Shared Memory Multiprocessors

By constructing a standard sequential
processor and its memory system
intelligently, i.e. adopting a slightly more
general design, a multiprocessor element
can be constructed

) Copyright, Lawrence Snyder, 1999

Basic Architecture of SMP

Buses are good news and bad news

« The (memory) bus is a point all processors can
“see” and thus be informed of what is happening

* A bus is serially used, so can be a bottleneck

|

[
110
Devices

() Copyright, Lawrence Snyder, 1999

Cache Coherency -- The Problem

* Independent processors modifying shared
locations can change values without other
processors being aware of it

P1 reads a into cache
P3 reads a into cache
P1 writes a to 5, and

writes through to main
memory, correcting it

-- P3 has stale data --
P2 reads a into cache

Memory is arbiter of a
present value ... move
it closer to processors

: /5 Memory ‘

U Copyright, Lawrence Snyder, 1999

Cache Coherency, The Goal

* A multiprocessor memory system is coherent if
for every location there exists a serial order for
the operations on that location consistent with
the results of the execution such that ...

* The subsequence of operations issued by any
processor are in the order issued

« The value returned by each read is the value
written by the last write in serial order

Implied property of coherency ...
Write Serialization -- all writes to a location are
seen in the same order by all processes

0 Copyright, Lawrence Snyder, 1999

Snooping To Solve Coherency

» The cache controllers can “snoop” on the bus,
meaning that they watch the events on the bus
even if they do not issue them, noting any
action applied to cache lines they hold
There are two possible actions when a
memory location held by processor A is
changed by processor B

« Invalidate -- mark local copy as invalid

« Update -- make the same change B made

‘The unit of cache coherency is a cache line or block I

[0 Copyright, Lawrence Snyder, 1999

Snooping At Work

By snooping the cache controller for processor
P3 can take action in response to P1's write
P3 reads a into cache

P1 writes ato 5, and

writes through to main

memory, correcting it a: a: a:
P3 sees WT, invalidates

or updates ‘—'—‘—‘

P2 reads a into cache
A5 Memory ‘

P1 reads a into cache

a:

[Copyright, Lawrence Snyder, 1099

Write-through Coherency
 State diagrams show the protocol ...

PrRd/- Prwr/Buswr States on cache line ...

Vis valid
| is invalid

Transitions ...
BusWr/-- Red is processor initiated
PrRd/BusRd Blue is bus initiated

Labeling A/B ...
If A'is observed
Then transaction B
is generated

Prwr/Buswr

7 [0 Copyright, Lawrence Snyder, 1999

PrRd/-- Prwr/BusWr
Applying The WT Protocol
Consider the transitions
BusWr/--
PrRd/BusRd
P1 reads ainto cache —f—> P1: | -->V
P3 reads a into cache —] PrRd/BusRd
P1 writes a to 5, and P3:1--->V
writes through to main \ PrRd/BusRd Prwr/BuswWr
memory, correcting it P1:V--->V
P3 sees WT, invalidates Prwr/BusWr
P2 reads a into cache [P3:V--->1
\ BusWr/--
P2:1-->V
PrRd/BusRd
8 (] Copyright, Lawrence Snyder, 1999

Partial Order On Memory Operations

Write bus transactions define a global sequence
of events between which processors can read
... any total order produced by interleaving

P —-@ @090 @
SR S— \0%07 N
o —@ @ —®—®

9 0 Copyright, Lawrence Snyder, 1099

Memory Consistency

* What should it mean for processors to see a
consistent view of memory?

« Coherency is too weak because it only
requires ordering with respect to individual
locations, but there are other ways of binding
values together

-- a and flag are 0 initially --

PO P1
a =1; while (flag '= 1) ; -- spin
flag : = 1; print a;

10 {0 Copyrigh. Lawrence Snyder, 1999

SC -- Sequential Consistency

Lamport: A multiprocessor is sequentially
consistent if the result of any execution is the
same as some sequential order, and within
any processor, the operations are executed in
program order

--aand b are 0 initially -- Possible
p1 Results

print b; g g

print a; 10

0 2

1 2

11 [Copyright, Lawrence Snyder, 1999

Write Atomicity

» Write atomicity says that all writes to a location
should appear to all processors to have
occurred in the same order

--aand b are 0 initially --
PO P1 P2
a .= 1; while a !=1 do; while b !'= 1 do;
b:=1; print a;
12 [Copyright, Lawrence Snyder, 1999

Sufficient Conditions For SC

» Three conditions suffice for SC
« Memory requests are issued in program order
« Wait for writes to complete

« Wait for reads to complete and the write filling
the read to complete

--aand b are O initially --

PO P1 P2
a:=1; while a !=1 do; while b !=1 do;
b:=1, print a;

13 [) Copyright, Lawrence Snyder, 1999

Basic Write-back Snoopy Cache Designs

« Write-back protocols are more complex than
write-through because modified data remains
in the cache

« Introduce more cache states

« Modified, or dirty, the value differs from memory
« Exclusive, no other cache has this value
* We consider three
« MSI, an invalidation protocol
* MESI, an invalidation protocol
« Dragon, an update protocol

() Copyright, Lawrence Snyder, 1999

MSI Protocol

BusRd/Flush

Prwr/BusRdX

BusRdX/Flush
Prwr/BusRdX

PrRd/-- BusRdX/--
PrRd/BusRd BusRd/--

15

U Copyright, Lawrence Snyder, 1999

MSI In Action

BusRd/Flush

Prwr/BusRdX
BusRdX/Flush
Prwr/BusRdX

Proc
Action PO P1 P2 Bus Data
PO:ra S - - BRd Mem PrRd/-- BusRdX/--
P2rasS - S BRd Mem PrRd/BusRd BusRd/--
P2:wa | - M BRdx Mem
PO:ra S - S BRd P2
Pl:ra S S S BRd Mem

0 Copyright, Lawrence Snyder, 1999

MESI (lllinois) Protocol

» The problem with MSl is that 2 bus
transactions are needed just to load and
update a value even with no one is sharing

» Add a new state to get 4

« M = modified or dirty, value differs from memory
« E = exclusive, clean, one cached copy

« S =shared, multiple cached copies

« | =invalid

17 [Copyright, Lawrence Snyder, 1999

Dragon -- An Update Protocol

« The caches are the valid memory contents --
memory is changed only when a line is
needed

Introduce Shared clean (Sc) and Shared

Modified (Sm) states, dump Invalid

« Need to introduce the concept of Read Miss
and Write Miss

* Add a “shared” line to the bus

« The basic idea: Keep all lines of all caches

current -- note that updates will update

modified word only

[Copyright, Lawrence Snyder, 1099

19

Dragon Protocol

PrRdMiss/ ; £ E PrRd/--

BusRd(S’)

PrRd/--
BusUpd/Update

PrRdMiss/
BusRd(S)

BusUpd/Updat BusUpd(S) |BusUpd(S’)
BusRd/Flush
PrwrMiss/
(BusRd(S);
BusUpd) /

PrwrMiss/
BusRd(S’)

PrRd/--
Prwr/--

Prwr/BusUpd(S)
BusRd/Flush

) Copyright, Lawrence Snyder, 1999

Dragon In Action

20

PrRd/-
BusUpd/Update

PrRdMiss/ ; £ EPer/-—

BusRd(S’)

PrRdMiss/
BusRd(S)

BusUpd/Update BusUpd(S) [BusUpd(S’)

BusRd/Flush

PrwrMiss/ PrWrMiss/
=
(BusRd(S); @ PrWr/BusUpd(S” BusRd(S’)
BusUpd)
/ PrRd/--
Prwr/BusUpd(S) PrWr/--
BusRd/Flush
Proc Proc
Action PO P1 P2 Bus Data Action POP1P2 Bus Data

PO:ra Sc - Smnull -
Pl:ra ScScSmBRd P2

() Copyright, Lawrence Snyder, 1999

PO:ra E - - BRd Mem
P2:ra Sc- Sc BRd Mem
P2:wa Sc - Sm BUpd P2

21

Assessing trade-offs

* You cannot design a protocol and reason
through how it will work, and probably not
even whether it is correct ...

* Many criteria for success

« Good use of bandwidth
« Rapid response

» Performance must be relative to some

computation ... what's typical?

U Copyright, Lawrence Snyder, 1999

22

Protocol Optimizations: Worth It?
Effect of E state, and of BusUpgr instead of BusRdX

Trattic (vrs)

MSI vs MESI ... little difference; Upgrade helps some

Graph from Text

0 Copyright, Lawrence Snyder, 1999

23

Caching Properties

» Cache misses have long been categorized ...
« Compulsory
« Capacity
« Conflict

» Add “Coherence”

 Sharing in 2 forms
* True
« False

Graph from Text [Copyright, Lawrence Snyder, 1999

Cache-block size

= Several features illustrated

wiss e ()

wiss e ()

24

T

[Copyright, Lawrence Snyder, 1099

Graph from Text

Traic yesinstuctions)

25

Block Size Affects Traffic

« Contention increases

Graph from Text [Copyright, Lawrence Snyder, 1999

Update vs Invalidate

¢ Intuition --

If use implies continued to use, and writes between
use are few, update should do better

« e.g. producer-consumer pattern

If use implies unlikely to use again, or many writes
between reads, updates not good

« “pack rat” phenomenon particularly bad under

process migration

« useless updates where only last one will be used

27

Update vs Invalidation
« Much coherence: updates help
¢ Much capacity updates hurt

060 250
[False sharing
[True sharing
B Capaciy 200
W Cold

150

Miss rate (%)
°
8

Miss rate (%)

1.00

33

Oceanfinv
Ocean/mix
Oceanlupd
Raytracelinv
Raytrace/upd
Radixfin
Radix/mix
Radix/upd

Graph from Text

U Copyright, Lawrence Snyder, 1999

29

Synchronization

» Along and glorious past ... ‘67
* A huge time cost in parallel programs

Though studied intensively it is still not really
solved

The problem: Processes must share
information, but its integrity must be preserved

* Some hardware assist is essential in order to
achieve atomicity

» User say, “Just give me primitives that work”

[0 Copyright, Lawrence Snyder, 1999

26 (] Copyright, Lawrence Snyder, 1999
There’s More To Story L
« Bus traffic is huge
¢ Asingle processor
tends to write a lot -
before other proc resds
* Many bus updates vs
one invalidate!
Simple Software Lock
| ock: Id Rl,loc -- get fresh value
cnp loc, #0 -- test if it changed
bnz Rl,lock -- spinif loc ~ free?
st loc, #1 -- its free, set it
ret
and
unl ock: st | oc, #0 -- clear setting
ret
The code seems simple enough, but consider various
interleavings
30

[Copyright, Lawrence Snyder, 1099

Test&Set Is A Simple Solution

» Test_and_set R1, Loc fetches Loc'’s
value, and sets it to 1, returning value to R1

= Consider its operation

| ock: t&s Rl,Loc -- atomically set
bnz Rl,loc -- spinif loc ~ free?
ret

and

unl ock: st Loc, #0 -- clear setting
ret

32

Performance Of a Lock
« lock; delay (c) ; unlock on SGI Challenge

= Testgsetc=0

~— Testaser, c

—— Tesiset, exponentil backdf
tdeal

-3,
-0

s
1 ////
s
3 s 7 s fn s 3

Number of processors

() Copyright, Lawrence Snyder, 1999

Graph from Text

34

Improved Hardware Primitives

Seek a basic primitive suitable for range of cases

» Load-Locked (or Load-Linked), Store-Conditional

¢ LL reads location into a register

« Follow with arbitrary instructions to manipulate value

« SC tries to store back to location if and only if no other
processor has written to the variable since this
processor’s LL
— If SC succeeds, all three steps happened “atomically”
— If fail, don’t write or generate invalidations (must retry LL)
— Success indicated by condition codes

0 Copyright, Lawrence Snyder, 1999

31 [) Copyright, Lawrence Snyder, 1999
Performance Goals of Locks
 Locks affect performance -- critical aspects
* Low Latency
« Low Traffic
« Scalability
* Low Storage Cost
« Fairness
33 [Copyright. Lawrence Snyder, 1999
Sample Use of LL-SC
lock: Il R1, Loc -- Load-lock Loc to R1
bnz R1, |ock -- Spin if Loc |ocked
sc Loc, R2 -- Cond'ly store R2 in Loc
beqz lock -- If failed, repeat
ret
and
unlock: st Loc, #0 -- Clear location
ret
« Many processes can do an LL at once, but only the first to the SC
wins
35 [Copyright, Lawrence Snyder, 1999

36

Performance

I ock; delay(c); unlock; delay(d) onSGlI

Challenge

—— Array-based
—— Lsc

—— LL-SC exponentigl
Ticket

—— Tickel, proporti fnal

1357 9ummis 1357911l 1357 9UBIS

@t e=0,9=0) ®) Cricabsecion (c= 3644, 4=0) (€) Deay (6= 364 s, 4= 1.29,5)

Graph from Text 0] Copyright, Lawrence Snyder, 1999

Software Implications
 Blocked allocation of 2D array

» References straddling cache lines loses on

« Fragmentation
* False Sharing

Cache bl ock
straddi es partition
boundary

=y

: =

(@) Two-di mensional array
) Copyright, Lawrence Snyder, 1999

37 GraphtomTen

