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The Parallel Runtime

Though parallel computers run Linux kernels and 
though compilation is largely routine, there are a few 

aspects of parallel computers run-time of interest.  
Communication will be our main focus. 
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Floyd-Warshall Alg (Homework not assigned)

• Accept an nxn (symmetric) array E of edge 
weights with 0 on diagonals, ℜ for no edge

• Compute the all pairs shortest path: 
min(d[i,j],d[i,k]+d[k,j])
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E  a  b  c  d  e  f
a  0  5  6  ℜ ℜ 7
b  5  0  3  ℜ ℜ ℜ
c  6  3  0  2  3  ℜ
d  ℜ ℜ 2  0  2  4
e  ℜ ℜ 3  2  0  1
f  7  ℜ ℜ 4  1  0

Assume all edge weights are less than 1000Assume all edge weights are less than 1000
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A Homework Solution
program FW;
config var n : integer = 10;
region R = [1..n,1..n]; 

H = [*,1..n]; 
V = [1..n,*];

var E : [R] integer; 
Hk : [H] integer;
Vk : [V] integer;

procedure FW();
var k : integer;
[R] begin  

-- Read E here, infinity is 10K
for k := 1 to n do

[H] Hk := >> [k, ]E;
[V] Vk := >> [ ,k]E;

E := min(E, Hk + Vk);
end;

-- Write E here
end;
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Example, Connecting Through (a)
E  a  b  c  d  e  f
a  0  5  6  ℜ ℜ 7
b  5  0  3  ℜ ℜ ℜ
c  6  3  0  2  3  ℜ
d  ℜ ℜ 2  0  2  4
e  ℜ ℜ 3  2  0  1
f  7  ℜ ℜ 4  1  0

Hk - - - - - -
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7

Vk - - - - - -
- 0  0  0  0  0  0
- 5  5  5  5  5  5
- 6  6  6  6  6  6
- ℜ ℜ ℜ ℜ ℜ ℜ
- ℜ ℜ ℜ ℜ ℜ ℜ
- 7  7  7 7 7 7

min(ℜ,7+6)=13
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Example, Connecting Through (a)
E  a  b  c  d  e  f
a  0  5  6  ℜ ℜ 7
b  5  0  3  ℜ ℜ ℜ
c  6  3  0  2  3  ℜ
d  ℜ ℜ 2  0  2  4
e  ℜ ℜ 3  2  0  1
f  7  ℜ ℜ 4  1  0

Hk - - - - - -
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7
- 0  5  6  ℜ ℜ 7

Vk - - - - - -
- 0  0  0  0  0  0
- 5  5  5  5  5  5
- 6  6  6  6  6  6
- ℜ ℜ ℜ ℜ ℜ ℜ
- ℜ ℜ ℜ ℜ ℜ ℜ
- 7  7  7 7 7 7

min(3,5+6)=3
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Homework: Performance Model & UDRs

The PSP paper gives two mode computations
(a) Use WYSIWYG analysis to say which is better
(b) Create custom “maxmode” to improve last line
-- “Standard” mode code

[1..n] begin

S := 0;

for i := 1 to n do

[i..n] S += ((>>[i] V) = V);

end;  

count := max<< S; -- largest freq count

mode := max<<((count = S) * V); -- get mode

end;
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PSP Mode

-- PSP mode code

[1,1..n] begin -- assume R = [1..n,1..n]

-- assume row 1 of V is input

[1..n,1]   Vt := V#[Index2,Index1]; -- transp

-- Replicate, compute and collapse

S := +<<[R] (>>[1,]V = >>[,1]Vt); 

count := max<<  S;

mode := max<< ((count = S)*V);

end;

Hints: Reasoning is what counts in (a); in (b) 
use global data reference
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Non-shared Memory

Building shared memory in hardware is difficult, 
and its programming advantages are limited

Leave it out; focus on speed and scaling
• Three machines

– nCUBE, an early hypercube architecture

– CM-5, connection machine’s “ultimately scalable”
– T3D/T3E Cray’s first foray into shared address sp

• Each machine tries to do some aspect of 
communication well
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nCUBE/2  A ‘Classic’ Multiprocessor

• The nCUBE/2 was a hypercube architecture

• Per node channel capacity grows as log2 P

0 Cube0 Cube 1 Cube1 Cube

2 Cube2 Cube 3 Cube3 Cube

4 Cube4 Cube
Each node has a 
d bit address To 
go from d to dd, 
“correct” bits 

Each node has a 
d bit address To 
go from d to dd, 
“correct” bits 
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Schematic of Node

Communication Integrated into PE architecture
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nCUBE/2 Physical Arrangement

• A single card performed all of the operations, 
allowing it to be very economical

• But adding to the system is impossible … 
new boards are needed, and new 
communication -- not so scalable

Memory
Processor 
and Comm

Memory

Memory

Memory

Memory

Memory
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Connection Machine - 5

• Thinking Machines Inc.’s MIMD machine 
[Caution: CM-1 and CM-2 are SIMD]

• Goal: Create an architecture that could scale 
arbitrarily

• Nodes are standard proc/fpu/mem/NIC

• Scaling came in “powers of 2” using fat tree 
• Special hardware performed ‘reductions’
• “Programmed I/O” meant PE was split 

between comp and comm duties
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Schematic

• Channel to MMU narrow

14

CM-5 A “Thinking Machine”

• CM-5 Used a fat tree design

PM PM PM PM PM PM PM PM

To handle more 
traffic at higher 
levels, add more 
channels and 
switching capacity 

To handle more 
traffic at higher 
levels, add more 
channels and 
switching capacity 
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Cray T3D and T3E

Assume a shared address space -- all 
processors see the same addresses, but not 
the contents

• One-sided communication is implemented 
using shmem-get and shmem-put

• Result is a non-coherent shared memory

The T3s are three 
dimensional torus 
topologies, i.e. a 
3D mesh w/wraps

The T3s are three 
dimensional torus 
topologies, i.e. a 
3D mesh w/wraps

16

Cray T3

Conceptualize a pseudo-processor and a 
pseudo-memory
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T3D 

• Shmem-get and -put eliminate synchronization 
for the processor, though communication 
subsystem must
– Asymmetric

• There is a short sequence of instructions to 
initiate a transfer and then ~100 cycles

• A separate network implements global 
synchronization operations like (eureka)
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T3E

• Greater simplification over T3D by using 512 
E-registers for loading/storing

• Gets/Puts instructions move data between 
global addresses and E-registers

• Read/Modify/Write also possible with E-regs
• Loading Data

• Put processor address portion in E-register
• Issue get with a mem-mapped store
• Actual transfer made from remote processor E-register
• Load from E-register gets data

• Twice the speed of T3D
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Moving Data In Parallel Computation
Two views of data motion in parallel computation

– It should be transparent -- shared memory 
• Data movement is complex … simplify by eliminating it
• Analogous mechanisms (VM, paging, caching) have 

proved their worth and show that amortizing costs works  

– It is the programmer’s responsibility to move data to 
wherever it is needed -- message passing

• Data movement is complex ... rely on programmer to do it 
well

• Message passing is universal -- it works on any machine 
while shared memory needs special hardware

Many furious battles have taken place over this issue … 
at the moment message passing is the state-of-the-art 
Many furious battles have taken place over this issue … 
at the moment message passing is the state-of-the-art 
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Message Passing

• Message passing is provided by a machine-
specific library, but there are standard APIs
– MPI -- Message passing interface

– PVM -- Parallel Virtual Machine

• Example operations
• Blocking send … send msg, wait until it is acked 
• Non-blocking send … send msg, continue execution

• Wait_for_ACK … wait for ack of non-blocking send
• Receive … get msg that has arrived

• Programmers insert the library calls in-line in 
C or Fortran programs 
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Message Passing Example
In message passing, there is no abstraction … 

the programmer does everything
• Consider overlapping comm/comp

• When exchanging data in middle of a computation
nb_send(to_right, data1);

much computing;

recv(from_left, loc1);

• The programmer knows that data1 will not be used, and 
so there can be no error in delaying the recv

• … but compilers usually must be 
much more conservative λ

Compiler uses blocking send Compiler uses blocking send 
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Alternative Middle Communication

• A “lighter weight” approach is the one-sided 
communication, shmem

• Two operations are supported --
get(P.loc,mine);  -- read directly from loc of proc. P into mine

put(mine,P.loc,);  -- store mine directly into loc of proc P

• Not shared memory since there is no memory 
coherence -- the programmer is responsible 
for keeping the memory sensible 
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Alternative Implementation

• Message passing is “heavy weight” because it 
needs send, acknowledgement, marshalling

• Using one-sided communication is easy
my_temp := data1;     -- store where neighbor can get it

post(P-1,my_data_ready);  -- say that it’s available

much computing;       -- overlap

wait(P+1,his_data_ready); -- wait if neighbor not ready

get(P+1.his_temp, loc1); -- get it now

• One-sided comm is more efficient because of 
reduced waiting and less network traffic 

Most computers do not implement shmem Most computers do not implement shmem 
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Msg Pass Lowest Common Denominator

• Most programmers write direct message 
passing code

• With explicit message passing statements in code it is 
difficult to adapt to new computer

•

• All compilers targeting large parallel 
machines (except ZPL) use message passing

• Unable to exploit other communication models

Msg passing, shmem, shared are all different conceptions Msg passing, shmem, shared are all different conceptions 

Message passing, shmem, shared 
require different compiler formulation

Message passing, shmem, shared 
require different compiler formulation
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Break
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Compiling ZPL Programs
• ZPL uses a “single program, multiple data” (SPMD) 

view ⇒ compiler produces 1 program
• Logically, ZPL executes 1 statement at a time, but 

processors go at their own rate using “data 
synchronization”

for i := 1 to n do
[1..m,*] Col := >>[ ,k] A; -- Flood kth col of A
[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements
end;

bdcst col; 
bdcst row;
compute;

bdcst col; 
bdcst row;
compute; bdcst col; 

recv row;
compute;

bdcst col; 
recv row;
compute;

recv col; 
recv row;
compute;

recv col; 
recv row;
compute;

recv col; 
bdcst row;
compute;

recv col; 
bdcst row;
compute;
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All Part Of One Code

The SPMD program form requires that both 
‘sides’ of the communication are coded 
together

if my_col(k) then bdcast(A[mylo1..myhi1,k])

else record(Col[mylo1..myhi1. * ]);

if my_row(k) then bdcast(B[k,mylo2..myhi2])

else record(Row[ * ,mylo2..myhi2]);

The actual form of communication is given belowThe actual form of communication is given below
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Compiling ZPL Programs 
• Because ZPL is high level, most optimizations have a 

huge payoff 
• Examples of important optimizations

rightedge := max<< Pts.x;

topedge := max<< Pts.y;

leftedge := min<< Pts.x;

bottomedge := min<< Pts.y;

converts to 1 Ladner/Fischer tree on 4-part data

North := A@N + B@N + C@N;

combines all communication to north (and south) 
neighbors
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What Happens When A Program Runs

• One processor starts, gets the logical arrangement 
from command line, sends it to others and they start

• This differs slightly from machine to machine

• Each processor computes which region it owns
• Each processor sets up its scalars, routing tables and 

data arrays ... 
Fluff -- the temporary 
storage used to hold  
values transmitted for 
@-communication --
it is inline to make 
indexing transparent 

Fluff -- the temporary 
storage used to hold  
values transmitted for 
@-communication --
it is inline to make 
indexing transparent Flood arrays --

minimum allocation 
Flood arrays --
minimum allocation 
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There are lots of different machines

• Programmers will generate code for different 
code for different machines

• Shared memory
• Message Passing
• Shmem

• What should a compiler do???
• Begin with some examples
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Example -- shared memory
B := A@east ...;

• In the shared memory model each processor 
writes directly into the portion of B that it 
‘owns,’ referencing elements of A as needed

• No explicit ‘fluff’ regions, but synch needed
barrier_synch(); -- proceed when all here

for (i=mylo1_B;i<myhi1_B;i++){

for (j=mylo2_B;j<myhi2_B;j++){

B[i][j]=A[i][j+1];

}

}

32

Example -- message passing

B := A@east ...;

• Move edge elements of A, then local copy to B

• Message passing …
• Marshall the elements into a message

• Send, Receive, and Demarshall

Pi memory

Pi memory

Packet to Send to Pi-1

Packet Recv’d from Pi+1
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Example -- one-sided communication
B := A@east ...;

• Move edge elements of A, then local copy to B
• One-sided communication
post(my_data_ready);      -- say it’s available

wait(P+1,his_data_ready); --wait if neighbor ~ ready

get(P+1.my_low1,his_col);--addr of P+1 1st col

for (j=mylo1_B;j<myhi1_B;j++){

get(Pi+1.A[j][his_col],B[j][fluffCol]);

} -- directly fetch items and put in fluff column
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Compilation Challenge for Parallelism

• All of these memory models exist on 
production machines …

• How can a single compiler target all models?
• Worried by this problem, the ZPL designers 

modeled communication by an abstraction 
called Ironman Communication

• Ironman abstracts a CTA communication as a time-
dependent load, store

• Ironman is not biased for/against any comm mechanism

Ironman is designed for 
compilers, not programmers
Ironman is designed for 
compilers, not programmers
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Ironman Communication

• The Ironman abstraction says what is to be 
transferred and when, but not how

• Key idea: 4 procedure calls mark the intervals 
during which communication can occur
DR(A) = destination location ready to receive data [R side]
SR(A) = source data is ready for transfer  [S side]
DN(A) = destination data is now needed   [R side]
SV(A) = source location is volatile (to be overwritten) [S side]

• Bound the interval on the sending (S) and 
receiving (R) sides of the communication and 
let the hardware implement the communication

36

Ironman Example

Placement of the Ironman procedure calls

A := B;
SR(A);
compute
compute
compute

SV(A);
A := C;

C:=…A@…;
DR(A);
compute
compute
compute
DN(A);
D:=…A@…;

Destination location readyDestination location ready

Source data is readySource data is ready

Destination data neededDestination data needed

Source location volatileSource location volatile

Communication occurs 
inside the intervals

Communication occurs 
inside the intervals

A of Pi+1A of Pi
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Ironman Calls

• Every compiled ZPL program uses Ironman 
calls, but they have different implementations

Destination readyDestination ready

Source readySource ready

Destination neededDestination needed

Source volatileSource volatile

nCube

--
cs

end

crecv

--

nCube

--
cs

end

crecv

--

MPI Asych 
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

MPI Asych 
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

Cray 
post_ready

wait_ready
shmem_put
post_done

wait_done

--

Cray 
post_ready

wait_ready
shmem_put
post_done

wait_done

--
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Ironman Advantages

• Ironman neutralizes different communication 
models -- avoiding one-size fits all message 
passing

• Ironman allows the best communication 
model to be used for the platform

• Extensive optimizations are possible by 
moving DR, SR calls earlier, and DN, SV calls 
later … thus reducing wait time and allowing 
processors to drift in time
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Summary
• There are three basic techniques for memory 

reference and communication
• Coherent shared memory w/ transparent communication
• Local memory access with message passing --

everything is left to the programmer
• One-sided communication, a variation on message 

passing in which get and put are used

• Message passing is state-of-the-art for both 
programmers and compilers (except ZPL)

• Ironman is ZPL’s communication abstraction 
that neutralizes differences & enables 
optimizations


