
Parallel Programming with
OpenMP

Alejandro Duran

Barcelona Supercomputing Center

Agenda

Agenda

- Thursday
10:00 - 11:15 OpenMP Basics
11:00 - 11:30 Break
11:30 - 13:00 Hands-on (I)
13:00 - 14:30 Lunch
14:30 - 15:15 Task parallelism in OpenMP
15:15 - 17:00 Hands-on (II)

- Friday
10:00 - 11:00 Data parallelism in OpenMP
11:00 - 11:30 Break
11:30 - 13:00 Hands-on (III)
13:00 - 14:30 Lunch
14:30 - 15:00 Other OpenMP topics
15:00 - 16:00 Hands-on (IV)
16:00 - 16:30 OpenMP in the future

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 2 / 217

Part I

OpenMP Basics

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 3 / 217

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 4 / 217

OpenMP Overview

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 5 / 217

OpenMP Overview

What is OpenMP?

It’s an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

Current version is 3.0 (May 2008)
Supported by most compiler vendors

Intel,IBM,PGI,Sun,Cray,Fujitsu,HP,GCC,...

Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 6 / 217

OpenMP Overview

A bit of history
O

pe
nM

P
Fo

rt
ra

n
1.

0

1997

O
pe

nM
P

C
/C

++
1.

0

1998

O
pe

nM
P

Fo
rt

ra
n

1.
1

1999

O
pe

nM
P

Fo
rt

ra
n

2.
0

2000

O
pe

nM
P

C
/C

++
2.

0

2002
O

pe
nM

P
2.

5

2005

O
pe

nM
P

3.
0

2008

O
pe

nM
P

3.
1

2011

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 7 / 217

OpenMP Overview

Advantages of OpenMP

Mature standard and implementations
Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization
Maintains sequential version
(mostly) High level language

Some people may say a medium level language :-)

Supports both task and data parallelism
Communication is implicit

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 8 / 217

OpenMP Overview

Disadvantages of OpenMP

Communication is implicit
Flat memory model
Incremental parallelization creates false sense of glory/failure
No support for accelerators
No error recovery capabilities
Difficult to compose
Lacks high-level algorithms and structures
Does not run on clusters

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 9 / 217

The OpenMP model

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 10 / 217

The OpenMP model

OpenMP at a glance

OpenMP components

CPU CPU CPU CPU CPU CPU SMP

OS Threading Libraries

OpenMP Runtime Library ICVs

OpenMP Exec

Compiler

Constructs

OpenMP API Environment
Variables

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 11 / 217

The OpenMP model

Execution model

Fork-join model
OpenMP uses a fork-join model

The master thread spawns a team of threads that joins at the end of
the parallel region
Threads in the same team can collaborate to do work

Parallel Region Parallel Region

Nested Parallel Region

Master Thread

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 12 / 217

The OpenMP model

Memory model

OpenMP defines a relaxed memory model
Threads can see different values for the same variable
Memory consistency is only guaranteed at specific points
Luckily, the default points are usually enough

Variables can be shared or private to each thread

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 13 / 217

Writing OpenMP programs

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 14 / 217

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 15 / 217

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 15 / 217

We’ll be using C/C++ syntax through this tutorial

Writing OpenMP programs

Headers/Macros

C/C++ only
omp.h contains the API prototypes and data types definitions
The _OPENMP is defined by OpenMP enabled compiler

Allows conditional compilation of OpenMP

Fortran only
The omp_lib module contains the subroutine and function
definitions

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 16 / 217

Writing OpenMP programs

Structured Block

Definition
Most directives apply to a structured block:

Block of one or more statements
One entry point, one exit point

No branching in or out allowed

Terminating the program is allowed

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 17 / 217

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Directive

API call

Clause

Structured block

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 18 / 217

Writing OpenMP programs

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Directive

API call

Clause

Structured block

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 18 / 217

Creating Threads

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 19 / 217

Creating Threads

The parallel construct

Directive

#pragma omp parallel [c lauses]
s t r u c t u r e d block

where clauses can be:
num_threads(expression)

if(expression)

shared(var-list)
private(var-list)
firstprivate(var-list)
default(none|shared| private | firstprivate)
reduction(var-list)
copyin(var-list)

Coming shortly!

Only in Fortran

We’ll see it later

Not today

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 20 / 217

Creating Threads

The parallel construct

Specifying the number of threads
The number of threads is controlled by an internal control variable
(ICV) called nthreads-var.
When a parallel construct is found a parallel region with a
maximum of nthreads-var is created

Parallel constructs can be nested creating nested parallelism
The nthreads-var can be modified through

the omp_set_num_threads API called
the OMP_NUM_THREADS environment variable

Additionally, the num_threads clause causes the implementation
to ignore the ICV and use the value of the clause for that region.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 21 / 217

Creating Threads

The parallel construct

Avoiding parallel regions
Sometimes we only want to run in parallel under certain conditions

E.g., enough input data, not running already in parallel, ...

The if clause allows to specify an expression. When evaluates to
false the parallel construct will only use 1 thread

Note that still creates a new team and data environment

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 22 / 217

Creating Threads

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team
message is shared among all threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 23 / 217

Creating Threads

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team
message is shared among all threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 23 / 217

Creating Threads

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team

message is shared among all threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 23 / 217

Creating Threads

Hello world!

Example

i n t i d ;
char ∗message = "Hello world!" ;

#pragma omp parallel private (i d)
{

i d = omp_get_thread_num () ;
p r i n t f ("Thread %d says: %s\n" , id , message) ;

}

Creates a parallel region of OMP_NUM_THREADS

All threads execute the same code

id is private to each thread

Each thread gets its id in the team

message is shared among all threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 23 / 217

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 24 / 217

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

An unknown number of threads here. Use OMP_NUM_THREADS

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 24 / 217

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

A team of two threads here.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 24 / 217

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

A team of 1 thread here.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 24 / 217

Creating Threads

API calls

Other useful routines
int omp_get_num_threads() Returns the number of threads in the cur-

rent team
int omp_get_thread_num() Returns the id of the thread in the current

team
int omp_get_num_procs() Returns the number of processors in the

machine
int omp_get_max_threads() Returns the maximum number of threads

that will be used in the next parallel region
double omp_get_wtime() Returns the number of seconds since an

arbitrary point in the past

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 25 / 217

Data-sharing attributes

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 26 / 217

Data-sharing attributes

Data environment

A number of clauses are related to building the data environment that
the construct will use when executing.

shared

private

firstprivate

default

threadprivate

lastprivate
reduction
copyin
copyprivate

We’ll see them later

Out of our scope today

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 27 / 217

Data-sharing attributes

Data-sharing attributes

Shared
When a variable is marked as shared, the variable inside the
construct is the same as the one outside the construct.

In a parallel construct this means all threads see the same
variable

but not necessarily the same value
Usually need some kind of synchronization to update them
correctly

OpenMP has consistency points at synchronizations

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 28 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 29 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 2 or 3

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 29 / 217

Data-sharing attributes

Data-sharing attributes

Private
When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

In a parallel construct this means all threads have a different
variable
Can be accessed without any kind of synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 30 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 31 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Can print anything

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 31 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 31 / 217

Data-sharing attributes

Data-sharing attributes

Firstprivate
When a variable is marked as firstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original variable value.

In a parallel construct this means all threads have a different
variable with the same initial value
Can be accessed without any kind of synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 32 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 33 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Prints 2 (twice)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 33 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 33 / 217

Data-sharing attributes

Data-sharing attributes

What is the default?
Static/global storage is shared
Heap-allocated storage is shared
Stack-allocated storage inside the construct is private
Others

If there is a default clause, what the clause says
none means that the compiler will issue an error if the attribute is not
explicitly set by the programmer

Otherwise, depends on the construct
For the parallel region the default is shared

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 34 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 35 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is shared

y is private

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 35 / 217

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is private

y is shared

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 35 / 217

Data-sharing attributes

Threadprivate storage

The threadprivate construct

#pragma omp t h r e a d p r i v a t e (var− l i s t)

Can be applied to:
Global variables
Static variables
Class-static members

Allows to create a per-thread copy of “global” variables.
threadprivate storage persist across parallel regions if the
number of threads is the same

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 36 / 217

Threadprivate persistence across nested regions is complex

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;

. . .

return b u f f e r ;
}

void bar ()
{

#pragma omp parallel
{

char ∗ s t r = foo () ;
s t r [0] = random () ;

}
}

Unsafe. All threads
access the same

buffer

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 37 / 217

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;

. . .

return b u f f e r ;
}

void bar ()
{

#pragma omp parallel
{

char ∗ s t r = foo () ;
s t r [0] = random () ;

}
}

Unsafe. All threads
access the same

buffer

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 37 / 217

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

void bar ()
{

#pragma omp parallel
{

char ∗ s t r = foo () ;
s t r [0] = random () ;

}
}

Creates one static
copy of buffer per

thread

Now foo can be called safely
by multiple threads at the

same time

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 38 / 217

Synchronization

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Synchronization

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 39 / 217

Synchronization

Why synchronization?

Mechanisms
Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

barrier

critical

atomic

taskwait
ordered
locks

We’ll see them later

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 40 / 217

Synchronization

Thread Barrier

The barrier construct

#pragma omp barrier

Threads cannot proceed past a barrier point until all threads reach
the barrier AND all previously generated work is completed
Some constructs have an implicit barrier at the end

E.g., the parallel construct

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 41 / 217

Synchronization

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier
bar () ;

}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 42 / 217

Synchronization

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier
bar () ;

}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 42 / 217

Synchronization

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier
bar () ;

}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 42 / 217

Synchronization

Exclusive access

The critical construct

#pragma omp critical [(name)]
s t r u c t u r e d block

Provides a region of mutual exclusion where only one thread can
be working at any given time.
By default all critical regions are the same, but you can provide
them with names

Only those with the same name synchronize

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 43 / 217

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 44 / 217

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 44 / 217

Synchronization

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 44 / 217

Synchronization

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{

#pragma omp critical (x)
x++;

#pragma omp critical (y)
y++;

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 45 / 217

Synchronization

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{

#pragma omp critical (x)
x++;

#pragma omp critical (y)
y++;

}

Different names: One thread can
update x while another updates y

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 45 / 217

Synchronization

Exclusive access

The atomic construct

#pragma omp atomic
expression

Provides an special mechanism of mutual exclusion to do read &
update operations
Only supports simple read & update expressions

E.g., x ++, x -= foo()
Only protects the read & update part

foo() not protected

Usually much more efficient than a critical construct
Not compatible with critical

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 46 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 47 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 47 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 47 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ;

Prints 3,4 or 5 :(

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 48 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ;

Different threads can update x at
the same time!

Prints 3,4 or 5 :(

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 48 / 217

Synchronization

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{

#pragma omp critical
x++;

#pragma omp atomic
x++;

}
p r i n t f ("%d\n" , x) ; Prints 3,4 or 5 :(

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 48 / 217

Break

Coffee time! :-)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 49 / 217

Part II

Hands-on (I)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 50 / 217

Outline

Setup

Hello world!

Other

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 51 / 217

Setup

Outline

Setup

Hello world!

Other

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 52 / 217

Setup

Hands-on preparation
Environment

We’ll be using ...
an SGI Altix 4700 System

128 cpus Dual Core Montecito(IA-64). Each one of the 256 cores
works at 1,6 GHz, with a 8MB L3 cache and 533 MHz Bus.

Unfortunately will be using just 8 of them :-)

2.5 TB RAM.
2 internal SAS disks of 146 GB at 15000 RPMs
12 external SAS disks of 300 GB at 10000 RPMS

Intel’s compiler version 11.0
Full support of OpenMP 3.0
Other vendors that support 3.0: PGI, IBM, SUN, GCC

Log into the system with the provided username and password

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 53 / 217

Setup

Hands-on preparation

Ready...
Copy the exercises from my home:

$ cp -a
∼aduran/Prace_OpenMP_Handson_1/hello .

Go!
Now enter the hello directory to start the fun :-)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 54 / 217

Setup

Hands-on preparation

Ready...
Copy the exercises from my home:

$ cp -a
∼aduran/Prace_OpenMP_Handson_1/hello .

Go!
Now enter the hello directory to start the fun :-)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 54 / 217

Hello world!

Outline

Setup

Hello world!

Other

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 55 / 217

Hello world!

First exercise
Hello world!

Compile
1 Edit the Makefile in the directory and answer the following

questions:
Which is the compiler name?
Which flag does activate OpenMP?

2 Run make and check that it generates a hello program.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 56 / 217

Hello world!

First exercise
Hello world!

Run
1 Edit the file hello.c and try to figure out what is going to be the

output of the following commands:

$./hello

$ OMP_NUM_THREADS=2 ./hello

$ OMP_NUM_THREADS=4 ./hello

2 Now run them. Were you right?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 57 / 217

Hello world!

First exercise
Hello world!

Being oneself

Now modify our hello program so that each thread generates a mes-
sage with its id

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 58 / 217

Tip: Use omp_get_thread_num()

Hello world!

First exercise
Hello world!

Generate extra info
Now modify our hello program so before any thread says hello, it outputs
the following information:

1 The number of processors in the system
2 The number of threads that will be available in the parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 59 / 217

Hello world!

First exercise
Hello world!

Measuring time
Measure the time that it takes to execute the parallel region and
output it at the end of the program.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 60 / 217

Tip: Use omp_get_wtime()

Hello world!

First exercise

One at a time!
Extend the program so that each thread uses C rand to get a random
number. Accumulate those numbers in a shared variable and output
the result at the end of the program.

Should the result always be the same given the same seed and
number of threads?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 61 / 217

Other

Outline

Setup

Hello world!

Other

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 62 / 217

Other

Second exercise

1 Edit the sync.c file
2 Is correct the access to the variable x?
3 Fix it using a critical construct. Compile it:

$ make sync

4 Run it from 1 to 4 threads and observe how it changes the
average time

5 Now change the critical construct with an atomic one.
6 Run it from 1 to 4 threads. How does the averages times compare

to the previous ones?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 63 / 217

Other

Some more...

One for each thread
1 Compile the tp.c program:

$ make tp

2 The program is suposed to print three times the tread id
3 Run it with 4 threads. Observe the results
4 Edit tp.c and fix it so it behaves correctly
5 How did you solve the problem for x?
6 How did you solve the problem for y?
7 If you solved them in the same way, then rethink what you did for x

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 64 / 217

Break

Bon appétit!*

*Disclaimer: actual food may differ
from the image! :-)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 65 / 217

Part III

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 66 / 217

Outline

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 67 / 217

Part IV

The OpenMP Tasking Model

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 68 / 217

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 69 / 217

OpenMP tasks

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 70 / 217

OpenMP tasks

Task parallelism in OpenMP

Task parallelism model

Team Task pool

Parallelism is extracted from “several” pieces of code
Allows to parallelize very unstructured parallelism

Unbounded loops, recursive functions, ...

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 71 / 217

OpenMP tasks

What is a task in OpenMP ?

Tasks are work units whose execution may be deferred
they can also be executed immediately

Tasks are composed of:
code to execute
a data environment

Initialized at creation time

internal control variables (ICVs)

Threads of the team cooperate to execute them

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 72 / 217

OpenMP tasks

Creating tasks

The task construct

#pragma omp task [c lauses]
s t r u c t u r e d block

Where clauses can be:
shared
private
firstprivate

Values are captured at creation time

default
if(expression)

untied

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 73 / 217

OpenMP tasks

When are task created?

Parallel regions create tasks
One implicit task is created and assigned to each thread

So all task-concepts have sense inside the parallel region

Each thread that encounters a task construct
Packages the code and data
Creates a new explicit task

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 74 / 217

OpenMP tasks

Default task data-sharing attributes
When there are no clauses ...

If no default clause
Implicit rules apply

e.g., global variables are shared
Otherwise...

firstprivate
shared attribute is lexically inherited

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 75 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a =
b =
c =
d =
e =

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b =
c =
d =
e =

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c =
d =
e =

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d =
e =

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e =

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

} } }

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 76 / 217

Tip: default(none) is your friend if you do not see it clearly

OpenMP tasks

List traversal

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

}
e is firstprivate

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 77 / 217

Task synchronization

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 78 / 217

Task synchronization

Task synchronization

There are two main constructs to synchronize tasks:
barrier

Remember: all previous work (including tasks) must be completed

taskwait

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 79 / 217

Task synchronization

Waiting for children

The taskwait construct

#pragma omp taskwait

Suspends the current task until all children tasks are completed
Just direct children, not descendants

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 80 / 217

Task synchronization

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

All tasks guaranteed to be completed here

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 81 / 217

Task synchronization

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}
All tasks guaranteed to be completed here

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 81 / 217

Task synchronization

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l−> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

All tasks guaranteed to be completed here

Now we need some threads
to execute the tasks

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 81 / 217

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversalsWe need a way to have a single
thread execute traverse_list

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 82 / 217

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ; This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 82 / 217

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 82 / 217

The single construct

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 83 / 217

The single construct

Giving work to just one thread

The single construct

#pragma omp single [c lauses]
s t r u c t u r e d block

where clauses can be:
private
firstprivate
nowait
copyprivate

Only one thread of the team executes the structured block
There is an implicit barrier at the end

We’ll see it later
Not today

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 84 / 217

The single construct

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 85 / 217

The single construct

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 85 / 217

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversalAll threads cooperate to execute them

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 86 / 217

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ; One thread creates the tasks of the traversal

All threads cooperate to execute them

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 86 / 217

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversal

All threads cooperate to execute them

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 86 / 217

Task clauses

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 87 / 217

Task clauses

Task scheduling

How it works?
Tasks are tied by default

Tied tasks are executed always by the same thread
Not necessarily the creator

Tied tasks have scheduling restrictions
Deterministic scheduling points (creation, synchronization, ...)

Tasks can be suspended/resumed at these points

Another constraint to avoid deadlock problems

Tied tasks may run into performance problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 88 / 217

Task clauses

The untied clause

A task that has been marked as untied has none of the previous
scheduling restrictions:

Can potentially switch to any thread
Can potentially switch at any moment
Bad mix with thread based features

thread-id, critical regions, threadprivate

Gives the runtime more flexibility to schedule tasks

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 89 / 217

Task clauses

The if clause

If the the expression of an if clause evaluates to false
The encountering task is suspended
The new task is executed immediately

with its own data environment
different task with respect to synchronization

The parent task resumes when the task finishes
Allows implementations to optimize task creation

For very fine grain task you may need to do your own if

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 90 / 217

Common tasking problems

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 91 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)

{
s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 92 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 92 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Data scoping
Because it’s an orphaned
task all variables are
firstprivate

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 92 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Data scoping
Because it’s an orphaned
task all variables are
firstprivate

State is not captured
Just the pointer is captured
not the pointed data

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 92 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Problem #1
Incorrectly capturing
pointed data

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 92 / 217

Common tasking problems

Problem #1
Incorrectly capturing pointed data

Problem
firstprivate does not allow to capture data through pointers

Solutions
1 Capture it manually
2 Copy it to an array and capture the array with firstprivate

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 93 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 94 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Caution!
Will state still be valid by the
time memcpy is executed?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 94 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Problem #2
Data can go out of scope!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 94 / 217

Common tasking problems

Problem #2
Out-of-scope data

Problem
Stack-allocated parent data can become invalid before being used by
child tasks

Only if not captured with firstprivate

Solutions
1 Use firstprivate when possible
2 Allocate it in the heap

Not always easy (we also need to free it)
3 Put additional synchronizations

May reduce the available parallelism

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 95 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 96 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Shared variable needs protected access

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 96 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Solutions
Use critical

Use atomic

Use threadprivate

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 96 / 217

Common tasking problems

Reductions for tasks

Example

i n t s o l u t i o n s =0;
i n t mysolutions=0;
#pragma omp t h r e a d p r i v a t e (mysolutions)

void s ta r t_sea rch ()
{
#pragma omp parallel
{

#pragma omp single
{

bool i n i t i a l _ s t a t e [n] ;
search (n ,0 , i n i t i a l _ s t a t e) ;

}
#pragma omp atomic

s o l u t i o n s += mysolutions ;
}

}

Use a separate counter for each thread

Accumulate them at the end

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 97 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolutions++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 98 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolutions++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Pruning mechanism potentially introduces
imbalance in the tree

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 99 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolutions++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task untied
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Untied clause
Allows the
implementation to
easier load balance

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 99 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolutions++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task untied
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Because of untied this is not safe!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 100 / 217

Common tasking problems

Pitfall #3
Unsafe use of untied tasks

Problem
Because tasks can migrate between threads at any point
thread-centric constructs can yield unexpected results

Remember
When using untied tasks avoid:

Threadprivate variables
Any thread-id uses

And be very careful with:
Critical regions (and locks)

Simple solution
Create a task tied region with #pragma omp task if(0)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 101 / 217

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
#pragma omp task i f (0)
mysolutions++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task untied
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Now this statement is tied and safe

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 102 / 217

Common tasking problems

Task granularity

Granularity is a key performance factor
Tasks tend to be fine-grained
Try to “group“ tasks together

Use if clause or manual transformations

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 103 / 217

Common tasking problems

Using the if clause

Example

void search (i n t n , i n t j , bool ∗s ta te , int depth)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
#pragma omp task i f (0)
mysolut ions ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task untied if(depth < MAX_DEPTH)
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state,depth+1) ;
}

}
#pragma omp taskwait

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 104 / 217

Common tasking problems

Using an if statement

Example

void search (i n t n , i n t j , bool ∗s ta te , int depth)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
#pragma omp task i f (0)
mysolut ions ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task untied
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

if (depth < MAX_DEPTH)
search (n , j +1 , new_state,depth+1) ;

else
search_serial(n,j+1,new_state);

}
}
#pragma omp taskwait

}
Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 105 / 217

Part V

Hands-on (II)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 106 / 217

Outline

List traversal

Computing Pi

Finding Fibonacci

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 107 / 217

Before you start

Copy the exercises to your directory:

$ cp -a
∼aduran/Prace_OpenMP_Handson_1/tasking .

Enter the tasking directory to do the following exercises.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 108 / 217

List traversal

Outline

List traversal

Computing Pi

Finding Fibonacci

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 109 / 217

List traversal

List traversal

Examine the code
Take a look at the list.cc file which implements a parallel list traversal
with OpenMP.

1 What should be the output of executing this program?
2 Run it with one thread:

$./list

3 Do you get the expected result?
4 Run it with two threads:

$ OMP_NUM_THREADS=2 ./list

5 Does it work?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 110 / 217

List traversal

List traversal

Fix it
Fix the list traversal so it gets the correct result with two threads (or
more). Use the following questions as a guide to help you:

1 How many tasks are being generated?
2 Which is the data scoping in each construct?
3 Are memory accesses properly synchronized?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 111 / 217

Computing Pi

Outline

List traversal

Computing Pi

Finding Fibonacci

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 112 / 217

Computing Pi

Computing Pi

Our algorithm
We will use an algorithm that computes the pi number through
numerical integration.

Take a look at the pi.c file
Because iterations are independent we will create one task per
iteration

When you run make it will generate two programs: pi.serial and
pi.omp. We will use the serial version to evaluate our parallel version.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 113 / 217

Computing Pi

Computing Pi

Measuring time
To get reliable execution times will use the Altix batch system. Use
the following command to launch your executions:

$ make run-$program-$threads

It sets up OMP_NUM_THREADS for you
It will generate an output file in your directory when it finishes.
You can check your status with mnq
Run both versions with one thread

$ make run-pi.ser-1

$ make run-pi.omp-1

When they finish compare the results. Now run it with 2 threads.
What do you observe? How is this possible?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 114 / 217

Computing Pi

Computing Pi

Problems
Our version of pi has two main problems:

Tasks are too fine grain. The overheads associated with creating a
task cannot be overcome.
There is too much synchronization. Hidden synchronization and
communications are a common source of performance problems.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 115 / 217

Computing Pi

Computing Pi

Increase the granularity
1 Modify the pi program so that each task executes a chunk of N

iterations,
2 Experiment with different numbers of N and see how the execution

time changes
Which would be the optimal number for N?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 116 / 217

Computing Pi

Computing Pi

Reduce the number of synchronizations
1 Modify the pi program so that instead of using critical uses an
atomic construct

Does the execution time improve?
2 We can improve it further by reducing the number of atomic

accesses
Use a private variable and only do one atomic update at the
end of the task

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 117 / 217

Computing Pi

Computing Pi

Final numbers
1 Run our improved version up to 8 threads.

Does it scale?
How does it compare to the serial version?

2 Now increase the total number of iterations by 10 and run it again.

How it behaves now?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 118 / 217

Computing Pi

Computing Pi

Some conclusions
It’s difficult to go further than this with tasks

Task parallelism is very flexible but we need to overcome the
overheads

Beware hidden communication and synchronizations
OpenMP parallelization is an incremental process

As every other paradigm, sometimes we need effort to obtain
optimal performance

We’ll see later how to improve further our pi program

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 119 / 217

Finding Fibonacci

Outline

List traversal

Computing Pi

Finding Fibonacci

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 120 / 217

Finding Fibonacci

Fibonacci

The algorithm
We used a recursive implementation to find the Fibonacci number in
the fib.c file.

It’s very inefficient
But useful for educational purposes :-)

To compile it use:

$ make fib

To submit jobs use:

$ make run-fib-threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 121 / 217

Finding Fibonacci

Fibonacci

First
Complete the code so all the branches are computed in parallel

Use the serial version to check you have the correct result
Add code to measure the time it takes to compute the number

To be more precise put the code inside the single region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 122 / 217

Finding Fibonacci

Fibonacci

Evaluate
1 Run the code from 1 to 8 threads.
2 Compare it to the time of the serial version
3 What do you observe?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 123 / 217

Finding Fibonacci

Fibonacci

Incresing granularity
As in the pi program, Fibonacci because it recursive nature ends gen-
erating to fine grain tasks.

1 Modify the program so it does not generate tasks at all when n is
too small (e.g. 20)

2 Run again this improved version up to 8 threads
3 How does it compare with respect to the serial version?
4 Try changing the cut-off value from 20 and how affects

performance

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 124 / 217

Part VI

Data Parallelism in OpenMP

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 125 / 217

Outline

The worksharing concept

Loop worksharing

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 126 / 217

The worksharing concept

Outline

The worksharing concept

Loop worksharing

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 127 / 217

The worksharing concept

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

Threads cooperate to do some work
Better way to split work than using thread-ids
Lower overhead than using tasks

But, less flexible

In OpenMP, there are four worksharing constructs:
single
loop worksharing
section
workshare

We’ll see them later

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 128 / 217

Restriction: worksharings cannot be nested

Loop worksharing

Outline

The worksharing concept

Loop worksharing

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 129 / 217

Loop worksharing

Loop parallelism

The for construct

#pragma omp for [c lauses]
for (i n i t −expr ; t es t−expr ; inc−expr)

where clauses can be:
private
firstprivate
lastprivate(variable-list)
reduction(operator:variable-list)
schedule(schedule-kind)
nowait
collapse(n)
ordered We’ll see it later

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 130 / 217

Loop worksharing

The for construct

How it works?
The iterations of the loop(s) associated to the construct are divided
among the threads of the team.

Loop iterations must be independent
Loops must follow a form that allows to compute the number of
iterations
Valid data types for inductions variables are: integer types,
pointers and random access iterators (in C++)

The induction variable(s) are automatically privatized

The default data-sharing attribute is shared

It can be merged with the parallel construct:
#pragma omp parallel for

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 131 / 217

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized
Must be explicitly privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 132 / 217

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

New created threads cooperate to exe-
cute all the iterations of the loop

The i variable is automatically privatized
Must be explicitly privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 132 / 217

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 132 / 217

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 132 / 217

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types!= cannot be used in the test expression

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 133 / 217

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 133 / 217

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 133 / 217

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

v [i] = x ;
x += dx ;

}

Each iteration x depends on the
previous one. Can’t be parallelized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 134 / 217

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

v [i] = x ;
x += dx ;

}

Each iteration x depends on the
previous one. Can’t be parallelized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 134 / 217

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

x = i ∗ dx ;
v [i] = x ;

}

But x can be rewritten in terms of i .
Now it can be parallelized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 135 / 217

Loop worksharing

Removing dependences

Example

x = 0;
#pragma omp parallel for private (x)
for (i = 0 ; i < n ; i ++)
{

x = i ∗ dx ;
v [i] = x ;

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 136 / 217

Loop worksharing

The lastprivate clause

When a variable is declared lastprivate, a private copy is
generated for each thread. Then the value of the variable in the last
iteration of the loop is copied back to the original variable.

A variable can be both firstprivate and lastprivate

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 137 / 217

Loop worksharing

The lastprivate clause

Example

i n t i
#pragma omp for l a s t p r i v a t e (i)
for (i = 0 ; i < 100; i ++)

v [i] = 0 ;

p r i n t f ("i=%d\n" , i) ;

prints 100

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 138 / 217

Loop worksharing

The lastprivate clause

Example

i n t i
#pragma omp for l a s t p r i v a t e (i)
for (i = 0 ; i < 100; i ++)

v [i] = 0 ;

p r i n t f ("i=%d\n" , i) ; prints 100

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 138 / 217

Loop worksharing

The reduction clause

A very common pattern is where all threads accumulate some values
into a shared variable

E.g., n += v[i], our pi program, ...
Using critical or atomic is not good enough

Besides being error prone and cumbersome

Instead we can use the reduction clause for basic types.
Valid operators for C/C++: +,-,*,|,||,&,&&,^
Valid operators for Fortran: +,-,*,.and.,.or.,.eqv.,.neqv.,max,min

also supports reductions of arrays

The compiler creates a private copy that is properly initialized
At the end of the region, the compiler ensures that the shared
variable is properly (and safely) updated.

We can also specify reduction variables in the parallel construct.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 139 / 217

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

return sum;
}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 140 / 217

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

return sum;
}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 140 / 217

Loop worksharing

Also in parallel

Example

i n t nt = 0 ;

#pragma omp parallel reduction (+ : n t)
n t ++;

p r i n t f ("%d\n" , n t) ;

reduction available in parallel as well

Prints the number of threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 141 / 217

Loop worksharing

Also in parallel

Example

i n t nt = 0 ;

#pragma omp parallel reduction (+ : n t)
n t ++;

p r i n t f ("%d\n" , n t) ;

reduction available in parallel as well

Prints the number of threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 141 / 217

Loop worksharing

Also in parallel

Example

i n t nt = 0 ;

#pragma omp parallel reduction (+ : n t)
n t ++;

p r i n t f ("%d\n" , n t) ;

reduction available in parallel as well

Prints the number of threads

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 141 / 217

Loop worksharing

The schedule clause

The schedule clause determines which iterations are executed by
each thread.

If no schedule clause is present then is implementation defined
There are several possible options as schedule:

STATIC

STATIC,chunk

DYNAMIC[,chunk]

GUIDED[,chunk]

AUTO

RUNTIME

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 142 / 217

Loop worksharing

The schedule clause

Static schedule
The iteration space is broken in chunks of approximately size
N/num − threads. Then these chunks are assigned to the threads in a
Round-Robin fashion.

Static,N schedule (Interleaved)
The iteration space is broken in chunks of size N. Then these chunks
are assigned to the threads in a Round-Robin fashion.

Characteristics of static schedules
Low overhead
Good locality (usually)
Can have load imbalance problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 143 / 217

Loop worksharing

The schedule clause

Dynamic,N schedule
Threads dynamically grab chunks of N iterations until all iterations
have been executed. If no chunk is specified, N = 1.

Guided,N schedule
Variant of dynamic. The size of the chunks deceases as the threads
grab iterations, but it is at least of size N. If no chunk is specified,
N = 1.

Characteristics of dynamic schedules
Higher overhead
Not very good locality (usually)
Can solve imbalance problems

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 144 / 217

Loop worksharing

The schedule clause

Auto schedule
In this case, the implementation is allowed to do whatever it wishes.

Do not expect much of it as of now

Runtime schedule
The decision is delayed until the program is run through the
sched-nvar ICV. It can be set with:

The OMP_SCHEDULE environment variable
The omp_set_schedule() API call

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 145 / 217

Loop worksharing

False sharing

When a thread writes to a cache location, and another thread
reads the same location the coherence protocol will copy the data
from one cache to the other. This is called true sharing
But it can happen that this communication happens even if two
threads are not working on the same memory address. This is
false sharing

Cpu1 Cpu2

x y

Invalidations

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 146 / 217

Loop worksharing

Scheduling

Example

i n t v [N] ;

#pragma omp for
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
v [i] += j ;

i loop quite unbalaced
dynamic schedule?

lots of false sharing!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 147 / 217

Loop worksharing

Scheduling

Example

i n t v [N] ;

#pragma omp for
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
v [i] += j ;

i loop quite unbalaced

dynamic schedule?

lots of false sharing!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 147 / 217

Loop worksharing

Scheduling

Example

i n t v [N] ;

#pragma omp for
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
v [i] += j ;

i loop quite unbalaced

dynamic schedule?

lots of false sharing!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 147 / 217

Loop worksharing

Scheduling

Example

i n t v [N] ;

#pragma omp for
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
v [i] += j ;

i loop quite unbalaced
dynamic schedule?

lots of false sharing!

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 147 / 217

Loop worksharing

The nowait clause

When a worksharing has a nowait clause then the implicit barrier
at the end of the loop is removed.

This allows to overlap the execution of non-dependent
loops/tasks/worksharings

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 148 / 217

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

First and second loop are indepen-
dent so we can overlap them

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 149 / 217

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

On a side note, you would be bet-
ter by fusing the loops in this case

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 149 / 217

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗v [i] ;

First and second loop are depen-
dent!. No guarantees that the pre-
vious iteration is finished

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 150 / 217

Loop worksharing

The nowait clause

Exception: static schedules
If the two (or more) loops have the same static schedule and all
have the same number of iterations.

Example

#pragma omp for schedule (stat ic , 2) nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for schedule (stat ic , 2)
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗v [i] ;

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 151 / 217

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 152 / 217

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 152 / 217

Break

Coffee time! :-)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 153 / 217

Part VII

Hands-on (III)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 154 / 217

Outline

Matrix Multiply

Computing Pi (revisited)

Mandelbrot

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 155 / 217

Before you start

Copy the exercises to your directory:

$ cp -a
∼aduran/Prace_OpenMP_Handson_2/worksharing
.

Enter the worksharing directory to do the following exercises.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 156 / 217

Matrix Multiply

Outline

Matrix Multiply

Computing Pi (revisited)

Mandelbrot

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 157 / 217

Matrix Multiply

Matrix Multiply

Parallel loops
The file matmul implements a sequential matrix multiply.

1 Use OpenMP worksharings to parallelize the application.
check the init_mat and matmul functions

2 Run it up to 8 threads to check the scalability

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 158 / 217

Remember: To submit it use make run-matmul.omp-$threads

Matrix Multiply

Matrix Multiply

Memory matters!
To optimize accesses to the cache in these kind of algorithms, it is a
common practice to “logically” split the matrix in blocks of size BxB, and
do computation block-a-block instead of going through all the matrix at
once.

1 Implement such a blocking scheme for our matrix multiply
2 Experiment with different sizes of B
3 Run it up to 8 threads and compare the results with the previous

version

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 159 / 217

Tip: You need three additional inner loops

Computing Pi (revisited)

Outline

Matrix Multiply

Computing Pi (revisited)

Mandelbrot

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 160 / 217

Computing Pi (revisited)

Computing Pi

Using data parallelism
1 Complete the implementation of our pi algorithm using data

parallelism
2 Execute with 1 and 2 threads.

Does it scale?
How does it compare to our previous implementation with tasks?
What is the problem?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 161 / 217

Computing Pi (revisited)

Computing Pi

Problem
The number of synchronizations is still very high for this program to
scale.

Using reduction

1 Change the program to make use of the reduction clause
2 Run it up to 8 threads
3 How it compares to the previous version?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 162 / 217

Mandelbrot

Outline

Matrix Multiply

Computing Pi (revisited)

Mandelbrot

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 163 / 217

Mandelbrot

Mandelbrot

More data parallelism
We will now parallelize an algorithm that generates sections of the Man-
delbrot function.

1 Edit file mandel.c and complete the parallelization in function
mandel

Note that there is a dependence on the variable x

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 164 / 217

Mandelbrot

Mandelbrot

Uncover load imbalance
We can see that each point in the final output is computed through the
mandel_point function. If we check the code of that function we can see
that the number of iterations it takes will be different from one point to
another.
We want to know how many iterations (this also happens to be the result
of mandel_point) each thread does.

1 Add a private counter to each thread
2 Add to this counter the result of each mandel_point call by that

thread
3 Output the count for each thread at the end of the parallel region
4 What do you observe?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 165 / 217

Mandelbrot

Mandelbrot

Playing with schedules

To overcome the observed load imbalance we can use a different loop
schedule.

Use the clause schedule(runtime) so the schedule is not
fixed at compile time
Now run different experiments with different schedules and
number of threads

Try at least static, dynamic and guided

Which one obtains the best result?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 166 / 217

Tip: Change OMP_SCHEDULE before doing make run-...

Part VIII

Other OpenMP Topics

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 167 / 217

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 168 / 217

The master construct

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 169 / 217

The master construct

Only the master thread

The master construct

#pragma omp master
s t r u c t u r e d block

The structured block is only executed by the master thread
Useful when we want always the same thread to execute something

No implicit barrier at the end

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 170 / 217

The master construct

Master construct

Example

void foo ()
{

#pragma omp parallel
{

#pragma omp single
p r i n f t ("I am %d\n" , omp_get_thread_num ()) ;

#pragma omp master
p r i n f t ("I am %d\n" , omp_get_thread_num ()) ;

}
}

Can be any thread

It’s always thread 0

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 171 / 217

The master construct

Master construct

Example

void foo ()
{

#pragma omp parallel
{

#pragma omp single
p r i n f t ("I am %d\n" , omp_get_thread_num ()) ;

#pragma omp master
p r i n f t ("I am %d\n" , omp_get_thread_num ()) ;

}
}

Can be any thread

It’s always thread 0

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 171 / 217

Other synchronization mechanisms

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 172 / 217

Other synchronization mechanisms

Ordering

The ordered construct

#pragma omp ordered
s t r u c t u r e d block

Must appear in the dynamic extend of a loop worksharing
The worksharing must also have the ordered clause

The structured block is executed in the iteration’s sequential order

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 173 / 217

Other synchronization mechanisms

Locks

OpenMP provides lock primitives for low-level synchronization
omp_init_lock Initialize the lock
omp_set_lock Acquires the lock
omp_unset_lock Releases the lock
omp_test_lock Tries to acquire the lock (won’t block)
omp_destroy_lock Frees lock resources

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 174 / 217

Other synchronization mechanisms

Locks

OpenMP provides lock primitives for low-level synchronization
omp_init_lock Initialize the lock
omp_set_lock Acquires the lock
omp_unset_lock Releases the lock
omp_test_lock Tries to acquire the lock (won’t block)
omp_destroy_lock Frees lock resources

OpenMP also provides nested locks where the thread owning the lock
can reacquire the lock without blocking.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 174 / 217

Other synchronization mechanisms

Locks

Example

#include <omp . h>
void foo ()
{

omp_lock_t l ock ;

omp_init_lock(& lock) ;
#pragma omp parallel
{

omp_set_lock(& lock) ;
/ / mutual exc lus ion reg ion
omp_unset_lock(& lock) ;

}
omp_destroy_lock(& lock) ;

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 175 / 217

Other synchronization mechanisms

Locks

Example

#include <omp . h>
void foo ()
{

omp_lock_t l ock ;

omp_init_lock(& lock) ;
#pragma omp parallel
{

omp_set_lock(& lock) ;
/ / mutual exc lus ion reg ion
omp_unset_lock(& lock) ;

}
omp_destroy_lock(& lock) ;

}

Lock must be initialized before being used

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 175 / 217

Other synchronization mechanisms

Locks

Example

#include <omp . h>
void foo ()
{

omp_lock_t l ock ;

omp_init_lock(& lock) ;
#pragma omp parallel
{

omp_set_lock(& lock) ;
/ / mutual exc lus ion reg ion
omp_unset_lock(& lock) ;

}
omp_destroy_lock(& lock) ;

}

Only one thread at a time here

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 175 / 217

Other synchronization mechanisms

Locks

Example

inc lude <omp . h>

omp_lock_t l ock ;

void foo ()
{

omp_set_lock(& lock) ;
}

void bar ()
{

omp_unset_lock(& lock) ;
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 176 / 217

Other synchronization mechanisms

Locks

Example

inc lude <omp . h>

omp_lock_t l ock ;

void foo ()
{

omp_set_lock(& lock) ;
}

void bar ()
{

omp_unset_lock(& lock) ;
}

Locks are unstructured

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 176 / 217

Nested parallelism

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 177 / 217

Nested parallelism

Nested parallelism

OpenMP parallel constructs can dynamically be nested. This
creates a hierarchy of teams that is called nested parallelism.
Useful when not enough parallelism is available with a single level
of parallelism

More difficult to understand and manage
Implementations are not required to support it

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 178 / 217

Nested parallelism

Controlling nested parallelism

Related Internal Control Variables
The ICV nest-var controls whether nested parallelism is
enabled or not.

Set with the OMP_NESTED environment variable
Set with the omp_set_nested API call
The current value can be retrieved with omp_get_nested.

The ICV max-active-levels-var controls the maximum
number of nested regions

Set with the OMP_MAX_ACTIVE_LEVELS environment variable
Set with the omp_set_max_active_levels API call
The current value can be retrieved with
omp_get_max_active_levels.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 179 / 217

Nested parallelism

Nested parallelism info API

To obtain information about nested parallelism
How many nested parallel regions at this point?

omp_get_level()
How many active (with 2 or more threads) regions?

omp_get_active_level()
Which thread-id was my ancestor?

omp_get_ancestor_thread_num(level)
How many threads there are at a previous region?

omp_get_team_size(level)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 180 / 217

Other worksharings

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 181 / 217

Other worksharings

Static tasks

The sections construct

#pragma omp sections [c lauses]
#pragma omp section

s t r u c t u r e b lock
. . .

The different section are distributed among the threads
There is an implicit barrier at the end
Clauses can be:

private
lastprivate
firstprivate
reduction
nowait

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 182 / 217

Other worksharings

Sections

Example

#pragma omp parallel sections num_threads (3)
{
#pragma omp section

read (data) ;
#pragma omp section
#pragma omp parallel

work (data) ;
#pragma omp section

w r i t e (data) ;
}

Combined construct

Nested parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 183 / 217

Other worksharings

Sections

Example

#pragma omp parallel sections num_threads (3)
{
#pragma omp section

read (data) ;
#pragma omp section
#pragma omp parallel

work (data) ;
#pragma omp section

w r i t e (data) ;
}

Combined construct

Nested parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 183 / 217

Other worksharings

Sections

Example

#pragma omp parallel sections num_threads (3)
{
#pragma omp section

read (data) ;
#pragma omp section
#pragma omp parallel

work (data) ;
#pragma omp section

w r i t e (data) ;
}

Combined construct

Sections distributed among threads

Nested parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 183 / 217

Other worksharings

Sections

Example

#pragma omp parallel sections num_threads (3)
{
#pragma omp section

read (data) ;
#pragma omp section
#pragma omp parallel

work (data) ;
#pragma omp section

w r i t e (data) ;
}

Combined construct

Nested parallel region

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 183 / 217

Other worksharings

Supporting array syntax

The workshare construct

$!OMP WORKSHARE
ar ray syntax

!$OMP END WORKSHARE [NOWAIT]

Only for Fortran
The array operation is distributed among threads

Example

$!OMP WORKSHARE
A(1 :M) = A(1 :M) ∗ B(1 :M)

!$OMP END WORKSHARE NOWAIT

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 184 / 217

Other environment variables and API calls

Outline

The master construct

Other synchronization mechanisms

Nested parallelism

Other worksharings

Other environment variables and API calls

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 185 / 217

Other environment variables and API calls

Other Environment variables

OMP_STACKSIZE Controls the stack size of created threads
OMP_WAIT_POLICY Controls the behaviour of idle threads
OMP_THREAD_LIMIT Limit of threads that can be created
OMP_DYNAMIC Turns on/off thread dynamic adjusting

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 186 / 217

Other environment variables and API calls

Other API calls

omp_in_parallel Returns true if inside a parallel re-
gion

omp_get_wtick Returns the precision of the wtime
clock

omp_get_thread_limit Returns the limit of threads
omp_set_dynamic Returns whether thread dynamic

adjusting is on or off
omp_get_dynamic Returns the current value of dy-

namic adjusting
omp_get_schedule Returns the current loop schedule

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 187 / 217

Part IX

Hands-on (IV)

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 188 / 217

Outline

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 189 / 217

Before you start

Copy the exercises to your directory:

$ cp -a
∼aduran/Prace_OpenMP_Handson_2/other .

Enter the other directory to do the following exercises.

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 190 / 217

Nested parallelism

First take
1 Edit the file nested.c and try to understand what it does
2 Run make
3 Execute the programe nested with differents numbers of threads

How many messages are printed? Does it match your
expectations?

4 Run the program again the defining the OMP_NESTED variable.
E.g.:

$ OMP_NUM_THREADS=2 OMP_NESTED=true
./nested

5 What is the difference? Why?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 191 / 217

Nested parallelism

Shaping the tree
1 Now, change the code so the nested level only creates as many

threads as the parent id+1
Thread 0 creates a nested parallel region of 1

Thread 1 creates a nested parallel region of 2

...

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 192 / 217

Tip: Use either omp_set_num_threads or num_threads

Locks

Exclusive access
1 Edit the file lock.c and take a look at the code
2 Parallelize the first two loops of the application
3 Now run it several times with different numbers of threads
4 We see that result differs because of improper synchronization
5 Use critical to fix it

What problem do we have?

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 193 / 217

Locks

Locks to the help
1 Use locks to implement a fine grain locking scheme
2 Assign a lock to each position of the array a
3 Then use it to lock only that position in the main loop

Does it work better?
4 Now compare it to an implementation using atomic

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 194 / 217

Part X

OpenMP in the future

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 195 / 217

Outline

How OpenMP evolves

OpenMP 3.1

OpenMP 4.0

OpenMP is Open

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 196 / 217

How OpenMP evolves

Outline

How OpenMP evolves

OpenMP 3.1

OpenMP 4.0

OpenMP is Open

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 197 / 217

How OpenMP evolves

The OpenMP Language Committee

Body that prepares new standard versions for the ARB.
Composed by representatives of all ARB members

Lead by Bronis de Supinski from LLNL

Integrates the information about the different subcommittees
Currently working on OpenMP 3.1

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 198 / 217

How OpenMP evolves

The OpenMP Subcommittees

When a topic is deemed important or too complex usually a separate
group is formed (with a subset of the same people usually).
Currently, the following subcommittees exist:

1 Error model subcommittee
In charge of defining an error model for OpenMP

2 Tasking subcommittee
In charge of defining new extensions to the tasking model

3 Affinity subcommittee
In charge of breaking the flat memory model

4 Accelerators subcommittee
In charge of integrating accelerator computing into OpenMP

5 Interoperability and Composability subcommittee

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 199 / 217

How OpenMP evolves

What can we expect in the future?

Disclaimer
This are my subjective appreciations.
All these dates and topics are my guessings.
They might or might not happen.

Tentative Timeline
November 2010 3.1 Public comment version
May 2011 3.1 Final version
June 2012 4.0 Public comment version
November 2012 4.0 Final version

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 200 / 217

OpenMP 3.1

Outline

How OpenMP evolves

OpenMP 3.1

OpenMP 4.0

OpenMP is Open

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 201 / 217

OpenMP 3.1

Clarifications

Several clarifications to different parts of the specification
Nothing exciting but needs to be done

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 202 / 217

OpenMP 3.1

Atomic extensions

Extensions to the atomic construct to allow:
to do atomic writes
#pragma omp atomic

x = value ;

to capture the value before/after the atomic update
#pragma omp atomic

v = x , x−−;

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 203 / 217

OpenMP 3.1

User-defined reductions

Allow the users to extend reductions to cope with non-basic types and
non-standard operators.

In 3.1
Including pointer reductions in C

Including class members and operators in C++

In 4.0
Array for C

Template reductions for C++

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 204 / 217

OpenMP 3.1

User-defined reductions

Example

#pragma omp declare reduction (+ : s td : : s t r i n g : omp_out += omp_in)

void foo ()
{

s td : : s t r i n g s ;

#pragma omp parallel reduction (+ : s)
{

s += "I’m a thread"
}

s td : : cout << s << std : : endl ;

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 205 / 217

OpenMP 3.1

Affinity extensions

New environment variables
OMP_PROCBIND=true, false

Portable mechanism to bind threads

Extend OMP_NUM_THREADS to support multiple levels of
parallelism
OMP_AFFINITY=scatter,compact

Specifies how threads should be distributed in the machine
OMP_MEMORY_PLACEMENT=first_touch|round_robin|random

Portable mechanisms to specify memory placement policies

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 206 / 217

OpenMP 3.1

Tasking extensions

New constructs/clause
the taskyield construct to allow user-defined scheduling points
the final clause to allow the optimization of leaf tasks

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 207 / 217

OpenMP 4.0

Outline

How OpenMP evolves

OpenMP 3.1

OpenMP 4.0

OpenMP is Open

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 208 / 217

OpenMP 4.0

Error model

Allow the programmer to catch and react to runtime errors
Integrate C++ exceptions into this model
Allow the programmer to cancel nicely the parallel computation

It looks like we are leaning towards a model based on callbacks

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 209 / 217

OpenMP 4.0

Error model

Example

void er ro r_hand le r (omp_err_info_t ∗ i n fo , i n t ∗nths)
{

i f (omp_get_error_type (i n f o) == OMP_ERR_NOT_ENOUGH_THREADS)
∗nths = ∗nths > 1 ? ∗nths −1 : 1 ;

return OMP_RETRY ;
}

nths = 4;
#pragma omp parallel onerror (e r ro r_hand ler ,& nths) num_threads (nths)
{

. . . .
}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 210 / 217

OpenMP 4.0

Other tasking improvements

Tasking reductions
Add a reduction clause to the task construct

Tasking dependences
Allow finer tasking synchronizations by means of expressing data
dependences among tasks

Scheduling hints for the runtime
Allow the programmer to express some kind of task priority

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 211 / 217

OpenMP 4.0

Task dependences

Example

for (; ;) {
char ∗b u f f e r ;
#pragma omp task output (b u f f e r)
{

b u f f e r = mal loc (. . .) ;
stage1 (b u f f e r) ;

}
#pragma omp task inout (b u f f e r)
{

stage2 (b u f f e r)
}
#pragma omp task input (b u f f e r)
{

stage3 (b u f f e r)
}

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 212 / 217

OpenMP 4.0

Accelerators support

Discussion is in the very early stages.
Several proposals on the table

Cover both data and task parallelism
Will probably take care of the backend compilation

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 213 / 217

OpenMP 4.0

A glimpse into BSC proposal

Example

i n t main (void) {
for (i n t i = 0 ; i < NB; i ++)

for (i n t j = 0 ; j < NB; j ++)
for (i n t k = 0; k < NB; k++)
#pragma omp target device (smp, c e l l) \

copy_in ([BS] [BS] A, [BS] [BS] B, [BS] [BS] C) \
copy_out ([BS] [BS] C)

#pragma omp task inout ([BS] [BS] C)
matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;

}

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 214 / 217

OpenMP is Open

Outline

How OpenMP evolves

OpenMP 3.1

OpenMP 4.0

OpenMP is Open

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 215 / 217

OpenMP is Open

OpenMP is Open

Compunity
Compunity represents the OpenMP User’s Group.

It is an special ARB member
Representative: Barbara Chapman from Univ of Houston

Anyone can join and participate
and also give feedback

OpenMP Forum
Forum oversighted by ARB members

OpenMP usage forum
Spec clarifications forum

Several 3.1 clarifications have its origin in comments from users

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 216 / 217

OpenMP is Open

Where to go now?

http://www.openmp.org
http://www.compunity.org
http://nanos.ac.upc.edu

Alex Duran (BSC) Advanced Programming with OpenMP February 2, 2013 217 / 217

	OpenMP Basics
	OpenMP Overview
	The OpenMP model
	Writing OpenMP programs
	Creating Threads
	Data-sharing attributes
	Synchronization

	Hands-on (I)
	Setup
	Hello world!
	Other

	
	The OpenMP Tasking Model
	OpenMP tasks
	Task synchronization
	The single construct
	Task clauses
	Common tasking problems

	Hands-on (II)
	List traversal
	Computing Pi
	Finding Fibonacci

	Data Parallelism in OpenMP
	The worksharing concept
	Loop worksharing

	Hands-on (III)
	Matrix Multiply
	Computing Pi (revisited)
	Mandelbrot

	Other OpenMP Topics
	The master construct
	Other synchronization mechanisms
	Nested parallelism
	Other worksharings
	Other environment variables and API calls

	Hands-on (IV)
	OpenMP in the future
	How OpenMP evolves
	OpenMP 3.1
	OpenMP 4.0
	OpenMP is Open

