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The Message-Passing Model 
•  A process is (traditionally) a program counter and address space. 
•  Processes may have multiple threads (program counters and 

associated stacks) sharing a single address space.  MPI is for 
communication among processes, which have separate address 
spaces. 

•  Interprocess communication consists of  
•  synchronization 
•  movement of data from one process’s address space to another’s. 

MPI 

MPI 
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What is MPI? 
•  A message-passing library specification 

•  extended message-passing model 
•  not a language or compiler specification 
•  not a specific implementation or product 

•  For parallel computers, clusters, and heterogeneous 
networks 

•  Full-featured 
•  Designed to provide access to advanced parallel hardware 

for 
•  end users 
•  library writers 
•  tool developers 
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Where Did MPI Come From? 
•  Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were 

not portable (or very capable). 
•  Early portable systems (PVM, p4, TCGMSG, Chameleon) were mainly 

research efforts. 
•  Did not address the full spectrum of message-passing issues 
•  Lacked vendor support 
•  Were not implemented at the most efficient level 

•  The MPI Forum organized in 1992 with broad participation by: 
•  vendors:  IBM, Intel, TMC, SGI, Convex, Meiko 
•  portability library writers:  PVM, p4 
•  users:  application scientists and library writers 
•  MPI-1 finished in 18 months 
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MPI Implementations 
•  MPI is available on all platforms – from laptops to clusters 

to the largest supercomputers in the world 
•  Currently, two prominent open-source implementations 

•  MPICH2 from Argonne 
•  www.mcs.anl.gov/mpich2 

•  Open MPI 
•  www.open-mpi.org 

•  Many vendor implementations (many derived from 
MPICH2) 
•  IBM, Cray, Intel, Microsoft, Myricom, SGI, HP, etc 

•  MVAPICH2 from Ohio State Univ. for InfiniBand 
•  http://mvapich.cse.ohio-state.edu/ 
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MPI Resources 
•  The Standard itself: 

•  At http://www.mpi-forum.org   
•  All MPI official releases. Latest version is MPI 3.0 
•  Download pdf versions 

•  Online Resources 
•  http://www.mcs.anl.gov/mpi 

•  pointers to lots of stuff, including other talks and tutorials, a FAQ, 
other MPI pages 

•  Tutorials: http://www.mcs.anl.gov/mpi/learning.html 
•  Google search will give you many more leads 
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Applications (Science and Engineering) 

•  MPI is widely used used in large scale parallel 
applications in science and engineering 

•  Atmosphere, Earth, Environment  
•  Physics - applied, nuclear, particle, condensed matter, 

high pressure, fusion, photonics  
•  Bioscience, Biotechnology, Genetics  
•  Chemistry, Molecular Sciences  
•  Geology, Seismology  
•  Mechanical Engineering - from prosthetics to spacecraft  
•  Electrical Engineering, Circuit Design, Microelectronics  
•  Computer Science, Mathematics  
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Turbo machinery (Gas turbine/compressor) 

Drilling application 

Biology application 

Astrophysics application 

Transportation & traffic 
application 
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Weather modeling New materials 

Drug discovery 

Advanced Graphics 
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Reasons for Using MPI  

•  Standardization - MPI is the only message passing library which can be 
considered a standard. It is supported on virtually all HPC platforms. 
Practically, it has replaced all previous message passing libraries.  

•  Portability - There is no need to modify your source code when you port 
your application to a different platform that supports (and is compliant 
with) the MPI standard.  

•  Performance Opportunities - Vendor implementations should be able to 
exploit native hardware features to optimize performance.  

•  Functionality – Rich set of features  
•  Availability - A variety of implementations are available, both vendor and 

public domain.  
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Hello World (C) 
#include "mpi.h" 
#include <stdio.h> 
 
int main( argc, argv ) 
int argc; 
char *argv[]; 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
}!
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Some Basic Concepts 
•  Processes can be collected into groups. 
•  Each message is sent in a context, and must be received in 

the same context. 
•  A group and context together form a communicator. 
•  A process is identified by its rank in the group associated 

with a communicator. 
•  There is a default communicator whose group contains all 

initial processes, called MPI_COMM_WORLD. 



Compiling and Running 
•  mpicc -o hello hello.c 

•  (or mpif77 for Fortran 77, mpif90 for Fortran 90, mpicxx for C++) 
•  mpicc etc are scripts provided by the MPI implementation that call the 

local compiler (e.g., gcc) with the right include paths and link with the 
right libraries 

•  mpirun –np 8 hello  (or: mpiexec –n 8 hello) 
•  Will run 8 processes with the hello executable 
•  Further control available to specify location of these processes via a 
“hosts” file 

13 
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MPI Basic Send/Receive 

•  We need to fill in the details in 

•  Things that need specifying: 
•  How will “data” be described? 
•  How will processes be identified? 
•  How will the receiver recognize/screen messages? 
•  What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 
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MPI Datatypes 
•  The data in a message to be sent or received is described by 

a triple (address, count, datatype), where 
•  An MPI datatype is recursively defined as: 

•  predefined, corresponding to a data type from the language (e.g., 
MPI_INT, MPI_DOUBLE_PRECISION) 

•  a contiguous array of MPI datatypes 
•  a strided block of datatypes 
•  an indexed array of blocks of datatypes 
•  an arbitrary structure of datatypes 

•  There are MPI functions to construct custom datatypes, such 
an array of (int, float) pairs, or a row of a matrix stored 
columnwise. 
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MPI Tags 
•  Messages are sent with an accompanying user-defined 

integer tag, to assist the receiving process in identifying the 
message. 

•  Messages can be screened at the receiving end by specifying 
a specific tag, or not screened by specifying 
MPI_ANY_TAG as the tag in a receive. 

•  Some non-MPI message-passing systems have called tags 
“message types”.  MPI calls them tags to avoid confusion 
with datatypes. 
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MPI Basic (Blocking) Send 

MPI_SEND (start, count, datatype, dest, tag, comm) 
 
•  The message buffer is described by (start, count, 
datatype). 

•  The target process is specified by dest, which is the rank 
of the target process in the communicator specified by 
comm. 

•  When this function returns, the data has been delivered to 
the system and the buffer can be reused.  The message may 
not have been received by the target process. 
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MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, comm, status) 
 
•  Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used. 
•  source is the rank in communicator specified by comm, 

or MPI_ANY_SOURCE. 
•  tag is a specific tag to match against or MPI_ANY_TAG  
•  status contains further information 
•  receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error. 



(Let’s jump back to 3-pt stencil) 
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Status Object 

•  The status object is used after completion of a receive to find the 
actual length, source, and tag of a message 

•  Status object is MPI-defined type and provides information about: 
•  The source process for the message  (status.source) 
•  The message tag (status.tag) 

•  The number of elements received is given by: 

int MPI_Get_count( MPI_Status *status, MPI_Datatype datatype, int *count )  
 
status return status of receive operation (Status)  
datatype datatype of each receive buffer element (handle)  
count number of received elements (integer)(OUT) 
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MPI is Simple 
•  Many parallel programs can be written using just these six functions, only two 

of which are non-trivial: 
•  MPI_INIT – initialize the MPI library (must be the first 

routine called) 

•  MPI_COMM_SIZE - get the size of a communicator 
•  MPI_COMM_RANK – get the rank of the calling process in 

the communicator 

•  MPI_SEND – send a message to another process 
•  MPI_RECV – send a message to another process 
•  MPI_FINALIZE – clean up all MPI state (must be the last 

MPI function called by a process) 

•  For performance, however, you need to use other MPI features 
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Introduction to Collective Operations in 
MPI 
•  Collective operations are called by all processes in a 

communicator. 
•  MPI_BCAST distributes data from one process (the root) to 

all others in a communicator. 
•  MPI_REDUCE combines data from all processes in 

communicator and returns it to one process. 
•  In many numerical algorithms, SEND/RECEIVE can be 

replaced by BCAST/REDUCE, improving both simplicity 
and efficiency. 
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MPI Collective Communication 
•  Communication and computation is coordinated among a 

group of processes in a communicator. 
•  Groups and communicators can be constructed “by hand” 

or using MPI’s topology routines. 
•  Tags are not used; different communicators deliver similar 

functionality. 
•  No non-blocking collective operations 

•  (they are being added in MPI-3) 
•  Three classes of operations: synchronization, data 

movement, collective computation. 
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Synchronization 
•  MPI_Barrier( comm ) 
•  Blocks until all processes in the group of the communicator 
comm call it. 

•  A process cannot get out of the barrier until all other 
processes have reached barrier. 
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Collective Data Movement 
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B 
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More Collective Data Movement 
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Collective Computation 
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MPI Collective Routines 
•  Many Routines:  Allgather, Allgatherv, Allreduce, 

Alltoall, Alltoallv, Bcast, Gather, Gatherv, 
Reduce, ReduceScatter, Scan, Scatter, Scatterv 

•  All versions deliver results to all participating processes. 
•  V versions allow the hunks to have different sizes. 
•  Allreduce, Reduce, ReduceScatter, and Scan take both 

built-in and user-defined combiner functions. 
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MPI Built-in Collective Computation 
Operations 
•  MPI_Max 
•  MPI_Min 
•  MPI_Prod 
•  MPI_Sum 
•  MPI_Land 
•  MPI_Lor 
•  MPI_Lxor 
•  MPI_Band 
•  MPI_Bor 
•  MPI_Bxor 
•  MPI_Maxloc 
•  MPI_Minloc 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Binary and 
Binary or 
Binary exclusive or 
Maximum and location 
Minimum and location 
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Defining your own Reduction Operations 

•  Create your own collective computations with: 
MPI_Op_create( user_fcn, commutes, &op ); 
MPI_Op_free( &op ); 
 
user_fcn( invec, inoutvec, len, datatype ); 

•  The user function should perform: 
 
inoutvec[i]  =  invec[i]  op  inoutvec[i]; 
 
for i from 0 to len-1. 

•  The user function can be non-commutative, but must be 
associative. 
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Example of Collectives:  PI in C (1/2) 

#include "mpi.h" 
#include <math.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, width, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done) { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
 

   MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 

root process 
input/output data 
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Example of Collectives: PI in C (2/2)  

    width = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = width * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = width * sum; 
 

   MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is %.16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

 return 0; 
} 

output data 
operation 

root process 

input location 
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Blocking v/s Non-blocking modes 

n  “Completion” means that memory locations used in the message transfer 
can be safely accessed for reuse. 
–  Safe means that modifications will not affect the data intended for the 

receive task. 
–  For “send” completion implies variable sent can be reused/modified 
–  For “receive” variable received can be read. 

n  Blocking mode:  
–  Return from routine implies completion.  

n  Non-Blocking mode:  
–  Routine returns immediately, completion is tested for.  
–  Non-blocking communications are primarily used to overlap computation 

with communication and exploit possible performance gains 
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Blocking Communication  

n  In Blocking communication. 
–  MPI_SEND does not complete until buffer is empty (available for reuse). 
–  MPI_RECV does not complete until buffer is full (available for use) 

n  A process sending data will be blocked until data in the send buffer is 
emptied 

n  A process receiving data will be blocked until the receive buffer is filled 
n  Completion of communication generally depends on the message size and 

the system buffer size 
n  Blocking communication is simple to use but can be prone to deadlocks            

                                     If (my_proc.eq.0) Then 
                                          Call mpi_send(..) 
                                          Call mpi_recv(…) 
Usually deadlocks à       Else 
                                           Call mpi_send(…) ß UNLESS you reverse send/recv 
                                           Call mpi_recv(….) 
                                        Endif  
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Blocking Send-Receive Diagram 

time 
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Non-Blocking Communication  

n  Non-blocking (asynchronous) operations return (immediately) ‘‘request 
handles” that can be waited on and queried 
–  MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 
–  MPI_IRECV( start, count, datatype, src, tag, comm, request ) 
–  MPI_WAIT( request, status ) 
 

n  Non-blocking operations allow overlapping computation and communication. 
n  One can also test without waiting using  MPI_TEST 

–  MPI_TEST( request, flag, status ) 
n  Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 

MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 
n  Combinations of blocking and non-blocking sends/receives can be used to 

synchronize execution instead of barriers 



37 

Multiple Completions 

•  It is sometimes desirable to wait on multiple requests: 
 MPI_Waitall(count, array_of_requests, 

 array_of_statuses) 

 MPI_Waitany(count, array_of_requests, 
 &index, &status) 

 MPI_Waitsome(count, array_of_requests, 
 array_of indices, array_of_statuses) 

•  There are corresponding versions of test for each of these. 
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Non-Blocking Send-Receive Diagram  

time 
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Message Completion and Buffering  

n  For a communication to succeed: 
–  Sender must specify a valid destination rank 
–  Receiver must specify a valid source rank 
–  The communicator must be the same 
–  Tags must match 
–  Receiver’s buffer must be large enough 

n  A send has completed when the user supplied buffer can be reused  

*buf =3; 
MPI_Send (buf, 1, MPI_INT …) 
*buf = 4; /*OK, receiver will always receive 3 

n  Just because the send completes does not mean that the receive has 
completed 
–  Message may be buffered by the system 
–  Message may still be in transit 

*buf =3; 
MPI_Isend (buf, 1, MPI_INT …) 
*buf = 4; /*Not certain if receiver gets 3 or 4 
MPI_Wait(…); 



40 

More on Message Passing 
•  Message passing is a simple programming model, but there 

are some special issues 
•  Buffering and deadlock 
•  Deterministic execution 
•  Performance  
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Buffers 
•  When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 
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Avoiding Buffering 
•  It is better to avoid copies: 

This requires that MPI_Send wait on delivery, or 
that MPI_Send return before transfer is complete, 
and we wait later. 

Process 0 Process 1 

User data 

User data 

the network 
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•  Send a large message from process 0 to process 1 
•  If there is insufficient storage at the destination, the send must wait for 

the user to provide the memory space (through a receive) 
•  What happens with this code? 

 
 
 
 

Sources of Deadlocks 

Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Send(0) 
Recv(0) 

•  This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  
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Some Solutions to the “unsafe” Problem 

•  Order the operations more carefully: 

•  Supply receive buffer at same time as send: 

Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Recv(0) 
Send(0) 

Process 0 
 
Sendrecv(1) 

Process 1 
 
Sendrecv(0) 
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More Solutions to the “unsafe” Problem 
•  Supply own space as buffer for send 

•  Use non-blocking operations: 

Process 0 
 
Bsend(1) 
Recv(1) 

Process 1 
 
Bsend(0) 
Recv(0) 

Process 0 
 
Isend(1) 
Irecv(1) 
Waitall 

Process 1 
 
Isend(0) 
Irecv(0) 
Waitall 
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Communication Modes 
•  MPI provides multiple modes for sending messages: 

•  Synchronous mode (MPI_Ssend):  the send does not complete until a 
matching receive has begun.  (Unsafe programs deadlock.) 

•  Buffered mode (MPI_Bsend):  the user supplies a buffer to the 
system for its use.  (User allocates enough memory to make an unsafe 
program safe. 

•  Ready mode (MPI_Rsend):  user guarantees that a matching receive 
has been posted. 

•  Allows access to fast protocols 
•  undefined behavior if matching receive not posted 

•  Non-blocking versions (MPI_Issend, etc.) 
•  MPI_Recv receives messages sent in any mode. 
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Buffered Mode 
•  When MPI_Isend is awkward to use (e.g. lots of small 

messages), the user can provide a buffer for the system to 
store messages that cannot immediately be sent. 
  int bufsize; 
char *buf = malloc( bufsize ); 
MPI_Buffer_attach( buf, bufsize ); 
... 
MPI_Bsend( ... same as MPI_Send ... ) 
... 
MPI_Buffer_detach( &buf, &bufsize ); 

•  MPI_Buffer_detach waits for completion. 
•  Performance depends on MPI implementation and size of 

message. 
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Other Point-to Point Features 

•  MPI_Sendrecv 
•  MPI_Sendrecv_replace 
•  MPI_Cancel(request) 

•  Cancel posted Isend or Irecv 

•  Persistent requests 
•  Useful for repeated communication patterns 
•  Some systems can exploit to reduce latency and increase performance 
•  MPI_Send_init(…., &request) 
•  MPI_Start(request) 



49 

MPI_Sendrecv 
•  Allows simultaneous send and receive 
•  Everything else is general.  

•  Send and receive datatypes (even type signatures) may be different 
•  Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, …) 
•  More general than “send left” 

Process 0 
 
SendRecv(1) 

Process 1 
 
SendRecv(0) 
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Understanding Performance: 
Unexpected Hot Spots 
•  Basic performance analysis looks at two-party exchanges 
•  Real applications involve many simultaneous 

communications 
•  Performance problems can arise even in common grid 

exchange patterns 
•  Message passing illustrates problems present even in shared 

memory 
•  Blocking operations may cause unavoidable memory stalls 



51 

2D Poisson Problem  

 

(i,j) 
(i+1,j) (i-1,j) 

(i,j-1) 

(i,j+1) 
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Mesh Exchange 
•  Exchange data on a mesh 
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Sample Code 
•  Do i=1,n_neighbors 

   Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,  
                             comm, ierr) 
Enddo 
Do i=1,n_neighbors 
   Call MPI_Recv(edge,len,MPI_REAL,nbr(i),tag, 
                            comm,status,ierr) 
Enddo 

•  What is wrong with this code? 
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Deadlocks! 
•  All of the sends may block, waiting for a matching receive 

(will for large enough messages) 
•  The variation of 

if (has down nbr)  
    Call MPI_Send( … down … ) 
if (has up nbr)  
    Call MPI_Recv( … up … ) 
… 
sequentializes (all except the bottom process blocks) 
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Sequentialization 

Recv Send 
Recv Send 

Recv Send 
Send Recv 
Recv Send 

Recv Send Start 
Send 

Start 
Send 

Start 
Send 

Start 
Send 

Start 
Send 

Start 
Send 

Recv Send 
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Fix 1: Use Irecv 

•  Do i=1,n_neighbors 
   Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag, 
                            comm,requests(i),ierr) 
Enddo  
Do i=1,n_neighbors 
   Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,  
                             comm, ierr) 
Enddo 
Call MPI_Waitall(n_neighbors, requests, statuses, ierr) 

•  Does not perform well in practice.  Why? 
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Timing Model 
•  Sends interleave 
•  Sends block (data larger than buffering will allow) 
•  Sends control timing 
•  Receives do not interfere with Sends 
•  Exchange can be done in 4 steps (down, right, up, left) 
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Fix 2: Use Isend and Irecv 
•  Do i=1,n_neighbors 

   Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag, 
                            comm,request(i),ierr) 
Enddo  
Do i=1,n_neighbors 
   Call MPI_Isend(edge, len, MPI_REAL, nbr(i), tag,  
                             comm, request(n_neighbors+i), ierr) 
Enddo 
Call MPI_Waitall(2*n_neighbors, request, statuses, 
                            ierr) 
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Lesson: Defer Synchronization 
•  Send-receive accomplishes two things: 

•  Data transfer 
•  Synchronization 

•  In many cases, there is more synchronization than required 
•  Use nonblocking operations and MPI_Waitall to defer 

synchronization 


