CSEP 524: Assignment #3

(due prior to class, Tuesday January 29™)

1) Reading:
a) Threads Cannot Be Implemented as a Library, Hans Boehm, 2005.
b) A Brief Overview of Chapel, Sec 9.3.2, Task Parallel Features (pp. 10-13)
c) Lin & Snyder, remainder of Chapter 6 (pp. 174-200)

Submit 1 question per reading for consideration in class discussions by Monday
evening, 9pm, January 26,

2) Concurrency vs. Parallelism: Using the definitions given in lecture (parallelism
suggests a computation that uses multiple tasks to accelerate a computation, but which
would still be correct if executed with only a single task; concurrency suggests a
computation that inherently uses multiple tasks as part of its algorithm), classify the
following computations as being parallel or concurrent and explain your reasoning in a
sentence or two.

a) Implementing a graphics pipeline using multiple tasks

b) Implementing the divide and conquer steps of Quicksort using multiple tasks
c) Ray tracing using a task per pixel

d) Implementing an event handler (like a GUI) using multiple tasks

e) The Successive Over-relaxation example from Chapter 6

3) Parallel Histogram: A colleague writes the following Chapel code to compute a
histogram from an array using your (bug-free) computeMyBlock() implementation:

config const n = 1000, numBuckets = 10, numTasks=4;
var A: [1l..n] int = .;
var histogram: [O..#numBuckets] int;
coforall tid in O..#numTasks {
const myInds = computeMyBlockPart(l..n, numTasks, tid);
for i in myInds {
const bucketNum = computeBucketNum (i) ;
histogram[bucketNum] += 1;
}
}
var total = 0;
for hv in histogram do
total += hv;
assert(total == n);

Upon executing it s/he is surprised that the program runs to completion but that the
assertion fails. What did s/he do wrong and how would you suggest fixing it?



4) Multiple producer, multiple consumer bounded buffer: Implement a bounded
buffer that may be accessed by any number of consumer tasks and any number of
producer tasks.

Follow these guidelines:
* Your solution must not contain any data races to be correct.
* Your solution must, in principle, be relatively scalable to multiple producers and
consumers. For example, the produce and consume procedures should not be
implemented with a single lock over the entire buffer.

a) Implement the buffer in C+Pthreads. The interface and test code is located in
hw3/BoundedBuffer.h and hw3/BoundedBuffer.c. The README describes how to
build the executable. Head and tail pointers may not be protected with the same
lock.

b) Implement the buffer in Chapel. The interface and test code is located in
hw3/BoundedBuffer.chpl.

c) Basic test code is provided in hw3/BoundedBuffer.c and hw3/BoundedBuffer.chpl.
P producers produce a total of N elements. C consumers keep consuming until they
consume a TERM element.

A working solution:
¢ Always terminates (no deadlock)
* Prints producer and consumer counts that each add up to N.

Include brief test output to show that your program works for a few representative
inputs, such as when C and P differ.

d) Add a timer to the Chapel version and report performance for a fixed N and at
least 8 different combinations of C, P, and capacity.

Notes:
* Debugging may be aided by including assertions that buffer invariants hold at the
start and end of produce() and consume() (as well as elsewhere depending on
your design).

5) Dynamic work distribution: In the embarrassingly parallel study (Assignment 1 & 2),
you wrote functions to statically distribute the work between tasks. When using this
method of distribution, an imbalance of work between tasks, such as in the (ramp,
factorial) case, cannot be corrected.



Devise a scheme (in either C+Pthreads OR Chapel) to dynamically distribute iterations.
The particular approach is up to you. Note that we cannot prescribe an interface since
the arguments and return types will depend on the approach you take; however, the
invocation of the routine should take the following approximate form (in that it will
likely need to call your distribution routine within a loop until no more work remains).

do {
const myInds = dynamicDistribution(..);
for i in myInds do

LATLT
} while (myInds.size > 0);

a) Briefly discuss the scalability of your approach.

b) Write your new program and run it on (ramp, factorial), varying numTasks, and
compare the performance to that of the static distributions from Assignment 1.

c) For one value of numTasks = 8, provide brief output of this program that reports
how many iterations each task executed.



