}=$ number of children of P nodes.
- We examine the quantity $x=q+c p$
$-x$ is initially n and never negative.
- Each restrict of a key node increases x by at most 1 .
- Each direct of a partial node with a partial child decreases x by at least 1 .
- Since there are m restricts of a key node then there are most $n+m$ directs of partials with partial children.

CSE 589 - Lecture 19 - Spring 1999

Directing a P Node

Assume partial child
left direct a P node
change in $q+c p$ is -1

CSE 589 - Lecture 19 - Spring 1999
42

Example of Data Structure Trick

- Linking the children of a Q node

PQ Tree Notes

- In algorithmic design only a linear number of nodes are ever processed.
- Designing the data structures to make the linear time processing a reality is very tricky.
- PQ trees solve the idealized DNA ordering problem.
- In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are use.

Applied Algorithms in a Nutshell (1)

- There are genuinely hard problems that require approximate solutions.
- NP-completeness
- Branch and Bound for small input size
- Local search techniques
- Specialized techniques like GLA.
- Some apparently hard problems are not really so.
- minimum spanning tree
- contiguous ordering

Applied Algorithms in a Nutshell (3)

- Computational biology also has interesting algorithms.
- Approximate matching using dynamic programming.
- Contiguous ordering using PQ trees.
- Fundamental algorithms should always be available.
- depth-first search
- breadth-first search
- disjoint union/find
- priority queues (d-heaps)
- sorting

Applied Algorithms in a Nutshell (4)

- Algorithm evaluation and analysis are critical for understanding correctness and performance.
- Correctness
- high level thinking about design.
- development of good invariants.
- Analysis of algorithms
- time and storage analysis.
- amortized analysis.
- cache performance analysis.

