
 Copyright, Lawrence Snyder, 19991

Parallel Panorama

Parallel computation appears to be a
straightforward idea, but it has not

turned out to be as easy as everyone
initially thinks. Today, an overview of

successes and failures

 Copyright, Lawrence Snyder, 19992

Amdahl’s Law
Parallel computation has limited benefit ...
• A computation taking time T, (x-1)/x of which

can be parallelized, never runs faster than T/x
• Let T be 24 hours, let x = 10
• 9/10 can be parallelized, 1/10 cannot
• Suppose the parallel part runs in 0 time: 2.4 hrs

• Amdahl’s Law predates most parallel efforts ...
why pursue parallelism?

• New algorithms Why would one want to
preserve legacy code?

 Copyright, Lawrence Snyder, 19993

Early High Performance Machines

• High Performance computing has always implied the
use of pipelining

• IBM Stretch, S/360 Model 91, Cray 1, Cyber 205

• Pipelining breaks operations into small steps
performed in “assembly line” fashion

• The size t of the longest step determines rate
• Operations are started every t time units

• The most common application of pipelining became
“vector instructions” in which operations could be
applied to all elements of a vector

• Pipelining is used extensively in processor design and
parallelism is a more effective way to achieve high perf

 Copyright, Lawrence Snyder, 19994

Early Parallel Machines
• The first successful parallel computer was

Illiac IV built at the Univeristy of Illinois
• 64 processors (1/4 of the original design) built

• Constructed in the preLSI days, hardware was
both expensive and large

• A SIMD computer with a shared memory few
registers per node

• Though it was tough to program, NASA used it

Flynn’s Taxonomy:
SIMD -- single instruction multiple data
MIMD -- multiple instructions multiple data

Related term:
SPMD -- single program
 multiple data

 Copyright, Lawrence Snyder, 19995

SIMD Is Simply Too Rigid
• SIMD architectures have two advantages over

MIMD architectures
• There is no program memory -- smaller footprint

• It is possible to synchronize very fast ... like on the next
instruction

• SIMD has liabilities, too ...
• Performance: if a>0 then ... else ...

• Processor model is the virtual processor model, and
though there are more processors than on a typical MIMD
machine there is never 1pt/proc

• Ancillary: instr. distribution limits clock, hard to share,
single pt of failure, etc

• SIMD not a contender
 Copyright, Lawrence Snyder, 19996

VLSI Revolution Aided Parallel Computing
• Price/density advances in Si => multiprocessor

computers were feasible
• SIMD computers continued to reign for

technical reasons
• Memory was still relatively expensive

• Logic was still not dense enough for a high performance
node

• It’s how most architects were thinking

• Ken Batcher developed the Massively Parallel
Procesor (MPP) for NASA with 16K procs

• Danny Hillis built two machines CM-1,-2 scaling to 64K
• MASPAR also sold a successful SIMD machine

 Copyright, Lawrence Snyder, 19997

Denelcor HEP

• Designed and built by Burton Smith
• Allowed multiple instructions to “be in the air”

at one time
• Fetch next instruction, update PC

• Suspend, check to see if others need attention
• Decode instruction, computing EA of mem ref(s),

issue mem ref(s)

• Suspend, check to see if others need attention
• Evaluate instruction

• Great for multithreading, or for good ILP

 Copyright, Lawrence Snyder, 19998

Effects of VLSI on Early MIMD Machines

• Single chip processors spawned flury of
design in nonshared memory domain

• ZMOB, ring of 30, 8-bit procs, Maryland
• Pringle, 8x8 config mesh, 8-bit procs, Purdue CS

• Cosmic Cube, 6-cube, 16-bit procs, Caltech --
Intel commercialized this as iPSC, iPSC/2

• Quickly, 32-bit MIMD machines arrived
• Sequent sold an elegant shared bus machine
• BBN Butterfly was a large shared memory

machine
• Two different approaches to choherency

 Copyright, Lawrence Snyder, 19999

PRAM Machine Model

• Parallel Random Access Machine ... simplest
generalization to a parallel machine

• Synchronous, “unit-cost” shared memory -- it
is unrealistic but it drove intensive research

• Theoretically interesting as a way to discover
the limits of parallelism

P P P P P P P P

Memory

Varieties: CRCW
EREW, CREW, ...

 Copyright, Lawrence Snyder, 199910

Research Parallel Machines

• University of Illinois developed the Cedar
machine, a 32 processor shared memory -- a
dance hall architecture

P M

P

P

P

P

P

M

M

M

M

M

Interconnection
Network

 Copyright, Lawrence Snyder, 199911

Ultra Computer and RP-3
• The Ultracomputer developed at NYU had a

cute idea in the interconnection network: a
combining switch

P

MP

P

P

P

P

M

M

M

M

MP

P

3

1

4

1

5

9

2

6

4

5

14

8

9

22

31 2020

29

20

25

25

28

20

21

46

37

29

37

29

35

fetch_and_add A,V
return location A,
add in V and update

 Copyright, Lawrence Snyder, 199912

Combining Switch

• Combining switch design solves problems like
“bank conflicts”, busy waiting on
semaphores...

• The theory was that rather than avoiding bad
operations, do them with impunity ... there was
even a programming methodology based on it

Unfortunately, combining doesn’t work beyond
64 processors based on both analysis and
experimentation

 Copyright, Lawrence Snyder, 199913

Early Programming Approaches

• Every machine has powerful “features” that the
programmer should exploit

• Program “close” to the machine
• Parallelizing FORTRAN compilers will be

along shortly

This viewpoint was nearly disasterous ...

 Copyright, Lawrence Snyder, 199914

Memory and MIMD Computers

• It was easier to invision an MIMD machine
than to build one ... the problem is memory

• We are accustomed to a flat, global memory
Memory Coherency

P1

a: 4 5

P2

a:

P3

a: 4

a: 4 5

P1 reads a into cache
P3 reads a into cache
P1 updates a to 5, wt
-- P3 has stale data --
Writeback is worse

 Copyright, Lawrence Snyder, 199915

Nonshared Memory Avoids Problem

• No shared memory implies no coherency prob
• Put a greater burden on the programmer, sw

• A mid-point design is non-coherent shared
address space

• If every processor has the same amount of
memory, the xth power of 2, then interpret
address bits left of x as processor number

• P0 has the low addresses, P1 next lowest ...

Conventional Wisdom: Its harder
to program nonshared memory

 Copyright, Lawrence Snyder, 199916

Shared vs Nonshared Memory
• The memory organization is crucial in parallel

computing. That is an incontrovertible fact

• Has engendered many wars, but one wonders why
• Clearly, there must be a program, accessible locally to the

processor, i.e. MIMD

• There must be local data, stack, etc.
• These are referenced frequently and must be fast

• Programmers should not have to know or care
because a decent programming language can give a
global view of a computation without any mention of
memory organization

• Many languages give a global view
• ZPL’s accomplishment is it maps easily onto any memory

organization

 Copyright, Lawrence Snyder, 199917

Another Round of Architecture
• The late 80’s was a rich period of machine

design
• Driving force was the VLSI revolution
• Back pressure came from the “killer micros”

• Architecture design focused on “problems”
• The problem the architect thought was the most

pressing varied by the background of the
architect

• Examples were low latency communication, fast
synchronization, coherent shared memory,
scalability, ...

 Copyright, Lawrence Snyder, 199918

iWARP

• iWARP (HT Kung, CMU/Intel) -- fast
communication and synchronization; ideal for
Cannon’s algorithm

Culmination of several
research projects: PSC
and WARP

 Copyright, Lawrence Snyder, 199919

J-Machine

• J-Machine (Bill Dally, MIT/Intel) -- fast
communication, large scalability, 3D mesh

3D design scales in
physical space with
minimum path lengths

 Copyright, Lawrence Snyder, 199920

KSR

• Kendall Square Research -- cache-only
machine allowing data to move to where it is
needed; ring communication structure

Raised many intresting technical questions ...

 Copyright, Lawrence Snyder, 199921

DASH
• DASH (John Hennessy, Stanford/SGI) -- true

distributed cache coherence

Significant research project
with impact in many areas
... will study ideas of design

 Copyright, Lawrence Snyder, 199922

Recent Commercial Machines

A variety of large machines have been deployed in
recent years

• IBM SP-2, nonshared memory
• CM-5, nonshared memory
• Cray T3D and T3E, shared address space
• SGI Origin 2000, coherent shared memory

• Will the rich architectural diversity of the past continue,
or will all parallel machine finally look alike?

 Copyright, Lawrence Snyder, 199923

Programming Approaches

• “Automatic Parallelization” of Fortran
• Preserves the investment in the “legacy codes”
• Replaces programmer effort with compiler effort
• Should be as successful as vectorization

• Has been demonstrated to achieve 0.9-10 fold speedup,
with 2.5 being typical -- Amdahl’s Law

• Alternative Languages
• Functional -- SISAL, Id Nouveau, etc.

• Logic -- Prolog

• These approaches failed ... the only successful
programmers have programmed close to their
machine; vectorized Cray Fortran continued to reign

 Copyright, Lawrence Snyder, 199924

Next Strategy to Save Legacy Codes ...
• As automatic parallelization foundered, adding

“directives” or extending existing languages with new
constructs came into fashion

• Annotating a program can take as much (more?) effort
than rewritting

• HPF, HPC, HPC++, CC++, pC++, Split C, etc

• Extending an existing language requires that its
semantics be preserved; parallel extensions are at
odds with sequential semantics

• Approach has failed ... programs are not easily
transformed: parallelism => paradigm shift from
sequential

 Copyright, Lawrence Snyder, 199925

Message Passing

• Message passing libraries provide standardized
facilties for programmers to define a parallel
implementation of their computation ...

• Uses existing languages, Fortran, C, etc. => save legacy

• Interface is standard across machines
• Lowest common denominator ... works on shared and

distributed memory machines

• MP programming is difficult, subtle, error-prone;
programmer implements paradigm shift

• Message passing embeds machine assumptions in
code; not very portable As many as a dozen mp

libs proposed, PVM, MPI
are only contenders

The prevailing technique

 Copyright, Lawrence Snyder, 199926

State of Parallel Computing

• Many companies thought parallel computing was easy
They’re gone now ...

• SGI/Cray, IBM, HP, Sun make serious parallel
computers

• Seattle's Tera Computer Inc struggles to introduce a
new parallel architecture, MTA

• The basic reality of large computers has changed:
Servers drive the market, not speed-freaks

• The DoE's ASCI program pushes the envelope

• SMP’s are ubiquitous

 Copyright, Lawrence Snyder, 199927

Budget Parallelism

• “Rolling your own” parallel computer with workstations
on a network (Beowulf) is popular

• This is simple and cost effective, and the machines
can be used as workstations during the business
hours

• What are the impediments?
• Nonshared memory, nonshared address space

• Must be programmed w/ msg passing or ZPL
• As incubator for new applications, Beowulfs do

not promote the use of shared memory

Everything in parallelism seems to come down to programming

 Copyright, Lawrence Snyder, 199928

Applications
• Traditionally, NASA, DoD, DoE labs and their

contractors have been big iron users
• CFD
• Structural
• “Bomb Codes”

• A huge early success was Shell Oil’s seismic
modelling code developed by Don Heller --
parallelism that made money

• IBM did circuit simulation on a custom SIMD
• Many claims were made but actual working

parallelism was rare in 80s

The ability to run legacy code,
dusty decks, can be significant

 Copyright, Lawrence Snyder, 199929

Government Programs
Over the years numerous efforts by funding

agencies have tried to jump-start high
performance parallel computing

• DARPA, NSF, ONR, AFOSR, DoE, NASA, ...
• Some have been criticized as corporate welfare
• Initial thrust was on hardware

Companies have invested heavily, too
The most significant federal effort was the High

Performance Computer and Communication
Initiative (HPCC) in early ‘90s

 Copyright, Lawrence Snyder, 199930

HPCC
Took on the “whole” problem by considering hw,

sw and applications involving “real” users
• Compared to predecessors, it was well planned
• Attempt at interagency coordination
• “Real” users with science or engineeering apps

had to collaborate with “real” computer scientists

• Introduced the concept of a “grand challenge”
problem, a computation which if it received
real performance would cause better science
to be done

 Copyright, Lawrence Snyder, 199931

Grand Challenge Problems
Booklets with snappy graphics enumerate these

Example classes
• Galaxy simulation
• Molecular dynamics

• Climate modelling
• Protein folding
• CFD

• Circuit simulation
• Structural analysis
• Seismic modelling

... and many, many variations

HPCC’s main error -- It promised success in 5 years

 Copyright, Lawrence Snyder, 199932

HPCC Legacy
Ironically, the HPCC initiative left many “real”

scientists and engineers with view that
computation is a third piller in research, along
with theory and experimentation

It also convinced most people of the obvious:

As things stand, most users are writing message
passing programs at considerable effort

Its the Economy, Stupid
SOFTWARE

