
A brief introduction to OpenMP

Alejandro Duran

Barcelona Supercomputing Center

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 2 / 47

Introduction

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 3 / 47

Introduction

What is OpenMP?

It’s an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

Current version is 3.1 (June 2010)
Supported by most compiler vendors

Intel,IBM,PGI,Oracle,Cray,Fujitsu,HP,GCC,...

Natural fit for multicores as it was designed for SMPs

Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 4 / 47

Introduction

A bit of history
O

pe
nM

P
Fo

rt
ra

n
1.

0

1997

O
pe

nM
P

C
/C

++
1.

0

1998

O
pe

nM
P

Fo
rt

ra
n

1.
1

1999

O
pe

nM
P

Fo
rt

ra
n

2.
0

2000

O
pe

nM
P

C
/C

++
2.

0

2002

O
pe

nM
P

2.
5

2005

O
pe

nM
P

3.
0

2008

O
pe

nM
P

3.
1

2010

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 5 / 47

Introduction

Target machines

Shared Multiprocessors

Chip Chip Chip

Memory interconnect

Memory

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 6 / 47

Introduction

Shared memory

Cpu1 Cpu2x=
x=5 x=5

Memory is shared across
different processors
Communication and
synchronization happen
implicitely through shared
memory

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 7 / 47

Introduction

Including...

Multicores/SMTs

Core

L1 Caches

Core

L1 Caches

L2 Cache

Chip

Off-chip
Cache

Memory

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 8 / 47

Introduction

More commonly

NUMA

Chip

Chip

Chip

Chip

Memory Memory

Memory interconnect

Access to memory addresses is not uniform

Memory migration and locality are very important

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 9 / 47

Introduction

Why OpenMP?

Mature standard and implementations
Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization
Maintains sequential version
(mostly) High level language

Some people may say a medium level language :-)

Supports both task and data parallelism
Communication is implicit

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 10 / 47

Introduction

Why not OpenMP?

Communication is implicit
beware false sharing

Flat memory model
can lead to poor performance in NUMA machines

Incremental parallelization creates false sense of glory/failure
No support for accelerators
No error recovery capabilities
Difficult to compose
Pipelines are difficult

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 11 / 47

Writing OpenMP programs

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 12 / 47

Writing OpenMP programs

OpenMP at a glance

OpenMP components

CPU CPU CPU CPU CPU CPU SMP

OS Threading Libraries

OpenMP Runtime Library ICVs

OpenMP Exec

Compiler

Constructs

OpenMP API Environment
Variables

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 13 / 47

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 14 / 47

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team
message is shared among all threads

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15 / 47

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team
message is shared among all threads

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15 / 47

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team

message is shared among all threads

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15 / 47

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team

message is shared among all threads

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15 / 47

Writing OpenMP programs

Execution model

Fork-join model
OpenMP uses a fork-join model

The master thread spawns a team of threads that joins at the end of
the parallel region
Threads in the same team can collaborate to do work

Parallel Region Parallel Region

Nested Parallel Region

Master Thread

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 16 / 47

Writing OpenMP programs

Memory model

OpenMP defines a weak relaxed memory model
Threads can see different values for the same variable
Memory consistency is only guaranteed at specific points

syncronization constructs, parallelism creation points, . . .

Luckily, the default points are usually enough

Variables can have shared or private visibility for each thread

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 17 / 47

Data-sharing attributes

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 18 / 47

Data-sharing attributes

Data environment

When creating a new parallel region (and in other cases) a new data
environment needs to be constructed for the threads. This is defined
by means of clauses in the construct:

shared

private

firstprivate

default

threadprivate

. . .
Not a clause!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 19 / 47

Data-sharing attributes

Data-sharing attributes

Shared
When a variable is marked as shared all threads see the same
variable

Not necessarily the same value
Usually need some kind of synchronization to update them
correctly

Private
When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

Can be accessed without any kind of synchronization

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 20 / 47

Data-sharing attributes

Data-sharing attributes

Firstprivate
When a variable is marked as firstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original variable value.

In a parallel construct this means all threads have a different
variable with the same initial value
Can be accessed without any kind of synchronization

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 21 / 47

Data-sharing attributes

Data-sharing attributes

Example

i n t x=1 ,y=1 ,z =1;
#pragma omp parallel shared (x) private (y) firstprivate (z) \

num_threads (2)
{

x++; y++; z++;
p r i n t f ("%d\n" , x) ;
p r i n t f ("%d\n" , y) ;
p r i n t f ("%d\n" , z) ;

}

The parallel region will have only two threads

Prints 2 or 3. Unsafe update!
Prints any number
Prints 2

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22 / 47

Data-sharing attributes

Data-sharing attributes

Example

i n t x=1 ,y=1 ,z =1;
#pragma omp parallel shared (x) private (y) firstprivate (z) \

num_threads (2)
{

x++; y++; z++;
p r i n t f ("%d\n" , x) ;
p r i n t f ("%d\n" , y) ;
p r i n t f ("%d\n" , z) ;

}

The parallel region will have only two threads

Prints 2 or 3. Unsafe update!
Prints any number
Prints 2

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22 / 47

Data-sharing attributes

Data-sharing attributes

Example

i n t x=1 ,y=1 ,z =1;
#pragma omp parallel shared (x) private (y) firstprivate (z) \

num_threads (2)
{

x++; y++; z++;
p r i n t f ("%d\n" , x) ;
p r i n t f ("%d\n" , y) ;
p r i n t f ("%d\n" , z) ;

}

The parallel region will have only two threads

Prints 2 or 3. Unsafe update!

Prints any number
Prints 2

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22 / 47

Data-sharing attributes

Data-sharing attributes

Example

i n t x=1 ,y=1 ,z =1;
#pragma omp parallel shared (x) private (y) firstprivate (z) \

num_threads (2)
{

x++; y++; z++;
p r i n t f ("%d\n" , x) ;
p r i n t f ("%d\n" , y) ;
p r i n t f ("%d\n" , z) ;

}

The parallel region will have only two threads

Prints 2 or 3. Unsafe update!

Prints any number

Prints 2

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22 / 47

Data-sharing attributes

Data-sharing attributes

Example

i n t x=1 ,y=1 ,z =1;
#pragma omp parallel shared (x) private (y) firstprivate (z) \

num_threads (2)
{

x++; y++; z++;
p r i n t f ("%d\n" , x) ;
p r i n t f ("%d\n" , y) ;
p r i n t f ("%d\n" , z) ;

}

The parallel region will have only two threads

Prints 2 or 3. Unsafe update!
Prints any number

Prints 2

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22 / 47

Data-sharing attributes

Threadprivate storage

The threadprivate construct
How to parallelize:

Global variables
Static variables
Class-static members

Use threadprivate storage
Allows to create a per-thread copy of “global” variables.

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 23 / 47

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Simpler than redefining the
interface. More costly

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24 / 47

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Simpler than redefining the
interface. More costly

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24 / 47

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Simpler than redefining the
interface. More costly

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24 / 47

Synchronization

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 25 / 47

Synchronization

Why synchronization?

Mechanisms
Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

barrier

critical

atomic

taskwait

low-level locks

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 26 / 47

Synchronization

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Syncronizes all threads of the team

Forces all foo occurrences too
happen before all bar occurrences

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 27 / 47

Synchronization

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Syncronizes all threads of the team

Forces all foo occurrences too
happen before all bar occurrences

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 27 / 47

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 / 47

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 / 47

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 / 47

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Specially supported by hardware primitives
Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 / 47

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Specially supported by hardware primitives

Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 / 47

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Specially supported by hardware primitives

Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 / 47

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Specially supported by hardware primitives
Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 / 47

Synchronization

Locks

OpenMP provides lock primitives for low-level synchronization
omp_init_lock Initialize the lock
omp_set_lock Acquires the lock
omp_unset_lock Releases the lock
omp_test_lock Tries to acquire the lock (won’t block)
omp_destroy_lock Frees lock resources

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 30 / 47

Worksharings

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 31 / 47

Worksharings

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

Threads cooperate to do some work
Better way to split work than using thread-ids

In OpenMP, there are four worksharing constructs:
loop worksharing
single
section
workshare

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 32 / 47

Restriction: worksharings cannot be nested

Worksharings

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel
#pragma omp for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

Loop iterations must be independentThe i variable is automatically privatized
Must be explicitly privatized

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33 / 47

Worksharings

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel
#pragma omp for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

New created threads cooperate to exe-
cute all the iterations of the loop

Loop iterations must be independentThe i variable is automatically privatized
Must be explicitly privatized

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33 / 47

Worksharings

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel
#pragma omp for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

Loop iterations must be independent

The i variable is automatically privatized
Must be explicitly privatized

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33 / 47

Worksharings

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel
#pragma omp for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

Loop iterations must be independent

The i variable is automatically privatized

Must be explicitly privatized

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33 / 47

Worksharings

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel
#pragma omp for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

Loop iterations must be independentThe i variable is automatically privatized

Must be explicitly privatized

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33 / 47

Worksharings

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

return sum;
}

Common pattern. All
threads accumulate to a

shared variable

Efficiently solved with the reduction clause

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 / 47

Worksharings

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction(+:sum)

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

return sum;
}

Common pattern. All
threads accumulate to a

shared variable

Efficiently solved with the reduction clause

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 / 47

Worksharings

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

return sum;
}

Common pattern. All
threads accumulate to a

shared variable
Efficiently solved with the reduction clause

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 / 47

Worksharings

The schedule clause

The schedule clause determines which iterations are executed by
each thread.

Importart to choose for performance reasons only
There are several possible options as schedule:

STATIC

STATIC,chunk

DYNAMIC[,chunk]

GUIDED[,chunk]

AUTO

RUNTIME

Good locality, low overhead, load imbalance

Bad locality, higher overhead, load balance

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 35 / 47

Worksharings

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 36 / 47

Worksharings

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 36 / 47

Task parallelism

Outline

1 Introduction

2 Writing OpenMP programs

3 Data-sharing attributes

4 Synchronization

5 Worksharings

6 Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 37 / 47

Task parallelism

Task parallelism in OpenMP

Task parallelism model

Team Task pool

Parallelism is extracted from “several” pieces of code
Allows to parallelize very unstructured parallelism

Unbounded loops, recursive functions, ...

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 38 / 47

Task parallelism

What is a task in OpenMP ?

Tasks are work units whose execution may be deferred
they can also be executed immediately

Tasks are composed of:
code to execute
a data environment

Initialized at creation time

internal control variables (ICVs)

Threads of the team cooperate to execute them

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 39 / 47

Task parallelism

When are task created?

Parallel regions create tasks
One implicit task is created and assigned to each thread

So all task-concepts have sense inside the parallel region

Each thread that encounters a task construct
Packages the code and data
Creates a new explicit task

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 40 / 47

Task parallelism

List traversal

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

}
e is firstprivate

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 41 / 47

Task parallelism

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

Suspends current task until all children are completed

All tasks guaranteed to be completed here

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42 / 47

Task parallelism

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

Suspends current task until all children are completed

All tasks guaranteed to be completed here

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42 / 47

Task parallelism

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

Suspends current task until all children are completed
All tasks guaranteed to be completed here

Now we need some threads
to execute the tasks

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversalsWe need a way to have a single
thread execute traverse_list

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ; This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma omp single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversalAll threads cooperate to execute them

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma omp single

t r a v e r s e _ l i s t (l) ; One thread creates the tasks of the traversal

All threads cooperate to execute them

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44 / 47

Task parallelism

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma omp single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversal

All threads cooperate to execute them

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44 / 47

Task parallelism

Another example
Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolut ions ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 45 / 47

Task parallelism

Summary

OpenMP...
allows to incrementally parallelize applications for SMP
has good support for data and task parallelism
requires you to pay attention to locality
has many other features beyond this short presentation

http://www.openmp.org

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 46 / 47

Task parallelism

The End

Thanks for your attention!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 47 / 47

	Introduction
	Writing OpenMP programs
	Data-sharing attributes
	Synchronization
	Worksharings
	Task parallelism

