
 Copyright, Lawrence Snyder, 19991

Shared Memory Multiprocessors

By constructing a standard sequential
processor and its memory system

intelligently, i.e. adopting a slightly more
general design, a multiprocessor element

can be constructed

 Copyright, Lawrence Snyder, 19992

Basic Architecture of SMP

Buses are good news and bad news
• The (memory) bus is a point all processors can

“see” and thus be informed of what is happening

• A bus is serially used, so can be a bottleneck

Cache

P0

Memory

Cache

P1

Cache

Pn

•••

I/O
Devices

 Copyright, Lawrence Snyder, 19993

Cache Coherency -- The Problem
• Independent processors modifying shared

locations can change values without other
processors being aware of it

P1

a: 4 5

P2

a: 5

P3

a: 4

a: 4 5 Memory

P1 reads a into cache
P3 reads a into cache
P1 writes a to 5, and
writes through to main
memory, correcting it
-- P3 has stale data --
P2 reads a into cache

Memory is arbiter of
present value ... move
it closer to processors

 Copyright, Lawrence Snyder, 19994

Cache Coherency, The Goal

• A multiprocessor memory system is coherent if
for every location there exists a serial order for
the operations on that location consistent with
the results of the execution such that ...

• The subsequence of operations issued by any
processor are in the order issued

• The value returned by each read is the value
written by the last write in serial order

Implied property of coherency ...
Write Serialization -- all writes to a location are
seen in the same order by all processes

 Copyright, Lawrence Snyder, 19995

Snooping To Solve Coherency
• The cache controllers can “snoop” on the bus,

meaning that they watch the events on the bus
even if they do not issue them, noting any
action applied to cache lines they hold

• There are two possible actions when a
memory location held by processor A is
changed by processor B

• Invalidate -- mark local copy as invalid
• Update -- make the same change B made

The unit of cache coherency is a cache line or block

 Copyright, Lawrence Snyder, 19996

Snooping At Work
By snooping the cache controller for processor

P3 can take action in response to P1’s write

P1

a: 4 5

P2

a: 5

P3

a: 4 5

a: 4 5 Memory

P1 reads a into cache
P3 reads a into cache
P1 writes a to 5, and
writes through to main
memory, correcting it
P3 sees WT, invalidates
 or updates
P2 reads a into cache

 Copyright, Lawrence Snyder, 19997

Write-through Coherency

• State diagrams show the protocol ...

States on cache line ...
 V is valid
 I is invalid

Transitions ...
 Red is processor initiated
 Blue is bus initiated

Labeling A/B ...
 If A is observed
 Then transaction B
 is generated

PrRd/BusRd

PrWr/BusWr

BusWr/--

PrRd/-- PrWr/BusWr

V

I

 Copyright, Lawrence Snyder, 19998

Applying The WT Protocol

Consider the transitions

P1 reads a into cache
P3 reads a into cache
P1 writes a to 5, and
writes through to main
memory, correcting it
P3 sees WT, invalidates
P2 reads a into cache

PrRd/BusRd

PrWr/BusWr

BusWr/--

PrRd/-- PrWr/BusWr

V

IP1: I ---> V
PrRd/BusRd
P3: I ---> V
PrRd/BusRd
P1: V ---> V
PrWr/BusWr
P3: V ---> I
BusWr/--
P2: I ---> V
PrRd/BusRd

 Copyright, Lawrence Snyder, 19999

Partial Order On Memory Operations

Write bus transactions define a global sequence
of events between which processors can read
... any total order produced by interleaving

R

P0

P0

P0 R

R

R

R

R

R

R

W R

R

R R

R

R

R

W

 Copyright, Lawrence Snyder, 199910

Memory Consistency
• What should it mean for processors to see a

consistent view of memory?
• Coherency is too weak because it only

requires ordering with respect to individual
locations, but there are other ways of binding
values together

 -- a and flag are 0 initially --
P0 P1
a := 1; while (flag != 1) ; -- spin
flag := 1; print a;

 Copyright, Lawrence Snyder, 199911

SC -- Sequential Consistency

Lamport: A multiprocessor is sequentially
consistent if the result of any execution is the
same as some sequential order, and within
any processor, the operations are executed in
program order

 -- a and b are 0 initially --
P0 P1
a := 1; print b;
b := 2; print a;

Possible
 Results
 a b
 0 0
 1 0
 0 2
 1 2

 Copyright, Lawrence Snyder, 199912

Write Atomicity

• Write atomicity says that all writes to a location
should appear to all processors to have
occurred in the same order

 -- a and b are 0 initially --
P0 P1 P2
a := 1; while a != 1 do; while b != 1 do;
 b := 1; print a;

 Copyright, Lawrence Snyder, 199913

Sufficient Conditions For SC
• Three conditions suffice for SC

• Memory requests are issued in program order
• Wait for writes to complete
• Wait for reads to complete and the write filling

the read to complete

 -- a and b are 0 initially --
P0 P1 P2
a := 1; while a != 1 do; while b != 1 do;
 b := 1; print a;

 Copyright, Lawrence Snyder, 199914

Basic Write-back Snoopy Cache Designs

• Write-back protocols are more complex than
write-through because modified data remains
in the cache

• Introduce more cache states
• Modified, or dirty, the value differs from memory
• Exclusive, no other cache has this value

• We consider three
• MSI, an invalidation protocol
• MESI, an invalidation protocol
• Dragon, an update protocol

 Copyright, Lawrence Snyder, 199915

MSI Protocol

PrWr/BusRdX

PrRd/--

BusRd/Flush

PrRd/-- PrWr/--

M

I

PrRd/BusRd
BusRdX/--

PrWr/BusRdX

BusRdX/Flush
V

I

BusRd/--

 Copyright, Lawrence Snyder, 199916

MSI In Action

PrWr/BusRdX

PrRd/--

BusRd/Flush

PrRd/-- PrWr/--

M

I

PrRd/BusRd
BusRdX/--

PrWr/BusRdX

BusRdX/Flush
V

I

BusRd/--

Proc
Action P0 P1 P2 Bus Data
P0: r a S - - BRd Mem
P2: r a S - S BRd Mem
P2:w a I - M BRdx Mem
P0: r a S - S BRd P2
P1: r a S S S BRd Mem

 Copyright, Lawrence Snyder, 199917

MESI (Illinois) Protocol

• The problem with MSI is that 2 bus
transactions are needed just to load and
update a value even with no one is sharing

• Add a new state to get 4
• M = modified or dirty, value differs from memory
• E = exclusive, clean, one cached copy
• S = shared, multiple cached copies
• I = invalid

 Copyright, Lawrence Snyder, 199918

Dragon -- An Update Protocol

• The caches are the valid memory contents --
memory is changed only when a line is
needed

• Introduce Shared clean (Sc) and Shared
Modified (Sm) states, dump Invalid

• Need to introduce the concept of Read Miss
and Write Miss

• Add a “shared” line to the bus
• The basic idea: Keep all lines of all caches

current -- note that updates will update
modified word only

 Copyright, Lawrence Snyder, 199919

Dragon Protocol

E

Sm M

Sc

PrWr/--

PrRd/--
PrWr/--

PrRd/--

PrRd/--
BusUpd/Update

PrRdMiss/
BusRd(S’)

PrWrMiss/
(BusRd(S);
BusUpd)

PrRd/--

BusRd/Flush

PrWr/
BusUpd(S)

PrWr/
BusUpd(S’)

PrRdMiss/
BusRd(S)

PrWrMiss/
BusRd(S’)PrWr/BusUpd(S’)

PrRd/--
PrWr/BusUpd(S)
BusRd/Flush

BusUpd/Update

 Copyright, Lawrence Snyder, 199920

Dragon In Action

E

Sm M

Sc

PrWr/--

PrRd/--
PrWr/--

PrRd/--
PrRd/--

BusUpd/Update
PrRdMiss/
BusRd(S’)

PrWrMiss/
(BusRd(S);
BusUpd)

PrRd/--

BusRd/Flush

PrWr/
BusUpd(S)

PrWr/
BusUpd(S’)

PrRdMiss/
BusRd(S)

PrWrMiss/
BusRd(S’)PrWr/BusUpd(S’)

PrRd/--
PrWr/BusUpd(S)
BusRd/Flush

BusUpd/Update

Proc
Action P0 P1 P2 Bus Data
P0: r a E - - BRd Mem
P2: r a Sc - Sc BRd Mem
P2:w a Sc - Sm BUpd P2

Proc
Action P0 P1 P2 Bus Data
P0: r a Sc - Sm null -
P1: r a Sc Sc Sm BRd P2

 Copyright, Lawrence Snyder, 199921

Assessing trade-offs

• You cannot design a protocol and reason
through how it will work, and probably not
even whether it is correct ...

• Many criteria for success
• Good use of bandwidth
• Rapid response

• Performance must be relative to some
computation ... what’s typical?

 Copyright, Lawrence Snyder, 199922

Protocol Optimizations: Worth It?
Effect of E state, and of BusUpgr instead of BusRdX

T
r
a
f
f
i
c

(
M
B
/
s
)

T
r
a
f
f
i
c

(
M
B
/
s
)

x d

l t x

I
l
l

t E
x

0

20

40

60

80

100

120

140

160

180

200

Data bus

Address bus

E E0

10

20

30

40

50

60

70

80

Data bus

Address bus

B
a

rn
e

s/
II

I

B
a

rn
e

s/
3

S
t

B
a

rn
e

s/
3

S
t-

R
d

E
x

L
U

/I
II

R
a

d
ix

/3
S

t-
R

d
E

x

L
U

/3
S

t

L
U

/3
S

t-
R

dE
x

R
a

d
ix

/3
S

t

O
ce

an
/I

II

O
ce

an
/3

S

R
a

d
io

si
ty

/3
S

t-
R

d
E

x

O
ce

an
/3

S
t-

R
d

E
x

R
a

d
ix

/I
II

R
a

d
io

si
ty

/II
I

R
a

d
io

si
ty

/3
S

t

R
a

yt
ra

ce
/I

II

R
a

yt
ra

ce
/3

S
t

R
a

yt
ra

ce
/3

S
t-

R
d

E
x

A
pp

l-C
o

de
/I

II

A
pp

l-C
o

de
/3

S
t

A
pp

l-C
o

de
/3

S
t-

R
d

E
x

A
pp

l-D
a

ta
/II

I

A
pp

l-D
a

ta
/3

S
t

A
pp

l-D
a

ta
/3

S
t-

R
dE

x

O
S

-C
o

de
/I

II
O

S
-C

o
de

/3
S

t

O
S

-D
a

ta
/3

S
t

O
S

-D
a

ta
/II

I

O
S

-C
o

de
/3

S
t-

R
d

E
x

O
S

-D
a

ta
/3

S
t-

R
dE

x

MSI vs MESI … little difference; Upgrade helps some

Graph from Text

 Copyright, Lawrence Snyder, 199923

Caching Properties

• Cache misses have long been categorized …
• Compulsory
• Capacity
• Conflict

• Add “Coherence”
• Sharing in 2 forms

• True

• False

Miss classi cation

Reason
for miss

First reference to
memory block by processor

First access
systemwide

Yes

No

Written
before

Yes

No

Modi ed
word(s) accessed
during lifetime

Yes

No

1. Cold

2. Cold

4. True-sharing-

3. False-sharing-

Reason for
elimination of

last copy

Replacement

Invalidation

Old copy
with state = invalid

still there

YesNo

8. Pure-
7. Pure-

6. True-sharing-
inval-cap

5. False-sharing-
inval-cap

Modi ed
word(s) accessed
during lifetime

Modi ed
word(s) accessed
during lifetime

Yes

No YesNo

false-sharing
true-sharing

Has block
been modi ed since

replacement

No Yes

10. True-sharing-9. Pure-

12. True-sharing-11. False-sharing-

Modi ed
word(s) accessed
during lifetime Modi ed

word(s) accessed
during lifetime

YesNo

YesNo

capacity

Other

cold

cold

cap-inval cap-inval

capacity

Graph from Text Copyright, Lawrence Snyder, 199924

Cache-block size

• Several features illustrated

Cold

Capacity

True sharing

False sharing

Upgrade

8

0

0.1

0.2

0.3

0.4

0.5

0.6

Cold

Capacity

True sharing

False sharing

Upgrade

8 6 2 4 8 6 80

2

4

6

8

10

12

M
is

s
ra

te
 (

%
)

B
a

rn
e

s/
8

B
a

rn
e

s/
1

6

B
a

rn
e

s/
3

2

B
a

rn
e

s/
6

4

B
a

rn
e

s/
1

2
8

B
a

rn
e

s/
2

5
6

L
u

/8

L
u

/1
6

L
u

/3
2

L
u

/6
4

L
u

/1
2

8

L
u

/2
5

6

R
a

d
io

si
ty

/8

R
a

d
io

si
ty

/1
6

R
a

d
io

si
ty

/3
2

R
a

d
io

si
ty

/6
4

R
a

d
io

si
ty

/1
2

8

R
a

d
io

si
ty

/2
5

6

M
is

s
ra

te
 (

%
)

O
ce

an
/8

O
ce

an
/1

6

O
ce

an
/3

2

O
ce

an
/6

4

O
ce

an
/1

28

O
ce

an
/2

56

R
a

d
ix

/8

R
a

d
ix

/1
6

R
a

d
ix

/3
2

R
a

d
ix

/6
4

R
a

d
ix

/1
2

8

R
a

d
ix

/2
5

6

R
a

yt
ra

ce
/8

R
a

yt
ra

ce
/1

6

R
a

yt
ra

ce
/3

2

R
a

yt
ra

ce
/6

4

R
a

yt
ra

ce
/1

2
8

R
a

yt
ra

ce
/2

5
6

Graph from Text

 Copyright, Lawrence Snyder, 199925

Block Size Affects Traffic

• Contention increases

Tr
a

ffi
c

(b
yt

e
s/

in
st

ru
ct

io
n

)

Tr
a

ffi
c

(b
yt

e
s/

F
L

O
P

)

Data bus

Address bus
Data bus

Address bus

R
a

d
ix

/8

R
a

d
ix

/1
6

R
a

d
ix

/3
2

R
a

d
ix

/6
4

R
a

d
ix

/1
2

8

R
a

d
ix

/2
5

6

0

1

2

3

4

5

6

7

8

9

10

L
U

/8

L
U

/1
6

L
U

/3
2

L
U

/6
4

L
U

/1
2

8

L
U

/2
5

6

O
ce

a
n

/8

O
ce

a
n

/1
6

O
ce

a
n

/3
2

O
ce

a
n

/6
4

O
ce

a
n

/1
2

8

O
ce

a
n

/2
5

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4

2
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Data bus

Address bus

B
a

rn
e

s/
1

6

T
ra

ff
ic

 (
b

yt
e

s/
in

st
ru

ct
io

n
s)

B
a

rn
e

s/
8

B
a

rn
e

s/
3

2

B
a

rn
e

s/
6

4

B
a

rn
e

s/
1

2
8

B
a

rn
e

s/
2

5
6

R
a

d
io

si
ty

/8

R
a

d
io

si
ty

/1
6

R
a

d
io

si
ty

/3
2

R
a

d
io

si
ty

/6
4

R
a

d
io

si
ty

/1
2

8

R
a

d
io

si
ty

/2
5

6

R
a

yt
ra

ce
/8

R
a

yt
ra

ce
/1

6

R
a

yt
ra

ce
/3

2

R
a

yt
ra

ce
/6

4

R
a

yt
ra

ce
/1

2
8

R
a

yt
ra

ce
/2

5
6

Graph from Text Copyright, Lawrence Snyder, 199926

Update vs Invalidate
• Intuition --

If use implies continued to use, and writes between
use are few, update should do better

• e.g. producer-consumer pattern

If use implies unlikely to use again, or many writes
between reads, updates not good

• “pack rat” phenomenon particularly bad under
process migration

• useless updates where only last one will be used

 Copyright, Lawrence Snyder, 199927

Update vs Invalidation
• Much coherence: updates help
• Much capacity updates hurt

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

LU
/in

v

LU
/u

pd

O
ce

an
/in

v

O
ce

an
/m

ix

O
ce

an
/u

pd

R
ay

tr
ac

e/
in

v

R
ay

tr
ac

e/
up

d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
ad

ix
/in

v

R
ad

ix
/m

ix

R
ad

ix
/u

pd

0.00

0.50

1.00

1.50

2.00

2.50

Graph from Text Copyright, Lawrence Snyder, 199928

There’s More To Story

• Bus traffic is huge
• A single processor

tends to write a lot
before other proc resds

• Many bus updates vs
one invalidate!

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0.00

0.50

1.00

1.50

2.00

2.50

Radix/inv

Radix/mix

Radix/upd

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Graph from Text

 Copyright, Lawrence Snyder, 199929

Synchronization

• A long and glorious past … ‘67
• A huge time cost in parallel programs
• Though studied intensively it is still not really

solved
The problem: Processes must share
information, but its integrity must be preserved

• Some hardware assist is essential in order to
achieve atomicity

• User say, “Just give me primitives that work”

 Copyright, Lawrence Snyder, 199930

Simple Software Lock

lock: ld R1,loc -- get fresh value

cmp loc, #0 -- test if it changed

bnz R1,lock -- spin if loc ~ free?

st loc, #1 -- its free, set it

ret

and
unlock: st loc,#0 -- clear setting

ret

The code seems simple enough, but consider various
interleavings

 Copyright, Lawrence Snyder, 199931

Test&Set Is A Simple Solution

• Test_and_set R1, Loc fetches Loc ’s
value, and sets it to 1, returning value to R1

• Consider its operation
lock: t&s R1,Loc -- atomically set

bnz R1,loc -- spin if loc ~ free?

ret

and
unlock: st Loc,#0 -- clear setting

ret

 Copyright, Lawrence Snyder, 199932

Performance Of a Lock

• lock; delay (c) ; unlock on SGI Challenge

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

■
■ ■ ■

■

■

■

■

■

■
■

■

■
■

■

■

◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

Number of processors

T
im

e
(µ

s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
▲ Test&set, c = 0
● Test&set, exponential backoff, c = 3.64
■ Test&set, exponential backoff, c = 0
◆ Ideal

9753

Graph from Text

 Copyright, Lawrence Snyder, 199933

Performance Goals of Locks

• Locks affect performance -- critical aspects
• Low Latency

• Low Traffic
• Scalability
• Low Storage Cost
• Fairness

 Copyright, Lawrence Snyder, 199934

Improved Hardware Primitives

Seek a basic primitive suitable for range of cases

• Load-Locked (or Load-Linked), Store-Conditional
• LL reads location into a register
• Follow with arbitrary instructions to manipulate value
• SC tries to store back to location if and only if no other

processor has written to the variable since this
processor’s LL
– If SC succeeds, all three steps happened “atomically”
– If fail, don’t write or generate invalidations (must retry LL)

– Success indicated by condition codes

 Copyright, Lawrence Snyder, 199935

Sample Use of LL-SC

lock: ll R1, Loc -- Load-lock Loc to R1

bnz R1, lock -- Spin if Loc locked

sc Loc, R2 -- Cond’ly store R2 in Loc

beqz lock -- If failed, repeat

ret

and
unlock: st Loc, #0 -- Clear location

 ret

• Many processes can do an LL at once, but only the first to the SC
wins

 Copyright, Lawrence Snyder, 199936

Performance

lock; delay(c); unlock; delay(d) on SGI
Challenge

● Array-based
✖ LL-SC
■ LL-SC, exponential
◆ Ticket
▲ Ticket, proportional

●
●

● ●
● ● ●

● ●
●

●
●

●
● ●

✖
✖

✖
✖

✖ ✖ ✖
✖ ✖ ✖ ✖

✖

✖

✖

✖

■ ■ ■ ■ ■ ■ ■ ■ ■
■

■ ■
■

■ ■

◆

◆
◆

◆
◆ ◆

◆
◆ ◆

◆ ◆
◆ ◆

◆
◆

▲
▲

▲

▲ ▲
▲

▲ ▲
▲

▲ ▲ ▲
▲

▲ ▲

0

1

1

3 5 7 9

11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

●

●

● ●
● ● ●

●

●
●

●

●
●

●
●

✖

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖

✖
✖

✖ ✖

✖
✖

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆
◆ ◆ ◆

◆
◆ ◆

◆

◆
◆ ◆ ◆

◆
◆

▲

▲ ▲
▲

▲
▲

▲ ▲ ▲ ▲
▲ ▲

▲
▲

▲

●

●

● ●
● ●

●
●

●
●

●

●
●

●
●

✖

✖

✖ ✖ ✖
✖ ✖ ✖ ✖

✖ ✖

✖
✖

✖

✖

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

◆

◆
◆

◆ ◆
◆

◆
◆

◆ ◆
◆ ◆

◆
◆ ◆

▲

▲
▲ ▲

▲
▲

▲
▲ ▲ ▲

▲
▲ ▲

▲
▲

(a) Null (c = 0, d = 0) (b) Critical-section (c = 3.64 µs, d = 0) (c) Delay (c = 3.64 µs, d = 1.29 µs)

T
im

e
 (

µs
)

T
im

e
 (

µs
)

T
im

e
 (

µs
)

Number of processors Number of processors Number of processors

Graph from Text

 Copyright, Lawrence Snyder, 199937

Software Implications
• Blocked allocation of 2D array
• References straddling cache lines loses on

• Fragmentation
• False Sharing

Cache block
straddles partition
boundary

(a) Two-dimensional array

P1P0 P2 P3

P5 P6 P7P4

P8

Graph from Text

