
Introduction to MPI

Rajeev Thakur
Argonne National Laboratory

(excerpted and condensed by Brad Chamberlain for CSEP524, Winter 2013)

2

The Message-Passing Model
•  A process is (traditionally) a program counter and address space.
•  Processes may have multiple threads (program counters and

associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate address
spaces.

•  Interprocess communication consists of
•  synchronization
•  movement of data from one process’s address space to another’s.

MPI

MPI

3

What is MPI?
•  A message-passing library specification

•  extended message-passing model
•  not a language or compiler specification
•  not a specific implementation or product

•  For parallel computers, clusters, and heterogeneous
networks

•  Full-featured
•  Designed to provide access to advanced parallel hardware

for
•  end users
•  library writers
•  tool developers

4

Where Did MPI Come From?
•  Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were

not portable (or very capable).
•  Early portable systems (PVM, p4, TCGMSG, Chameleon) were mainly

research efforts.
•  Did not address the full spectrum of message-passing issues
•  Lacked vendor support
•  Were not implemented at the most efficient level

•  The MPI Forum organized in 1992 with broad participation by:
•  vendors: IBM, Intel, TMC, SGI, Convex, Meiko
•  portability library writers: PVM, p4
•  users: application scientists and library writers
•  MPI-1 finished in 18 months

5

MPI Implementations
•  MPI is available on all platforms – from laptops to clusters

to the largest supercomputers in the world
•  Currently, two prominent open-source implementations

•  MPICH2 from Argonne
•  www.mcs.anl.gov/mpich2

•  Open MPI
•  www.open-mpi.org

•  Many vendor implementations (many derived from
MPICH2)
•  IBM, Cray, Intel, Microsoft, Myricom, SGI, HP, etc

•  MVAPICH2 from Ohio State Univ. for InfiniBand
•  http://mvapich.cse.ohio-state.edu/

6

MPI Resources
•  The Standard itself:

•  At http://www.mpi-forum.org
•  All MPI official releases. Latest version is MPI 3.0
•  Download pdf versions

•  Online Resources
•  http://www.mcs.anl.gov/mpi

•  pointers to lots of stuff, including other talks and tutorials, a FAQ,
other MPI pages

•  Tutorials: http://www.mcs.anl.gov/mpi/learning.html
•  Google search will give you many more leads

7 7

Applications (Science and Engineering)

•  MPI is widely used used in large scale parallel
applications in science and engineering

•  Atmosphere, Earth, Environment
•  Physics - applied, nuclear, particle, condensed matter,

high pressure, fusion, photonics
•  Bioscience, Biotechnology, Genetics
•  Chemistry, Molecular Sciences
•  Geology, Seismology
•  Mechanical Engineering - from prosthetics to spacecraft
•  Electrical Engineering, Circuit Design, Microelectronics
•  Computer Science, Mathematics

8 8

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology application

Astrophysics application

Transportation & traffic
application

9 9

Weather modeling New materials

Drug discovery

Advanced Graphics

10 10

Reasons for Using MPI

•  Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries.

•  Portability - There is no need to modify your source code when you port
your application to a different platform that supports (and is compliant
with) the MPI standard.

•  Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance.

•  Functionality – Rich set of features
•  Availability - A variety of implementations are available, both vendor and

public domain.

11

Hello World (C)
#include "mpi.h"
#include <stdio.h>

int main(argc, argv)
int argc;
char *argv[];
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}!

12

Some Basic Concepts
•  Processes can be collected into groups.
•  Each message is sent in a context, and must be received in

the same context.
•  A group and context together form a communicator.
•  A process is identified by its rank in the group associated

with a communicator.
•  There is a default communicator whose group contains all

initial processes, called MPI_COMM_WORLD.

Compiling and Running
•  mpicc -o hello hello.c

•  (or mpif77 for Fortran 77, mpif90 for Fortran 90, mpicxx for C++)
•  mpicc etc are scripts provided by the MPI implementation that call the

local compiler (e.g., gcc) with the right include paths and link with the
right libraries

•  mpirun –np 8 hello (or: mpiexec –n 8 hello)
•  Will run 8 processes with the hello executable
•  Further control available to specify location of these processes via a
“hosts” file

13

14

MPI Basic Send/Receive

•  We need to fill in the details in

•  Things that need specifying:
•  How will “data” be described?
•  How will processes be identified?
•  How will the receiver recognize/screen messages?
•  What will it mean for these operations to complete?

Process 0 Process 1

Send(data)
Receive(data)

15

MPI Datatypes
•  The data in a message to be sent or received is described by

a triple (address, count, datatype), where
•  An MPI datatype is recursively defined as:

•  predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE_PRECISION)

•  a contiguous array of MPI datatypes
•  a strided block of datatypes
•  an indexed array of blocks of datatypes
•  an arbitrary structure of datatypes

•  There are MPI functions to construct custom datatypes, such
an array of (int, float) pairs, or a row of a matrix stored
columnwise.

16

MPI Tags
•  Messages are sent with an accompanying user-defined

integer tag, to assist the receiving process in identifying the
message.

•  Messages can be screened at the receiving end by specifying
a specific tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive.

•  Some non-MPI message-passing systems have called tags
“message types”. MPI calls them tags to avoid confusion
with datatypes.

17

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

•  The message buffer is described by (start, count,
datatype).

•  The target process is specified by dest, which is the rank
of the target process in the communicator specified by
comm.

•  When this function returns, the data has been delivered to
the system and the buffer can be reused. The message may
not have been received by the target process.

18

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

•  Waits until a matching (on source and tag) message is

received from the system, and the buffer can be used.
•  source is the rank in communicator specified by comm,

or MPI_ANY_SOURCE.
•  tag is a specific tag to match against or MPI_ANY_TAG
•  status contains further information
•  receiving fewer than count occurrences of datatype is

OK, but receiving more is an error.

(Let’s jump back to 3-pt stencil)

20

Status Object

•  The status object is used after completion of a receive to find the
actual length, source, and tag of a message

•  Status object is MPI-defined type and provides information about:
•  The source process for the message (status.source)
•  The message tag (status.tag)

•  The number of elements received is given by:

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status return status of receive operation (Status)
datatype datatype of each receive buffer element (handle)
count number of received elements (integer)(OUT)

21

MPI is Simple
•  Many parallel programs can be written using just these six functions, only two

of which are non-trivial:
•  MPI_INIT – initialize the MPI library (must be the first

routine called)

•  MPI_COMM_SIZE - get the size of a communicator
•  MPI_COMM_RANK – get the rank of the calling process in

the communicator

•  MPI_SEND – send a message to another process
•  MPI_RECV – send a message to another process
•  MPI_FINALIZE – clean up all MPI state (must be the last

MPI function called by a process)

•  For performance, however, you need to use other MPI features

22

Introduction to Collective Operations in
MPI
•  Collective operations are called by all processes in a

communicator.
•  MPI_BCAST distributes data from one process (the root) to

all others in a communicator.
•  MPI_REDUCE combines data from all processes in

communicator and returns it to one process.
•  In many numerical algorithms, SEND/RECEIVE can be

replaced by BCAST/REDUCE, improving both simplicity
and efficiency.

23

MPI Collective Communication
•  Communication and computation is coordinated among a

group of processes in a communicator.
•  Groups and communicators can be constructed “by hand”

or using MPI’s topology routines.
•  Tags are not used; different communicators deliver similar

functionality.
•  No non-blocking collective operations

•  (they are being added in MPI-3)
•  Three classes of operations: synchronization, data

movement, collective computation.

24

Synchronization
•  MPI_Barrier(comm)
•  Blocks until all processes in the group of the communicator
comm call it.

•  A process cannot get out of the barrier until all other
processes have reached barrier.

25

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

26

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3
B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

27

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

28

MPI Collective Routines
•  Many Routines: Allgather, Allgatherv, Allreduce,

Alltoall, Alltoallv, Bcast, Gather, Gatherv,
Reduce, ReduceScatter, Scan, Scatter, Scatterv

•  All versions deliver results to all participating processes.
•  V versions allow the hunks to have different sizes.
•  Allreduce, Reduce, ReduceScatter, and Scan take both

built-in and user-defined combiner functions.

29

MPI Built-in Collective Computation
Operations
•  MPI_Max
•  MPI_Min
•  MPI_Prod
•  MPI_Sum
•  MPI_Land
•  MPI_Lor
•  MPI_Lxor
•  MPI_Band
•  MPI_Bor
•  MPI_Bxor
•  MPI_Maxloc
•  MPI_Minloc

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Binary and
Binary or
Binary exclusive or
Maximum and location
Minimum and location

30

Defining your own Reduction Operations

•  Create your own collective computations with:
MPI_Op_create(user_fcn, commutes, &op);
MPI_Op_free(&op);

user_fcn(invec, inoutvec, len, datatype);

•  The user function should perform:

inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1.

•  The user function can be non-commutative, but must be
associative.

31 31

Example of Collectives: PI in C (1/2)

#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, width, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

root process
input/output data

32 32

Example of Collectives: PI in C (2/2)

 width = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = width * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = width * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;
}

output data
operation

root process

input location

33 33

Blocking v/s Non-blocking modes

n  “Completion” means that memory locations used in the message transfer
can be safely accessed for reuse.
–  Safe means that modifications will not affect the data intended for the

receive task.
–  For “send” completion implies variable sent can be reused/modified
–  For “receive” variable received can be read.

n  Blocking mode:
–  Return from routine implies completion.

n  Non-Blocking mode:
–  Routine returns immediately, completion is tested for.
–  Non-blocking communications are primarily used to overlap computation

with communication and exploit possible performance gains

34 34

Blocking Communication

n  In Blocking communication.
–  MPI_SEND does not complete until buffer is empty (available for reuse).
–  MPI_RECV does not complete until buffer is full (available for use)

n  A process sending data will be blocked until data in the send buffer is
emptied

n  A process receiving data will be blocked until the receive buffer is filled
n  Completion of communication generally depends on the message size and

the system buffer size
n  Blocking communication is simple to use but can be prone to deadlocks

 If (my_proc.eq.0) Then
 Call mpi_send(..)
 Call mpi_recv(…)
Usually deadlocks à Else
 Call mpi_send(…) ß UNLESS you reverse send/recv
 Call mpi_recv(….)
 Endif

35 35

Blocking Send-Receive Diagram

time

36 36

Non-Blocking Communication

n  Non-blocking (asynchronous) operations return (immediately) ‘‘request
handles” that can be waited on and queried
–  MPI_ISEND(start, count, datatype, dest, tag, comm, request)
–  MPI_IRECV(start, count, datatype, src, tag, comm, request)
–  MPI_WAIT(request, status)

n  Non-blocking operations allow overlapping computation and communication.
n  One can also test without waiting using MPI_TEST

–  MPI_TEST(request, flag, status)
n  Anywhere you use MPI_Send or MPI_Recv, you can use the pair of

MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait
n  Combinations of blocking and non-blocking sends/receives can be used to

synchronize execution instead of barriers

37

Multiple Completions

•  It is sometimes desirable to wait on multiple requests:
 MPI_Waitall(count, array_of_requests,

 array_of_statuses)

 MPI_Waitany(count, array_of_requests,
 &index, &status)

 MPI_Waitsome(count, array_of_requests,
 array_of indices, array_of_statuses)

•  There are corresponding versions of test for each of these.

38 38

Non-Blocking Send-Receive Diagram

time

39 39

Message Completion and Buffering

n  For a communication to succeed:
–  Sender must specify a valid destination rank
–  Receiver must specify a valid source rank
–  The communicator must be the same
–  Tags must match
–  Receiver’s buffer must be large enough

n  A send has completed when the user supplied buffer can be reused

*buf =3;
MPI_Send (buf, 1, MPI_INT …)
*buf = 4; /*OK, receiver will always receive 3

n  Just because the send completes does not mean that the receive has
completed
–  Message may be buffered by the system
–  Message may still be in transit

*buf =3;
MPI_Isend (buf, 1, MPI_INT …)
*buf = 4; /*Not certain if receiver gets 3 or 4
MPI_Wait(…);

40

More on Message Passing
•  Message passing is a simple programming model, but there

are some special issues
•  Buffering and deadlock
•  Deterministic execution
•  Performance

41

Buffers
•  When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

42

Avoiding Buffering
•  It is better to avoid copies:

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

43

•  Send a large message from process 0 to process 1
•  If there is insufficient storage at the destination, the send must wait for

the user to provide the memory space (through a receive)
•  What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

44

Some Solutions to the “unsafe” Problem

•  Order the operations more carefully:

•  Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

45

More Solutions to the “unsafe” Problem
•  Supply own space as buffer for send

•  Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

46

Communication Modes
•  MPI provides multiple modes for sending messages:

•  Synchronous mode (MPI_Ssend): the send does not complete until a
matching receive has begun. (Unsafe programs deadlock.)

•  Buffered mode (MPI_Bsend): the user supplies a buffer to the
system for its use. (User allocates enough memory to make an unsafe
program safe.

•  Ready mode (MPI_Rsend): user guarantees that a matching receive
has been posted.

•  Allows access to fast protocols
•  undefined behavior if matching receive not posted

•  Non-blocking versions (MPI_Issend, etc.)
•  MPI_Recv receives messages sent in any mode.

47

Buffered Mode
•  When MPI_Isend is awkward to use (e.g. lots of small

messages), the user can provide a buffer for the system to
store messages that cannot immediately be sent.
 int bufsize;
char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);
...
MPI_Bsend(... same as MPI_Send ...)
...
MPI_Buffer_detach(&buf, &bufsize);

•  MPI_Buffer_detach waits for completion.
•  Performance depends on MPI implementation and size of

message.

48

Other Point-to Point Features

•  MPI_Sendrecv
•  MPI_Sendrecv_replace
•  MPI_Cancel(request)

•  Cancel posted Isend or Irecv

•  Persistent requests
•  Useful for repeated communication patterns
•  Some systems can exploit to reduce latency and increase performance
•  MPI_Send_init(…., &request)
•  MPI_Start(request)

49

MPI_Sendrecv
•  Allows simultaneous send and receive
•  Everything else is general.

•  Send and receive datatypes (even type signatures) may be different
•  Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, …)
•  More general than “send left”

Process 0

SendRecv(1)

Process 1

SendRecv(0)

50

Understanding Performance:
Unexpected Hot Spots
•  Basic performance analysis looks at two-party exchanges
•  Real applications involve many simultaneous

communications
•  Performance problems can arise even in common grid

exchange patterns
•  Message passing illustrates problems present even in shared

memory
•  Blocking operations may cause unavoidable memory stalls

51

2D Poisson Problem

(i,j)
(i+1,j) (i-1,j)

(i,j-1)

(i,j+1)

52

Mesh Exchange
•  Exchange data on a mesh

53

Sample Code
•  Do i=1,n_neighbors

 Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
 comm, ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Recv(edge,len,MPI_REAL,nbr(i),tag,
 comm,status,ierr)
Enddo

•  What is wrong with this code?

54

Deadlocks!
•  All of the sends may block, waiting for a matching receive

(will for large enough messages)
•  The variation of

if (has down nbr)
 Call MPI_Send(… down …)
if (has up nbr)
 Call MPI_Recv(… up …)
…
sequentializes (all except the bottom process blocks)

55

Sequentialization

Recv Send
Recv Send

Recv Send
Send Recv
Recv Send

Recv Send Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Recv Send

56

Fix 1: Use Irecv

•  Do i=1,n_neighbors
 Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag,
 comm,requests(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
 comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

•  Does not perform well in practice. Why?

57

Timing Model
•  Sends interleave
•  Sends block (data larger than buffering will allow)
•  Sends control timing
•  Receives do not interfere with Sends
•  Exchange can be done in 4 steps (down, right, up, left)

58

Fix 2: Use Isend and Irecv
•  Do i=1,n_neighbors

 Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag,
 comm,request(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Isend(edge, len, MPI_REAL, nbr(i), tag,
 comm, request(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, request, statuses,
 ierr)

59

Lesson: Defer Synchronization
•  Send-receive accomplishes two things:

•  Data transfer
•  Synchronization

•  In many cases, there is more synchronization than required
•  Use nonblocking operations and MPI_Waitall to defer

synchronization

