
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

15 May 2007

2

Announcements

o Recall that you need to turn in a brief
(paragraph) description ON PAPER of your
progress on the project this week

o Account information given out after break

Projects should be underway

2

3

Comment on Projects

o As the civil rights song puts it, “Keep your
eyes on the prize.”
n I want to understand conceptually how you

used parallelism to solve your problem
n I want to understand how your P1 works
n I want to know how you analyzed P1’s ||ism

using the CTA model and other classroom
material to understand its parallel performance

n I want to know what you did in response to
create P2 and how P2 works

Once that’s done, anything else is gravy … I like gravy

4

ZPL

o ZPL, a research parallel language w/ 3 goals
n Performance == as good as platform-specific

custom code
n Portability == runs well on all platforms
n Convenience == clean, easy-to-understand

programs; no parallel grunge

o Developed at UW by 6 really smart grad
students: Brad Chamberlain, Sung-Eun
Choi, Steve Deitz, E Chris Lewis, Calvin Lin,
Derrick Weathersby

3

5

ZPL Is Important To Us

o ZPL is our representative high-level parallel
language … few competitors because achieving
those goals is tough

o To realize a solution …
n ZPL is designed and built on the CTA
n ZPL is the first high-level language to achieve

“performance portability”
n ZPL presents programmers with a visually- cued

performance model: WYSIWYG
n ZPL is insensitive to shared or message passing

architectures, making it universal

ZPL is “designed from first principles”

6

Today’s Plan

o Example programs with discussion of
principles

o Key language features

o Review of pgmming w/ performance model
o WYSIWYG performance model

n Reflect on Life

4

7

Conway’s Game of Life

o Life: organisms w/2,3 neighbors live, birth occurs w/
3 neighbors; death otherwise; world is a torus

o Organism in next generation if position is alive in
this generation and has 2 neighbors, or in this
generation it has 3 neighbors

o Or: (thisGen && neighbors== 2) || (neighbors==3)

See Life As An Array Computation

8

Compute Over Whole Arrays

o Count neighbors by adding organisms (bits)

o Closer look at World@^NW

Edges wrap around �

:= + + + + + + +

TW@^nwis the array of Northwest neighbors

5

9

Express Array Computation in ZPL

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE
+ TW@^W + TW@^E
+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);
until ! (|<< TW);

Add up
neighbor bits

Add up
neighbor bits

Apply rules
to live by

Apply rules
to live by

“Or” bits in world
to see if any alive

“Or” bits in world
to see if any alive

:= + + + + + + +

10

Life In ZPL
program Life; Conway's Life
config const n : integer = 10; The world is n × n; default to 10
region R = [1..n, 1..n]; Index set of computation
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w = [0, -1]; e = [0, 1];
sw = [1, -1]; so = [1, 0]; se = [1, 1];

var TW : [R] boolean; Problem state, The World
NN : [R] sbyte; Work array, Number of Neighbors

procedure Life(); Entry point procedure
begin -- Initialize the world I/O or other data specification
[R] repeat Region R ==> apply ops to all indices

NN := TW@^nw+ TW@^no + TW@^ne Add 8 nearest neighbor bits (type
+ TW@^w + TW@^e coercion like C); carat(^) means
+ TW@^sw + TW@^so + TW@^se; toroidal neighbor reference

TW := (TW & NN = 2) | (NN = 3); Update world with next generation
until !(|<< TW); Continue till all die out

end;

6

11

Life In ZPL -- The Detail
program Life;
config const n : integer = 10;
region R = [1..n, 1..n];
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w = [0, -1]; e = [0, 1];
sw = [1, -1]; so = [1, 0]; se = [1, 1];

var TW : [R] boolean;
NN : [R] sbyte;

procedure Life();
begin -- Initialize the world
[R] repeat

NN := TW@^nw + TW@^no + TW@^ne
+ TW@^w + TW@^e
+ TW@^sw + TW@^so + TW@^se;

TW := (TW & NN = 2) | (NN = 3);
until !(|<< TW);

end;

Topics
“Typical” Form
Regions
Directions
Config Vars
Reduce

Topics
“Typical” Form
Regions
Directions
Config Vars
Reduce

12

Regions, A Key ZPL Idea

o Regions are index sets … not arrays
o Any number of dimensions, any bounds

region V = [1..n];
region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];
region Left = [1..m, 1];
region Odds = [1..n by 2];

o Short names are preferred--regions are used
everywhere--and capitalization is a coding
convention

o Naming regions is recommended, but literals are
OK

7

13

Using Regions to Declare Arrays

o Regions are used to declare arrays … it’s like
adding data to the indices

o Capitals are used by convention to separate
arrays from scalars

o Named or literal regions are OK
var A, B, C : [R] double;
var Seq : [V] boolean;
var Huge : [0..2^n, -5..5] float;

o Regions are used once; no array has more than
one region component

o Regions are a source of parallelism…

14

Regions Control Computation

o Statements containing arrays need a region to
specify which items participate

[1..n,1..n] A := B + C;
[R] A := B + C; -- Same as above

o Regions are scoped
o [R] begin All array computations in compound

… statements are performed over indices
[Left] … in [R], except statement prefixed by

end; [Left]

o Operations over region elements performed in
parallel

8

15

Parallelism In Statement Evaluation

o Let A, B be arrays over [1..n,1..n], and C be an
array over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

o Then
[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

[2..n-1,2] A := B;

:=

:= +

:=

16

@ Uses Regions & Directions
The @ operator combines regions with directions to

allow references to neighbors
o Two forms, standard(@) and wrapping(@^)

n Syntax: A@east A@^east

o Semantics: the direction is added to elements of
region giving new region, whose elements are
referenced; think of a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap
around

o @-modified variables can appear on l or r of :=

:=

9

17

Parallelism In Statement Evaluation
o Let

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;
direction east = [0,1]; ne = [-1,1];

o Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

[2..n-1,2] A@east := B;
:=

:=

:= +

18

Reductions, Global Combining
Operations

o Reduction (<<) “reduces” the size of an array by
combining its elements

o Associative (and commutative) operations are
+<<, *<<, &<<, |<<, max<<, min<<

[1..n, 1..n] biggest := max<<A;
[R] all_false := |<< TW;

o All elements participate; order of evaluation is
unspecified … caution floating point users

o ZPL also has partial reductions, scans, partial
scans, and user defined reductions and scans

10

19

Operations On Regions
o The importance of regions motivates region operators
o Prepositions: at, of, in, with, by … take region and

direction and produce a new region
o at translates the region’s index set in the direction
o of defines a new region adjacent to the given region

along direction edge and of direction extent
region R = [1..8,1..8];

C = [2..7,2..7];
var X, Y : [R] byte;

region R = [1..8,1..8];
C = [2..7,2..7];

var X, Y : [R] byte;

direction e = [0,1];
n = [-1,0];

ne = [-1,1];

direction e = [0,1];
n = [-1,0];

ne = [-1,1];

[n of C]Y:= [n of C]Y:= [C]Y:=X@ne [C]Y:=X@ne [R]X:= [R]X:= [C]X:= [C]X:= [C at e]Y:= [C at e]Y:=

execution

20

Applying Ideas: Jacobi Iteration
o Model heat defusing through a plate
o Represent as array of floating point

numbers
o Use a 4-point stencil to model defusing
o Main steps when thinking globally

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

High-level Language should match high-level thinking

11

21

“High Level” Logic Of J-Iteration
program Jacobi;
config var n : integer = 512;

eps : float = 0.00001;
region R = [1..n, 1..n];

BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];

E = [0, 1]; W = [0,-1];
var Temp : [R] float;

A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin

[BigR] A := 0.0;
[S of R] A := 1.0;

repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err := max<< abs(Temp - A);
A := Temp;

until err < eps;

end;

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

22

Reduce

o ZPL has ‘full’ reduce: +<<, *<<, max<<, …
o ZPL also has ‘partial’ reduce

n Applies reduce across rows, down columns,…
n Requires two regions:

o One region on statement, as usual
o One region between operator and operand
[1..n,1] B := +<< [1..n,1..n] A; -- add across rows
[1,1..n] C := min<<[1..n,1..n] A; -- min down columns

n In these examples, result stored in 1st row/col

Collapsed dimensions indicate reduce dimension(s)

12

23

Flood -- Inverse of Partial Reduce

o Reduce “reduces” 1 or more dimensions
o Opposite is flood -- fill 1 or more dimensions

[1..n,1..n] B := >> [1..n, 1] A;

[1..n,1..n] B := >> [1..n, n] A;

o The replication uses multicast, often an
efficient operation

:=

:=

24

Closer Look At Scaling Each Row
[1..m,1] MaxC := max<<[1..m,1..n] A; Max of each row

[1..m,1..n] A := A / >>[1..m,1] MaxC; Scale each row

o Flooding distributes values (efficiently) so that
the computation is element-wise … lowers
communication

2 4 4 2
0 2 3 6
3 3 3 3
8 2 4 0

A

4
6
3
8

MaxC >>[1..m,1] MaxC

4 4 4 4
6 6 3 6
3 3 3 3
8 8 8 8

Keep MaxC a 2D array to control allocationKeep MaxC a 2D array to control allocation

13

25

Flood Regions and Arrays

Flood dimensions recognize that specifying a
particular column over specifies the situation

Need a generic column -- or a column that does
not have a specific position … use ‘*’ as value

region FlCol = [1..m, *]; -- Flood regions

FlRow = [*, 1..n];

var MaxC : [FlCol] double; --An m length col

Row : [FlRow] double; --An n length row

[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better
max

......
Think of column
in every position

Think of column
in every position

26

Flood arrays (continued)

Since flood arrays have some unspecified
dimensions, they can be “promoted” in
those dimensions, i.e logically replicated

o Scaling a value by max of row w/o flooding:

[1..m,*] MaxC := max<< [1..m,1..n] A;

[1..m,1..n] A := A / MaxC; --Scale A;

The promotion of flooded arrays is only logicalThe promotion of flooded arrays is only logical

14

27

Flood v. Singleton Difference
o Lower dimensional arrays can specify a

singleton or a flood … it affects allocation
Region [1..n,1..n] allocated
to 4 processors
Region [1..n,1..n] allocated
to 4 processors

Regions [1..n,1] and [n,1..n]
allocated to 4 processors
Regions [1..n,1] and [n,1..n]
allocated to 4 processors

Regions [1..n,*] and [*,1..n]
allocated to 4 processors
Regions [1..n,*] and [*,1..n]
allocated to 4 processors

28

SUMMA Algorithm
For each col-row in the common dimension, flood the

item and combine it...
var A:[1..m, 1..n] double;

B:[1..n, 1..p] double;

C:[1..m, 1..p] double;

Col:[1..m,*] double;

Row: [*, 1..p] double;

...

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end; ;

Inherit the
prevailing
dimension

Inherit the
prevailing
dimension

15

29

c11 c12 c13 a11 a12 a13 a14 b11 b12 b13

c21 c22 c23 a21 a22 a23 a24 b21 b22 b23

c31 c32 c33 a31 a32 a33 a34 b31 b32 b33

c41 c42 c43 a41 a42 a43 a44 b41 b42 b43

SUMMA, The First Step

a11 a11 a11
a21 a21 a21
a31 a31 a31
a41 a41 a41

b11 b12 b13
b11 b12 b13
b11 b12 b13
b11 b12 b13

a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13
a41b11 a41b12 a41b13

××××

Col Row C

SUMMA is the easiest MM
algorithm to program in ZPL
SUMMA is the easiest MM
algorithm to program in ZPL

=

30

SUMMA Algorithm (continued)
For each col-row in the common dimension, flood the

item and combine it...
[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;

--- or, more simply ---
for k := 1 to n do

[1..m,1..p] C += (>>[,k] A)*(>>[k,] B);

end;

16

31

Still Another MM Algorithm
If flooding is so good for columns/rows, why not use

it for whole planes?
region IK = [1..n,*,1..n];

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IJ] A2 := >>A#[Index1, Index2];

[JK] B2 := >>B#[Index2, Index3];

[IK] C := +<<[IJK](A2*B2);

Input

A2

B2

C

32

Partial Scan
o Partial scans are possible too, but unlike

reduction they do not reduce
dimensionality, so the compiler cannot tell
which dimension to reduce … so specify

+||[2]A is a partial scan in the 2nd dimension

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

����+||[2]

17

33

Recalling Reduce, Scan & Flood

o The operators for reduce, scan and flood
are suggestive …

o Reduce << produces a result of smaller size

o Scan || produces a result of the same size

o Flood >> produces a result of greater size

⇐

⇐

⇐

34

Index1 ...
o ZPL comes with “constant arrays” of any size
o Indexi means indices of the ith dimension
[1..n,1..n]begin

Z := Index1; -- fill with first index

P := Index2; -- fill with second index

L := Z=P; -- define identity array

end;

Indexi arrays: compiler created using no space
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Index1 Index2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

L

18

35

Remap
The remap operator (#) implements general data

motion, including rank change
o Two cases:

Gather, A := B#[C1,C2];
Scatter, A#[C1,C2] := B;

o For r rank array, provide r rank r arrays giving
indices to be referenced

o Transpose: AT[i,j] = A[j,i]
[R] AT := A#[Index2,Index1]; -- Standard Idiom for transpose

36

Remap (Gather)
The index array in the ith position gives the

indices for the ith dimension
[R] AT := A#[Index2,Index1]; -- Idiom for transpose

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Index2 Index1

a b c d
e f g h
i j k l
m n o p

A

a e i m
b f j n
c g k o
d h l p

:= # ,

AT

Gather: For a position, where does value come fromGather: For a position, where does value come from

a c e b d f ⇔⇔⇔⇔ a b c d e f#[1 3 5 2 4 6]a c e b d f ⇔⇔⇔⇔ a b c d e f #[1 3 5 2 4 6]

19

37

Remap (Scatter)
o Scatter Remap has potential problem in that values

can map to the same place … order is unspecified
… use +=, etc. if not unique

[R] AT#[Index2,Index1] := A; -- Idiom for transpose

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Index2 Index1

a b c d
e f g h
i j k l
m n o p

A

a e i m
b f j n
c g k o
d h l p

:=# ,

AT

Scatter: For a value, where does it go?Scatter: For a value, where does it go?

a d b e c f #[1 3 5 2 4 6] ⇔⇔⇔⇔ a b c d e fa d b e c f #[1 3 5 2 4 6] ⇔⇔⇔⇔ a b c d e f

38

Break

20

39

CTA and ZPL
o ZPL was built on the CTA

n Semantics of operation customized to CTA
n Compiler targets CTA machines
n Performance model reflects the costs of CTA

o The benefit of building on the CTA:
n Programming constraints are realistic, scalable
n Programs are portable with performance
n Programmers can reliably estimate performance

and observe it (or better) on every platform

Building on CTA is a main contribution of ZPL

40

Knowing Performance of Programs

o Recall that in the sequential case, writing in a
performance-sensitive language (C), the RAM
model describes how the program will run

o Writing in ZPL, the CTA model describes how the
program will run
n Programmer needs to know the CTA
n Language constructs’ performance must be described

in CTA terms
n Information must “compose”

o In CSE524 we’ve always explained performance
this way

21

41

Assumes Many Pts Per Processor

ZPL allocates regions (and therefore arrays) to
processors so many contiguous elements are
assigned to each to exploit locality

o Array Allocation Rules
n Union the regions together to compute the bounding

region
n Get processor number and arrangement from the

command line
n Allocate the bounding region to the processors

Let’s walk-through the process

42

Union The Regions Together
Create the “footprint” of the regions by aligning

indices

Technical point: Only interacting regions are
“unioned,” e.g. if region R is used to declare an
array which is manipulated in the scope of
region S, R and S are said to interact

=

Bounding
2D Region

Bounding
2D Region

The bounding region is allocated to processors

i,ji,j

22

43

Get Processor Num + Arrangement

The number and arrangement of processors is
given by the programmer on the command line
[or programmed; more later]

o For the purpose of [understanding] allocation,
processors are viewed as being arranged in
grids … this is simply an abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7
P2

P1

P3

P0

The CTA does not
favor any
arrangement, so
use a generic one

The CTA does not
favor any
arrangement, so
use a generic one

44

Allocate Bounding Region to Grid

The bounding region is allocated to processor grid
in the “most balanced” way possible

o Regions inherit their position from their position in the
bounding region

o Array elements inherit their positions from their
index’s position in the region, and hence their
allocation

����

P0
P0 P1

P1

P3
P3P2

P2

23

45

More Typical Allocations

o 1D is segmented;
o 2D is panels, strips or blocks;

o 3D ...

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

ZPL uses Ceiling/Floor and includes fluff

46

Fundamental Fact of ZPL

Such allocations are mostly standard, but one fact
makes ZPL performance clear:

ZPL has the property that for any arrays A, B of the
same rank and having an element [i, …, k] , that
element of each will be stored on the same processor

Corollary: Element-wise operations do not require any
communication: [R] … A+B …

=

24

47

Performance Model (WYSIWYG)

To state how ZPL performs operations, each
operator’s work and communication needs are
given … producing a performance model
n Performance is given in terms of the CTA
n Performance is relative, e.g. x is more expensive in

communication than y

o Rules…
A + B -- Element-wise array operations

o No communication
o Per processor work is comparable to C
o Work fully parallelizable, i.e. time = work/P

48

Rules Of Operation (continued)
B+A@^east -- @ references including @^

Arrays allocated with “fluff” for every direction used

o Nearest neighbor point-to-point communication of edge
elements, i.e. small communication, little congestion

o Edge communication benefits from surface-to-volume
advantage: an n increase in elements, adds √n comm
load

o Local data motion, possibly

P2P1 P3P0

25

49

<< || >>
+<<A -- Reduce

o Accumulate local elements
o O(log P) tree accumulation, or better
o Broadcast, which is worst case O(log P), but usu. less

+||A -- Scan
o Accumulate local elements
o Ladner/Fischer O(log P) tree parallel prefix logic
o Update of local elements

>>[1..n,k]A -- Flood
o Multicast array segments, O(log P) w.c.
o Represent data “non-redundantly”

50

Rules of Operation (continued)
A#[I1, I2] -- Remap, both gather and scatter

o (Potential) all-to-all processors communication to
distribute routing information implied by I1 , I2

o (Potential) all-to-all processors communication to
route the elements of A

o Heavily optimized, esp. to save first all-to-all

o Full information online in Chapter 8 of ZPL
Programmer’s Guide or in dissertations

o “What you see is what you get” performance
model … large performance features visible

ZPL is only parallel language with performance mode l

26

51

Applying WYSIWYG In Real Life...
program Life;
config var n : integer = 512;
region R = [1..n, 1..n];

BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; NE = [-1, 1];

E = [0, 1]; SE = [1, 1];
S = [1, 0]; SW = [1,-1];
W = [0,-1]; NW = [-1,-1];

var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make data
repeat

NN := (TW@N + TW@NE + TW@E + TW@SE
+ TW@S + TW@SW + TW@W + TW@NW);

TW := (NN=2 & TW) | NN=3;
until !|<<TW;

end;

Code for performance costs implied by WYSIWYG

52

Analyzing Life By Color

Blue: Effectively no time … each processor does
set-up and scalar computation locally
Pink: Element-wise computation perfectly parallel
… Index i constants are generated

How is TW allocated on 4 procs? Three basic choices...

Delay is c λλλλDelay is c λλλλ

27

53

Analyzing By Color (continued)
Purple: Element-wise computation with
@ operations … expect λλλλ delay for @ (all
at once if synch’ed) and then full parallel
speed-up for local operations
Red: Reduce uses Ladner/Fischer parallel
prefix, with local combining and log(P)
tree to communicate … potentially the
most complex operation in Life

Knowing the relative costs of the program allows us
to optimize it for some purpose … count generations

54

How Many Generations?
o Compute count of generations before life dies out

program Life;
config var n : integer = 512;
region R = [1..n, 1..n];
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];

W = [0,-1]; E = [0, 1];
SW = [1,-1]; S = [1, 0]; SE = [1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

Add a counter to previous programAdd a counter to previous program

28

55

How Many Generations?
Testing on each generation my be excessive -- analyze

program Life;
config var n : integer = 512;
region R = [1..n, 1..n];
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];

W = [0,-1]; E = [0, 1];
SW = [1,-1]; S = [1, 0]; SE = [1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

56

Optimize To Reduce End Tests
config var n : integer = 512; epoch : integer = 50;
...
var NN:[R] ubyte; TW, TWo:[R] boolean; count:integer = 0;
procedure Live(integer:gens);

begin var i : integer;
for i := 1 to gens do

NN := (TW@^N + TW@^NE + TW@^E + TW@^SE
+ TW@^S + TW@^SW + TW@^W + TW@^NW);

TW := (NN=2 & TW) | NN=3;
end;

end;
procedure Life();

[R] begin read(TW);
while |<<TW do

TWo:=TW; Live(epoch); count += epoch;
end;
count -= epoch; TW := TWo; -- Roll back
repeat

Live(1); count += 1;
until ! |<<TW;
writeln(count, " generations");

end;

Analyze Costs Analyze Costs

Do Epochs

Recover State

Redo World End

Report

29

57

Optimizations Can Help

o WYSIWYG is the worst case … optimizations are
possible …

o Sequential Optimizations e.g. stencil opts

Sum of orange items performed once

o Parallel Optimizations e.g. communication motion --
prefetching to overlap communication with
computation

7 additions are
used for each
element, but fewer
adds are sufficient

7 additions are
used for each
element, but fewer
adds are sufficient

���� ����

58

Guarantees
ZPL uses a different approach to performance than

other parallel languages
o Historically, performance came from compiler

optimizations that might/might not fire …
o WYSIWYG guarantees (it’s a contract) that ZPL

programs will work a certain way …
n It may be better … WYSIWYG is a worst case that

often doesn’t materialize
n Aggressive optimizations help a lot

If there are any surprises, they’ll be pleasantIf there are any surprises, they’ll be pleasant

30

59

Summarizing WYSIWYG Model
o Data and processing allocations are given

o All constructs of the language are explained in
terms of the allocations and the CTA

o Result: relative, worst-case statement of how
the computation runs anywhere … rely on it

o Optimizations can improve on the times, but if
they don’t fire, nothing is lost

The best use of the WYSIWYG model is to
make comparative programming decisions

The best use of the WYSIWYG model is to
make comparative programming decisions

60

Bottom Line for ZPL In 524

o The reason we’re learning ZPL is because
it illustrates how a parallel programming
language can give access to the CTA
machine model, allowing programmers to
write intelligent parallel programs

o You want your programming language to
have that property, too!

o If it doesn’t, dump it and use a library that
lets you apply the CTA model yourself

31

61

Homework

o No Textbook Reading For Next Week
o Project

n Bring paper statement of progress to class

