
 Copyright, Lawrence Snyder, 19991

CSE596 Parallel Computation

Lawrence Snyder

Details: http://www.cs.washington.edu/education/courses/cse596/CurrentQtr/

 Copyright, Lawrence Snyder, 19992

CSE596 Parallel Computation, Organization

• There is a survey to fill out on the web page
• Text book: Parallel Computer Architecture: A

hardware/software approach, D. E. Culler and J. P.
Singh, Morgan Kaufmann, 1999 -- Chapters 5-7 will be
assigned, everything else is optional

• There will be occasional homework assignments and
an Exam on March 19th

• Topics by week (revisons possible):

1: Concepts of Parallelism 6: Snooping MP
2: ZPL Programming 7: Scalable MP
3: Assessing Performance 8: Routing, Latency Hiding, etc
4: Parallelism Panorama 9: Programming Paradigms
5: Shared Memory MP 10: Algorithms and applications

 Copyright, Lawrence Snyder, 19993

Thinking In Parallel

Usually when we formulate a computation, we
think of a sequential solution. Good parallel

computations rarely result from transforming a
sequential solution. A paradigm shift is
required. So, it is essential to acquire a

“parallel point of view” to produce good parallel
computations from the start

 Copyright, Lawrence Snyder, 19994

A Sample Computation

• Consider the problem of summing a sequence
of numbers, x1, x2 , x3 , ..., xn: Σ xi

• Standard solution:

• The solution specifies a specific order for the
summation, which is not essential

sum = 0;
for (i=0;i<n;i++){

sum = sum + X[i];
};

 Copyright, Lawrence Snyder, 19995

A More Parallel Solution
• Exploit the associativity of addition ...

– Number processors 0 to n/2-1
– Processor Pi adds x2P+1 and x2(P+1) ...

x1 x2 x3 x4 x5 x6 x7 x8

s1,2 s3,4 s5,6 s7,8

s1-4 s5-8

s1-8

P0 P1 P2 P3

P0 does
log n + 1
additions

 Copyright, Lawrence Snyder, 19996

Prefix Sums ...

• Sum the prefixes of a sequence of numbers,
x1, x2 , x3 , ..., xn, such that yi = Σi<n xi

• Each yi result seems to depend on computing
the previous item

• One solution is to apply the binary tree
summation to compute each yi in parallel ...
this would take 1+1+2+2+3+3+...+n/2+n/2

= n(n+1)/4 processors
and a lot of data communication

 Copyright, Lawrence Snyder, 19997

Parallel Prefix, Ladner & Fischer [1980]

x1 x2 x3 x4 x5 x6 x7 x8

s1-4 s5-8

P0 P1 P2 P3

Pi receives sum
of items to its
left, fwds to left
s.t., adds sum of
left s.t, sends to
root of right s.t.

s1,2 s3,4 s5,6 s7,8

c1-2 c5-6

c1 c3 c5 c7

s1-8c1-4

x1 x1-2 x1-3 x1-4 x1-5 x1-6 x1-7 x1-8

c-- c1-4

c-- c1-2 c1-4 c1-6

 Copyright, Lawrence Snyder, 19998

When fewer processors are available ...

x1 x2 x3 x4 x5 x6 x7 x8

s1-4 s5-8

P0 P1

Even processors
do the work of
the processor to
their right, and
recursively ...

s1,2 s3,4 s5,6 s7,8

c1-2 c5-6

c1 c3 c5 c7

s1-8c1-4

x1 x1-2 x1-3 x1-4 x1-5 x1-6 x1-7 x1-8

c-- c1-4

c-- c1-2 c1-4 c1-6

 Copyright, Lawrence Snyder, 19999

Essential Features of the Example

• Arbitrary ordering constraints removed by
exploiting associativity -- focus on problem
characteristics

• Chose direct solution rather than “reducing to
an earlier solution” that “over-parallelizes” --
too parallel is no more useful than sequential

• Ladner & Fischer solution can use any number
of processors in the range 1 - n/2 -- scalable
parallelism is essential in practice

These Guidelines Will Be Elaborated Further

 Copyright, Lawrence Snyder, 199910

Consider Another Example ...

• Matrix multiplication is a common operation in
scientific computing

• The C code for multiplying an mxn matrix A
times an nxp matrix B and to produce an mxp
matrix C is ...
for (i=0; i<m; i++){
 for (j=0; j<p; j++){
 C[i][j] = 0;
 for (k=0; k<n; k++){

C[i][j] += A[i][k]* B[k][j];
 }

 }
}

 Copyright, Lawrence Snyder, 199911

Properties of the Computation ...
• Addition and multiplication are associative
• Each position cij in the result is the sum of the

ith row times the jth column ... all of them could
be computed simultaneously

• Each position admits plenty of parallelsim ...
• All multiplys in row i×j column are independent
• Sum of products could use binary addition tree

Notice that ideas from sequential complexity theory such as
Strassen’s Algorithm, that reduces the number of multiplications
from O(n3) to O(n2.81), do not apply. Concurrency counts here!

 Copyright, Lawrence Snyder, 199912

A Very Parallel Solution ...
• Each cij is computed in parallel such that

• One processor dedicated to each a[i][k]*b[k][j]
• Addition tree computes sum of those products

• How many steps?
• How many processors running concurrently?
• Is this solution even remotely practical?

• Data access -- conflicts/transit time/resources
• Computation time vs communication time

• Processor demands -- n3 procs for n2 results

Hello?

 Copyright, Lawrence Snyder, 199913

Realities of Parallel Computers ...

Dissiderata
• Every computer has a fixed number of processors
• Present large computers have a few hundred

processors up to a few thousand
• Using all available processors (usually) gives the

best performance
• Processors can be very simple, but as first

approximation, assume Pentium, PowerPC, MIPS
• The transmission of data from processor to

processor is a significant (often the most
signficant) cost

 Copyright, Lawrence Snyder, 199914

What’s Important?
• Maximizing number of processors used
• Minimizing execution time
• Minimizing the amount of work performed
• Reducing size of memory footprint

• Maximizing (minimizing) degree of data sharing
• Reducing data motion (interprocessor comm.)
• Maximizing synchroneity or maybe asynchroneity
• Guaranteeing portability among platforms
• Balancing work load across processors

• Maximizing programming convenience
• Avoiding races, guaranteeing determinacy
• Improve SoftEng... robust, maintain, debug, etc

 Copyright, Lawrence Snyder, 199915

My Answers ...

Maximizing number of processors used
Minimizing execution time

Minimizing the amount of work performed
Reducing size of memory footprint
Maximizing (minimizing) degree of data sharing
Reducing data motion (interprocessor comm.)

Maximizing synchroneity or maybe asynchroneity
Guaranteeing portability among platforms
Balancing work load across processors
Maximizing programming convenience
Avoiding races, guaranteeing determinacy

Improve SoftEng... robust, maintain, debug, etc

NA

1

1

1

4

NA

4

7

4

--

--

--

 Copyright, Lawrence Snyder, 199916

These answers are in conflict ...

• No. 1 Goals Conflict --
• Minimizing execution time ==> code close to the

hardware

• Portability ==> keep distance from hardware
because machines differ

• No. 1 Goal Conflicts with No. 4 Goal
• Convenience ==> ignore data motion
• Minimizing data motion ==> attend to data motion

How are these conflicts solved in the sequential world?

 Copyright, Lawrence Snyder, 199917

Reason by Analogy to Sequential Case
Sequential languages separate applications

development from computers:
– Architects build machines that run the language well
– Programmers need not worry about machine specifics

– The separation is a powerful accelerator for field

M2 M3M1

App1 App2 App4 App5App3

Programming Language, L

Compile L-to-M1 Compile L-to-M2 Compile L-to-M3

 Copyright, Lawrence Snyder, 199918

Enabling Technologies
What makes this separation work?

– Instruction set architectures (ISAs)
– Effective compilers that “place the program directly

on the iron” with little or no overhead
– Programmer’s “understanding” of idealized machine

Compile L-to-M2

M1pro M2M1

App1 App2 App3

Programming Language,
L

Compile L-to-M1

 Copyright, Lawrence Snyder, 199919

Machine Model Is The Interface

• The von Neumann machine is the conceptual
computer, “running” Fortran or C code

• Imagining the vN machine running the code
lets programmer make rough estimates of how
alternative solutions will perform.

• Linear search vs logarithmic search?

• The program runs well because architects
make the essentials of the vN model run well.

Installed
Applications Installed

Machines
Implement vN, exploit software base

Assume vN, get portability, performance

 Copyright, Lawrence Snyder, 199920

Selecting a Machine Model

• Picking the machine model is subtle
• Like porriage, the model has to be just right

• Too absract implies performance critical aspects
of the computation will not be included

• Too specific implies the model over-constrains
the implementation in a way that may not match
physical machines well

• Also, the model must be both intuitive and
workable

 Copyright, Lawrence Snyder, 199921

CTA: A Parallel Machine Model
• First practical and general parallel model [‘86]
• Properties emphasize concurrency, locality

• P = number of processors

• λ = off processor latency, large
• Communication network = unspecified, fixed low

degree

• “Thin” global communication capability

• Existing parallel machines implement CTA

Interconnection Network

. . .vN

C

vN vN vN

CTA

 Copyright, Lawrence Snyder, 199922

Implications of the CTA
• The processors are von Neumann processors

• Each has a program counter ==> MIMD
• Memory local to the processor has fast access
• Implements sequential thread of execution, but

may have multiple processors, memory
hierarchy, etc.

• Interconnect’s unbound -- cannot program to it
• λ is unbound, but λ >> 1 is the assumption

Interconnection Network

. . .vN

C

vN vN vN

CTA

 Copyright, Lawrence Snyder, 199923

 Further Implications of CTA
• The memory is physically distributed (it must

be), but there is no mention of for shared
address space or shared memory

• Since λ is large, programs exploit locality run
faster, i.e. try to compute on data in the local
memory

• Fixed degree (usually 1) limits burst rate

Interconnection Network

. . .vN

C

vN vN vN

CTA

 Copyright, Lawrence Snyder, 199924

Reconsider the Matrix Multiplication
• If every processor had a copy of the A,B

matrices, each could compute a rectangular
subarray

• Memory footprint would be huge, P(mn+np) + Cr

• Transfer time of arrays to each memory would
be λ(mn+np), also huge

• Optimization -- C[i..i+x,j..j+y] requires rows i..i+x
and columns j..j+y

• Total numeric operations would be O(mpn)
which should benefit from a P-way speedup

• Alternatives?

 Copyright, Lawrence Snyder, 199925

Cannon’s Algorithm

One of the all time great MM algorithms
Abstractly ...

Hall of Fame
1

c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

 b13
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

A and B are skewed and conceptually
“pass across” the result array C that’s
initialized to 0. As aik and bkj pass
over cij, they are multiplied and the
result is added into the cij.

 Copyright, Lawrence Snyder, 199926

Properties of Cannon’s Algorithm

• The communication is included in the
computation -- compute on the move

• Communication is “nearest neighbor”
• Time is O(n)
• Processors are fully utilized only in the middle

of the computation
• Scaling is possible by grouping elements of C
• Skewing and staging data is a complication

 Copyright, Lawrence Snyder, 199927

Further Reading

• L. F. Cannon [1969] A Cellular Computer to Implement
the (Kalman) Filter Algorithm, Ph.D. Thesis, Montana
State University

• R. E. Ladner & M. J. Fischer [1980] Parallel Prefix
Computation, Journal of the ACM 27(4):831-838

• L. Snyder [1995] Experimental Validation of Models of
Parallel Computation, A. Hofmann & J. van Leeuwen
(eds), Lecture Notes in Computer Science, Special
Volume 1000, Springer, pp. 78-100

• L. Snyder [1986] Type Architecture, Shared Memory
and the Corollary of Modest Potential, Annual Review
of Computer Science 1, pp. 289-318

