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Announcements

o Recall that you need to turn in a brief 
(paragraph) description ON PAPER of your 
progress on the project this week

o Account information given out after break

Projects should be underway
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Comment on Projects

o As the civil rights song puts it, “Keep your 
eyes on the prize.”
n I want to understand conceptually how you 

used parallelism to solve your problem
n I want to understand how your P1 works
n I want to know how you analyzed P1’s ||ism 

using the CTA model and other classroom 
material to understand its parallel performance

n I want to know what you did in response to 
create P2 and how P2 works

Once that’s done, anything else is gravy … I like gravy

4

ZPL

o ZPL, a research parallel language w/ 3 goals
n Performance == as good as platform-specific 

custom code
n Portability == runs well on all platforms
n Convenience == clean, easy-to-understand 

programs; no parallel grunge

o Developed at UW by 6 really smart grad 
students: Brad Chamberlain, Sung-Eun 
Choi, Steve Deitz, E Chris Lewis, Calvin Lin, 
Derrick Weathersby
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ZPL Is Important To Us

o ZPL is our representative high-level parallel 
language … few competitors because achieving 
those goals is tough

o To realize a solution …
n ZPL is designed and built on the CTA
n ZPL is the first high-level language to achieve

“performance portability”
n ZPL presents programmers with a visually- cued 

performance model: WYSIWYG
n ZPL is insensitive to shared or message passing 

architectures, making it universal

ZPL is “designed from first principles”

6

Today’s Plan

o Example programs with discussion of 
principles

o Key language features

o Review of pgmming w/ performance model
o WYSIWYG performance model

n Reflect on Life
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Conway’s Game of Life

o Life: organisms w/2,3 neighbors live, birth occurs w/ 
3 neighbors; death otherwise; world is a torus

o Organism in next generation if position is alive in 
this generation and has 2 neighbors, or in this 
generation it has 3 neighbors 

o Or: (thisGen && neighbors== 2) || (neighbors==3)

See Life As An Array Computation 

8

Compute Over Whole Arrays

o Count neighbors by adding organisms (bits)

o Closer look at World@^NW

Edges wrap around �

:= + + + + + + +

TW@^nwis the array of Northwest neighbors 
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Express Array Computation in ZPL

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE
+ TW@^W +                    TW@^E
+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);
until ! (|<< TW);

Add up 
neighbor bits

Add up 
neighbor bits

Apply rules 
to live by

Apply rules 
to live by

“Or” bits in world 
to see if any alive

“Or” bits in world 
to see if any alive

:= + + + + + + +

10

Life In ZPL
program Life; Conway's Life
config const n : integer = 10; The world is n × n; default to 10
region R = [1..n, 1..n]; Index set of computation
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w  = [ 0, -1];               e  = [ 0, 1];
sw = [ 1, -1]; so = [ 1, 0]; se = [ 1, 1];

var TW : [R] boolean;  Problem state, The World
NN : [R] sbyte;   Work array, Number of Neighbors

procedure Life(); Entry point procedure
begin -- Initialize the world I/O or other data specification
[R] repeat Region R ==> apply ops to all indices

NN := TW@^nw+ TW@^no + TW@^ne Add 8 nearest neighbor bits (type
+ TW@^w  +          TW@^e   coercion like C); carat(^) means
+ TW@^sw + TW@^so + TW@^se; toroidal neighbor reference

TW := (TW & NN = 2) | (NN = 3); Update world with next generation
until !(|<< TW); Continue till all die out

end;
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Life In ZPL -- The Detail
program Life;
config const n : integer = 10;
region R = [1..n, 1..n];
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w  = [ 0, -1];               e  = [ 0, 1];
sw = [ 1, -1]; so = [ 1, 0]; se = [ 1, 1];

var TW : [R] boolean;  
NN : [R] sbyte;   

procedure Life();
begin -- Initialize the world
[R] repeat

NN := TW@^nw + TW@^no + TW@^ne
+ TW@^w  +          TW@^e
+ TW@^sw + TW@^so + TW@^se;

TW := (TW & NN = 2) | (NN = 3);
until !(|<< TW);

end;

Topics
“Typical” Form
Regions 
Directions 
Config Vars 
Reduce

Topics
“Typical” Form
Regions 
Directions 
Config Vars 
Reduce

12

Regions, A Key ZPL Idea

o Regions are index sets … not arrays
o Any number of dimensions, any bounds

region V = [1..n];
region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];
region Left = [1..m, 1];
region Odds = [1..n by 2];

o Short names are preferred--regions are used 
everywhere--and capitalization is a coding 
convention

o Naming regions is recommended, but literals are 
OK 
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Using Regions to Declare Arrays  

o Regions are used to declare arrays … it’s like 
adding data to the indices

o Capitals are used by convention to separate 
arrays from scalars

o Named or literal regions are OK
var A, B, C : [R] double;
var Seq : [V] boolean;
var Huge : [0..2^n, -5..5] float;

o Regions are used once; no array has more than 
one region component

o Regions are a source of parallelism…

14

Regions Control Computation

o Statements containing arrays need a region to 
specify which items participate

[1..n,1..n] A := B + C;
[R] A := B + C; -- Same as above

o Regions are scoped 
o [R] begin All array computations in compound 

… statements are performed over indices
[Left] … in [R], except statement prefixed by 

end; [Left]

o Operations over region elements performed in 
parallel



8

15

Parallelism In Statement Evaluation

o Let A, B be arrays over [1..n,1..n], and C be an 
array over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

o Then
[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

[2..n-1,2] A := B;

:=

:= +

:=

16

@ Uses Regions & Directions
The @ operator combines regions with directions to 

allow references to neighbors
o Two forms, standard(@) and wrapping(@^)

n Syntax:  A@east     A@^east

o Semantics: the direction is added to elements of 
region giving new region, whose elements are 
referenced; think of a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap 
around

o @-modified variables can appear on l or r of :=

:=
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Parallelism In Statement Evaluation
o Let 

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;
direction east = [0,1]; ne = [-1,1];

o Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

[2..n-1,2] A@east := B;
:=

:=

:= +

18

Reductions, Global Combining 
Operations

o Reduction (<<) “reduces” the size of an array by 
combining its elements

o Associative (and commutative) operations are 
+<<, *<<, &<<, |<<, max<<, min<<

[1..n, 1..n] biggest := max<<A;
[R] all_false := |<< TW;

o All elements participate; order of evaluation is 
unspecified … caution floating point users

o ZPL also has partial reductions, scans, partial 
scans, and user defined reductions and scans



10

19

Operations On Regions 
o The importance of regions motivates region operators 
o Prepositions: at, of, in, with, by … take region and 

direction and produce a new region
o at translates the region’s index set in the direction
o of defines a new region adjacent to the given region 

along direction edge and of direction extent
region R = [1..8,1..8];

C = [2..7,2..7];
var X, Y : [R] byte;

region R = [1..8,1..8];
C = [2..7,2..7];

var X, Y : [R] byte;

direction e = [ 0,1];
n = [-1,0];

ne = [-1,1];

direction e = [ 0,1];
n = [-1,0];

ne = [-1,1];

[n of C]Y:= [n of C]Y:= [C]Y:=X@ne [C]Y:=X@ne [R]X:= [R]X:= [C]X:= [C]X:= [C at e]Y:= [C at e]Y:= 

execution

20

Applying Ideas: Jacobi Iteration
o Model heat defusing through a plate
o Represent as array of floating point 

numbers
o Use a 4-point stencil to model defusing
o Main steps when thinking globally

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

High-level Language should match high-level  thinking
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“High Level” Logic Of J-Iteration
program Jacobi;
config var n : integer = 512;

eps : float = 0.00001;
region     R = [1..n, 1..n]; 

BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];

E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;

A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin

[BigR] A := 0.0;
[S of R] A := 1.0;

repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err  := max<< abs(Temp - A);
A    := Temp;

until err < eps;

end;

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

22

Reduce

o ZPL has ‘full’ reduce: +<<, *<<, max<<, …
o ZPL also has ‘partial’ reduce

n Applies reduce across rows, down columns,…
n Requires two regions:

o One region on statement, as usual
o One region between operator and operand
[1..n,1] B := +<< [1..n,1..n] A; -- add across rows
[1,1..n] C := min<<[1..n,1..n] A; -- min down columns

n In these examples, result stored in 1st row/col

Collapsed dimensions indicate reduce dimension(s)
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Flood -- Inverse of Partial Reduce

o Reduce “reduces” 1 or more dimensions
o Opposite is flood -- fill 1 or more dimensions

[1..n,1..n] B := >> [1..n, 1] A;

[1..n,1..n] B := >> [1..n, n] A;

o The replication uses multicast, often an 
efficient operation

:=

:=

24

Closer Look At Scaling Each Row
[1..m,1] MaxC := max<<[1..m,1..n] A; Max of each row

[1..m,1..n]    A := A / >>[1..m,1] MaxC; Scale each row

o Flooding distributes values (efficiently) so that 
the computation is element-wise … lowers 
communication 

2  4  4  2
0  2  3  6
3  3  3  3
8  2  4  0

A

4 
6
3
8

MaxC >>[1..m,1] MaxC

4  4  4  4
6  6  3  6
3  3  3  3
8  8  8  8

Keep MaxC a 2D array to control allocationKeep MaxC a 2D array to control allocation
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Flood Regions and Arrays

Flood dimensions recognize that specifying a 
particular column over specifies the situation

Need a generic column -- or a column that does 
not have a specific position … use ‘*’ as value

region FlCol = [1..m, *];  -- Flood regions

FlRow = [*, 1..n];

var    MaxC : [FlCol] double; --An m length col

Row : [FlRow] double; --An n length row

[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better
max

......
Think of column 
in every position

Think of column 
in every position

26

Flood arrays (continued)

Since flood arrays have some unspecified 
dimensions, they can be “promoted” in 
those dimensions, i.e logically replicated

o Scaling a value by max of row w/o flooding:

[1..m,*] MaxC := max<< [1..m,1..n] A;

[1..m,1..n]      A := A / MaxC;     --Scale A;

The promotion of flooded arrays is only logicalThe promotion of flooded arrays is only logical
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Flood v. Singleton Difference
o Lower dimensional arrays can specify a 

singleton or a flood … it affects allocation
Region [1..n,1..n] allocated 
to 4 processors
Region [1..n,1..n] allocated 
to 4 processors

Regions [1..n,1] and [n,1..n]
allocated to 4 processors
Regions [1..n,1] and [n,1..n]
allocated to 4 processors

Regions [1..n,*] and [*,1..n]
allocated to 4 processors
Regions [1..n,*] and [*,1..n]
allocated to 4 processors

28

SUMMA Algorithm
For each col-row in the common dimension, flood the 

item and combine it...
var   A:[1..m, 1..n] double;

B:[1..n, 1..p] double;

C:[1..m, 1..p] double;

Col:[ 1..m,*]    double;

Row: [*, 1..p] double;

...

[1..m,1..p] C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end; ;

Inherit the 
prevailing 
dimension

Inherit the 
prevailing 
dimension
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c11 c12 c13  a11 a12 a13 a14 b11 b12 b13

c21 c22 c23  a21 a22 a23 a24 b21 b22 b23

c31 c32 c33  a31 a32 a33 a34 b31 b32 b33

c41 c42 c43  a41 a42 a43 a44 b41 b42 b43

SUMMA, The First Step

a11 a11 a11
a21 a21 a21
a31 a31 a31
a41 a41 a41

b11 b12 b13
b11 b12 b13
b11 b12 b13
b11 b12 b13

a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13
a41b11 a41b12 a41b13

××××

Col Row C

SUMMA is the easiest MM 
algorithm to program in ZPL
SUMMA is the easiest MM 
algorithm to program in ZPL

=

30

SUMMA Algorithm (continued)
For each col-row in the common dimension, flood the 

item and combine it...
[1..m,1..p] C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;

--- or, more simply ---
for k := 1 to n do

[1..m,1..p]  C += (>>[ ,k] A)*(>>[k, ] B);

end;
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Still Another MM Algorithm
If flooding is so good for columns/rows, why not use 

it for whole planes?
region IK = [1..n,*,1..n];

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IJ]  A2 := >>A#[Index1, Index2]; 

[JK]  B2 := >>B#[Index2, Index3];

[IK]   C := +<<[IJK](A2*B2);

Input

A2

B2

C

32

Partial Scan
o Partial scans are possible too, but unlike 

reduction they do not reduce 
dimensionality, so the compiler cannot tell 
which dimension to reduce … so specify

+||[2]A is a partial scan in the 2nd dimension

1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1

1   2   3   4
1   2   3   4
1   2   3   4
1   2   3 4

����+||[2]
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Recalling Reduce, Scan & Flood

o The operators for reduce, scan and flood 
are suggestive …

o Reduce << produces a result of smaller size

o Scan || produces a result of the same size

o Flood >> produces a result of greater size

⇐

⇐

⇐

34

Index1 ...
o ZPL comes with “constant arrays” of any size
o Indexi means indices of the ith dimension
[1..n,1..n]begin

Z := Index1; -- fill with first index

P := Index2; -- fill with second index

L := Z=P; -- define identity array

end;

Indexi arrays: compiler created using no space
1  1  1  1
2  2  2  2
3  3  3  3
4  4  4  4

1  2  3  4
1  2  3  4
1  2  3  4
1  2  3  4

Index1 Index2

1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

L
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Remap
The remap operator (#) implements general data 

motion, including rank change
o Two cases: 

Gather, A := B#[C1,C2];
Scatter, A#[C1,C2] := B;

o For r rank array, provide r rank r arrays giving 
indices to be referenced

o Transpose: AT[i,j] = A[j,i]
[R] AT := A#[Index2,Index1]; -- Standard Idiom for transpose

36

Remap (Gather)
The index array in the ith position gives the 

indices for the ith dimension
[R] AT := A#[Index2,Index1]; -- Idiom for transpose

1  1  1  1
2  2  2  2
3  3  3  3
4  4  4  4

1  2  3  4
1  2  3  4
1  2  3  4
1  2  3  4

Index2 Index1

a b c d
e f g h
i j k l
m n o p

A

a e i m
b f j n
c g k o
d h l p

:= # ,

AT

Gather: For a position, where does value come fromGather: For a position, where does value come from

a c e b d f ⇔⇔⇔⇔ a b c d e f#[1 3 5 2 4 6]a c e b d f ⇔⇔⇔⇔ a b c d e f #[ 1 3 5 2 4 6 ]
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Remap (Scatter)
o Scatter Remap has potential problem in that values 

can map to the same place … order is unspecified 
… use +=, etc. if not unique

[R] AT#[Index2,Index1] := A; -- Idiom for transpose

1  1  1  1
2  2  2  2
3  3  3  3
4  4  4  4

1  2  3  4
1  2  3  4
1  2  3  4
1  2  3  4

Index2 Index1

a b c d
e f g h
i j k l
m n o p

A

a e i m
b f j n
c g k o
d h l p

:=# ,

AT

Scatter: For a value, where does it go?Scatter: For a value, where does it go?

a d b e c f #[1 3 5 2 4 6] ⇔⇔⇔⇔ a b c d e fa d b e c f #[ 1 3 5 2 4 6 ] ⇔⇔⇔⇔ a b c d e f

38

Break
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CTA and ZPL
o ZPL was built on the CTA

n Semantics of operation customized to CTA
n Compiler targets CTA machines
n Performance model reflects the costs of CTA

o The benefit of building on the CTA:
n Programming constraints are realistic, scalable
n Programs are portable with performance
n Programmers can reliably estimate performance 

and observe it (or better) on every platform 

Building on CTA is a main contribution of ZPL 

40

Knowing Performance of Programs

o Recall that in the sequential case, writing in a 
performance-sensitive language (C), the RAM 
model describes how the program will run

o Writing in ZPL, the CTA model describes how the 
program will run
n Programmer needs to know the CTA
n Language constructs’ performance must be described 

in CTA terms
n Information must “compose”

o In CSE524 we’ve always explained performance 
this way
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Assumes Many Pts Per Processor

ZPL allocates regions (and therefore arrays) to 
processors so many contiguous elements are 
assigned to each to exploit locality

o Array Allocation Rules
n Union the regions together to compute the bounding 

region
n Get processor number and arrangement from the 

command line
n Allocate the bounding region to the processors

Let’s walk-through the process

42

Union The Regions Together
Create the “footprint” of the regions by aligning 

indices

Technical point: Only interacting regions are 
“unioned,” e.g. if region R is used to declare an 
array which is manipulated in the scope of 
region S, R and S are said to interact

=

Bounding 
2D Region

Bounding 
2D Region

The bounding region is allocated to processors

i,ji,j
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Get Processor Num + Arrangement

The number and arrangement of processors is 
given by the programmer on the command line 
[or programmed; more later]

o For the purpose of [understanding] allocation, 
processors are viewed as being arranged in 
grids … this is simply an abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7
P2

P1

P3

P0

The CTA does not 
favor any 
arrangement, so 
use a generic one

The CTA does not 
favor any 
arrangement, so 
use a generic one

44

Allocate Bounding Region to Grid

The bounding region is allocated to processor grid 
in the “most balanced” way possible

o Regions inherit their position from their position in the 
bounding region

o Array elements inherit their positions from their 
index’s position in the region, and hence their 
allocation

����

P0
P0 P1

P1

P3
P3P2

P2
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More Typical Allocations

o 1D is segmented; 
o 2D is panels, strips or blocks; 

o 3D ...

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

ZPL uses Ceiling/Floor and includes fluff

46

Fundamental Fact of ZPL

Such allocations are mostly standard, but one fact 
makes ZPL performance clear:

ZPL has the property that for any arrays A, B of the 
same rank and having an element [i, …, k] , that 
element of each will be stored on the same processor

Corollary:  Element-wise operations do not require any 
communication: [R] … A+B …

=
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Performance Model (WYSIWYG)

To state how ZPL performs operations, each 
operator’s work and communication needs are 
given … producing a performance model
n Performance is given in terms of the CTA
n Performance is relative, e.g. x is more expensive in 

communication than y

o Rules…
A + B -- Element-wise array operations

o No communication
o Per processor work is comparable to C
o Work fully parallelizable, i.e. time = work/P

48

Rules Of Operation (continued)
B+A@^east -- @ references including @^

Arrays allocated with “fluff” for every direction used

o Nearest neighbor point-to-point communication of edge 
elements, i.e. small communication, little congestion

o Edge communication benefits from surface-to-volume 
advantage: an n increase in elements, adds √n comm 
load

o Local data motion, possibly

P2P1 P3P0
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<< || >>
+<<A -- Reduce

o Accumulate local elements
o O(log P) tree accumulation, or better
o Broadcast, which is worst case O(log P), but usu. less

+||A -- Scan
o Accumulate local elements
o Ladner/Fischer O(log P) tree parallel prefix logic
o Update of local elements

>>[1..n,k]A -- Flood
o Multicast array segments, O(log P) w.c.
o Represent data “non-redundantly”

50

Rules of Operation (continued)
A#[I1, I2] -- Remap, both gather and scatter

o (Potential) all-to-all processors communication to 
distribute routing information implied by I1 , I2

o (Potential) all-to-all processors communication to 
route the elements of A

o Heavily optimized, esp. to save first all-to-all

o Full information online in Chapter 8 of ZPL 
Programmer’s Guide or in dissertations

o “What you see is what you get” performance 
model … large performance features visible

ZPL is only parallel language with performance mode l 
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Applying WYSIWYG In Real Life...
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

BigR = [0..n+1,0..n+1];
direction  N = [-1, 0]; NE = [-1, 1]; 

E = [ 0, 1]; SE = [ 1, 1];
S = [ 1, 0]; SW = [ 1,-1];
W = [ 0,-1]; NW = [-1,-1];

var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make data
repeat

NN := (TW@N + TW@NE + TW@E + TW@SE 
+ TW@S + TW@SW + TW@W + TW@NW);

TW := (NN=2 & TW) | NN=3;
until !|<<TW;

end;

Code for performance costs implied by WYSIWYG

52

Analyzing Life By Color

Blue: Effectively no time … each processor does 
set-up and scalar computation locally
Pink: Element-wise computation perfectly parallel 
… Index i constants are generated

How is TW allocated on 4 procs?  Three basic choices...

Delay is c λλλλDelay is c λλλλ
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Analyzing By Color (continued)
Purple:  Element-wise computation with 
@ operations … expect λλλλ delay for @ (all 
at once if synch’ed) and then full parallel 
speed-up for local operations
Red: Reduce uses Ladner/Fischer parallel 
prefix, with local combining and log(P) 
tree to communicate … potentially the 
most complex operation in Life

Knowing the relative costs of the program allows us  
to optimize it for some purpose … count generations 

54

How Many Generations?
o Compute count of generations before life dies out

program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1]; 

W = [ 0,-1];               E = [ 0, 1]; 
SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat           

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

Add a counter to previous programAdd a counter to previous program
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How Many Generations?
Testing on each generation my be excessive -- analyze

program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1]; 

W = [ 0,-1];               E = [ 0, 1]; 
SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat           

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;
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Optimize To Reduce End Tests 
config var n : integer = 512; epoch : integer = 50;
...
var NN:[R] ubyte; TW, TWo:[R] boolean; count:integer = 0;
procedure Live(integer:gens);

begin var i : integer;
for i := 1 to gens do

NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 
+ TW@^S + TW@^SW + TW@^W + TW@^NW);

TW := (NN=2 & TW) | NN=3;
end;

end;
procedure Life();

[R] begin read(TW); 
while |<<TW do 

TWo:=TW; Live(epoch); count += epoch;
end;
count -= epoch; TW := TWo; -- Roll back
repeat

Live(1); count += 1;
until ! |<<TW;
writeln(count, " generations");

end;

Analyze Costs Analyze Costs 

Do Epochs

Recover State

Redo World End

Report
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Optimizations Can Help

o WYSIWYG is the worst case … optimizations are 
possible …

o Sequential Optimizations e.g. stencil opts

Sum of orange items performed once

o Parallel Optimizations e.g. communication motion --
prefetching to overlap communication with 
computation

7 additions are 
used for each 
element, but fewer 
adds are sufficient

7 additions are 
used for each 
element, but fewer 
adds are sufficient

���� ����
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Guarantees
ZPL uses a different approach to performance than 

other parallel languages
o Historically, performance came from compiler 

optimizations that might/might not fire …
o WYSIWYG guarantees (it’s a contract) that ZPL 

programs will work a certain way …
n It may be better … WYSIWYG is a worst case that 

often doesn’t materialize
n Aggressive optimizations help a lot

If there are any surprises, they’ll be pleasantIf there are any surprises, they’ll be pleasant
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Summarizing WYSIWYG Model
o Data and processing allocations are given

o All constructs of the language are explained in 
terms of the allocations and the CTA

o Result: relative, worst-case statement of how 
the computation runs anywhere … rely on it 

o Optimizations can improve on the times, but if 
they don’t fire, nothing is lost 

The best use of the WYSIWYG model is to 
make comparative programming decisions

The best use of the WYSIWYG model is to 
make comparative programming decisions
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Bottom Line for ZPL In 524

o The reason we’re learning ZPL is because 
it illustrates how a parallel programming 
language can give access to the CTA 
machine model, allowing programmers to 
write intelligent parallel programs

o You want your programming language to 
have that property, too!

o If it doesn’t, dump it and use a library that
lets you apply the CTA model yourself 
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Homework

o No Textbook Reading For Next Week
o Project

n Bring paper statement of progress to class


