
 Copyright, Lawrence Snyder, 19991

Scalable Machine Designs

Many architects have decided not to provide
direct support for shared memory, prefering
instead to provide high performance basic
operations, and leaving the programming

facilities to the software

 Copyright, Lawrence Snyder, 19992

Scalability

Recall that the basic idea with parallel computing
is that the more processors that can be
applied to a program, the shorter should be it’s
execution time

• This idea ignores several critical points
• The program may not have been written to take advantage

of more parallelism

• Because of overheads, more processors may result in
worse performance

• Other parts of the computer contribute to performance
besides the processors

Nevertheless, bigger machines are seen to be better

 Copyright, Lawrence Snyder, 19993

Scaling Parallel Computers

To produce a family of ever larger computers, it
is necessary to increase various properties of
the computer to maintain its balance ...

• Bandwidth -- the communication capacity
between the processors

• Latency -- the time delay in communicating
between processors

• Increment -- the amount by which the size of a
parallel computer can be increased

Consider each property

 Copyright, Lawrence Snyder, 19994

Bandwidth Issues
• Logically, as the next processor is added to a

parallel computer the communication capacity
should be increased to connect that processor
to P other processors

P

P

P

P

P

P

Cross-bar switches
scale as n2, and so
are applicable only
for very small cases

 Copyright, Lawrence Snyder, 19995

Bandwidth Continued
• Backing off from “complete connections” leads

to approximations like the Omega network

P

P

P

P

P

P

P

P

The Omega network
scales as nlogn but
conflicts are possible
since not all permuta-
tions are can be em-
bedded in the network

 Copyright, Lawrence Snyder, 19996

Bisection Bandwidth
• The bisection bandwidth of a network is the

capacity (b/s) across the wires of the
“narrowest” bisector (separator dividing in 2)

• Motivation -- a random connection of
processors must send about half the bits
across the “middle” of the network

P1/2 P/2

Mesh
Hypercube

 Copyright, Lawrence Snyder, 19997

Bandwidth Across The Machine

• The network bandwidth is a significant
component of communication capacity, but
bandwidth at the Processor:Network interface,
and elsewhere in the node are also important

 Copyright, Lawrence Snyder, 19998

Latency Issues

• Communication latency has several parts to it
• Overhead of initiating and completing transfers
• Number of network “hops”
• Node latency, the time through a switch

• Network contention

• Latency usually increases because of more
hops and contention in larger machines

• Packets are pipelined, so a transfer of a msg
of length m thru c-bit channel requires time

α + β(m/c)

 Copyright, Lawrence Snyder, 19999

Increment Issues
• For most scalable architectures it is not

possible to add one more processor
• The architecture does not grow in single units
• Partially populated topologies can be hard to use

• Systems components such as power supplies,
racks, etc. grow by large units

• Typical growth rates are 2x since many
architecture instances are powers of two

 Copyright, Lawrence Snyder, 199910

Message Passing
Message passing is a library-supported set of

facilities allowing programmers to construct a
parallel implementation

• Send/Receive messages between processors
• Spawn processes
• Synchronize

• Library routines are built on low level protocol
• Most machines come with native library, like

Intel Paragon’s NX Library
• Popular portable libraries: PVM, MPI

 Copyright, Lawrence Snyder, 199911

Interprocessor Communication
• The most basic communication facility is the

transfer of a fixed length message
• It is essential that incoming messages be

removed from the network to avoid “badness”

Processor

Memory

Processor

Memory

Interconnection Network

NIC

 Copyright, Lawrence Snyder, 199912

Message Size
• It is easy to provide space to store small

messages, but what about 1MB messages?
• Use a handshaking protocol to set things up

• Source sends destination: req_to_send(byteno)
• Destination (al)locates the space
• Destination replies: ready_to_receive
• Source sends data

S D
req_to_send

ready_to_recv

data

 Copyright, Lawrence Snyder, 199913

Details ... copying

A significant overhead can be repeated copying
of messages as the NIC, operating system
and library implementation manipulate process
the message

• Copying serious only for large messages
• Past protocols have made as many as 3 copies

• For either the handshaking protocol or planned
communication, arrange destination address in
user space

• Have NIC drop data in the right place

 Copyright, Lawrence Snyder, 199914

Details ... Asynchronous Interface

• In some machines the processor must
implement the communication

• This is synchronous ... both source and
destination processors must be processing the
message at the same time -- inefficient

• Decouple using a NIC
• Processor computes
• Data managed by NIC

• A NIC is potentially a
very low latency interface

Processor

Memory

NIC

 Copyright, Lawrence Snyder, 199915

Higher Level Protocols
• When a processor sends, it must do so before

it overwrites the data it is sending
• Since the library routines do not know when

that is, they force the Source to wait til done
Source
send(Pdest, addr, len)

Destination

Recv checkWaiting

 Copyright, Lawrence Snyder, 199916

Higher Level Protocols, Continued

• Break coupling using an asynchonous scheme
• Keep computing during handshake/Xmission

• Need to have work, and enough memory

Source
send(Pdest, addr, len)

Destination

Recv check

Waiting

Continue Computing

Need Locations

 Copyright, Lawrence Snyder, 199917

Higher Level Protocols, Continued
• Copy send solves the “need the location”

problem, but at the cost of time/memory
• Though csend is simple, it is no longer popular

Source
send(Pdest, addr, len)

Destination

Recv check
Continue Computing

 Copyright, Lawrence Snyder, 199918

Active Messages

• Active message is a term for a restricted form
of a remote procedure call

• Introduced in MIT’s J-machine
• Message structure

• When message arrives, processor interrupted,
the handler is invoked to process the request

• Can be clumsy in bursts

Dest Addr Handler Operand1, Operand2 ... Operand n

 Copyright, Lawrence Snyder, 199919

Summary On Message Passing

• Message passing implements basic
communication

• Though small messages can be sent without a
handshaking protocol, larger messages need it

• Handshaking is a synchronization point
between the communicating processors

• Asynchronous message passing is perhaps
the most flexible, but it can be subtle

 Copyright, Lawrence Snyder, 199920

Ironman: Compiler Comm Interface

• Ironman says what is transferred and when, but not how
• Key idea: 4 calls demarcate the legal region of transfer

Pi code Pi+1 code

A
A:=1;
SR(A);

SV(A);
A:=B;

DN(A’);
D := ... A’...

C := ...A’ ...
DR(A’);

Source location
to be overwritten

Destination
data needed

Source data
is ready

Destination
location ready

A’

 Copyright, Lawrence Snyder, 199921

HW Customize: Binding Ironman Calls

With what and when specified by the 4 Ironman calls, the
communication is implemented by linking in a library
with the specific mechanisms.

Pi code

A:=1;
SR(A);

SV(A);
A:=B;

Pi+1 code

DN(A’);
D := ... A’...

C := ...A’ ...
DR(A’);

 --
csend

crecv
 --

P’gon
Msg
Pass

MPI
Asych
Msg’s

Destination Ready

Source Ready

Cray
T3E
Shmem

Destination Needed

Source Volatile

post_ready
wait_ready
shmem-put
post_done

wait_done
 --

MPI_irecv
MPI_isend

MPI_Wait
MPI_Wait

 Copyright, Lawrence Snyder, 199922

Ironman Summary ...

• Dumps message passing as compiler communication

• Replace w/ 4 calls saying what/when, but not how
• DR(), SR(), DN(), SV()

• Strategy derives from CTA’s abstract specification
• No memory organization stated

• Bindings customize to hardware’s mechanism
• Versatility covers commercial & prototype machines

• message passing (all forms), shmem, shared, differential, ...

• Ironman concepts extended to other cases
• Collective communication

 Copyright, Lawrence Snyder, 199923

Multiple Networks

• A single communication network is completely
adequate, but the engineering effort needed
for smooth operation can be substantial

• Dual network designs have been used often ...
• The two networks may be only logical
• One net for requests, one for responses assists

in deadlock avoidance
• One net for user comm and one net for system

comm

 Copyright, Lawrence Snyder, 199924

nCUBE/2: An Early MP Design

• The nCUBE/2 is a hypercube architecture
• Node communication channels grow as log2 P

0 cube 1 cube

2 cube
3 cube

4 cube

Each node of a
d cube has a d
bit address; to
go from d to d’
“correct the bits”

P000

P010

P001

P011

 Copyright, Lawrence Snyder, 199925

Schematic For nCUBE/2 Node

• Communication uses a simple DMA scheme

Memory Processor

Addr Addr Addr Addr
Len

Addr
Len

Addr
Len

Switch

... ...
Output PortsInput Ports

Memory Bus

 Copyright, Lawrence Snyder, 199926

nCUBE Physical Implementation

A single chip performed of the operations
allowing for a very economical node card

Memory

Memory

Memory

Memory

Memory

Memory

Single Chip
Node -- proc
and comm

 Copyright, Lawrence Snyder, 199927

Connection Machine, CM-5

• A Fat Tree Interconnection Network

CM-5 not a successor
to CM-1 or CM-2

PM PM PM PM PM PM PM PM

To handle increased
traffic at higher levels
add more channels,
and greater switching
capacity

 Copyright, Lawrence Snyder, 199928

CM-5 Node Organization

SPARC FPU

Mem
ctl

Memory Bus

MMU Cache

Vector
unit

Mem Mem

Mem
ctl

Vector
unit

Mem Mem

NI

Data
Nets Ctl

Net

Control network
assists on global
operations like
reductions

 Copyright, Lawrence Snyder, 199929

Intel Paragon -- A 2D Mesh

• The Paragon is based on a mesh
• Second processor serves comm co-processor

I860XP

Mem

Mem Bus

DMACache

I860XP

Cache

Interconnection Network

NI

Compute Comm

Sending a cache line
takes 500 cycles

 Copyright, Lawrence Snyder, 199930

Cray T3D -- Shared Address Space
• True one sided communication is possible if a

processor can get from or put to another
processor’s memory

• The Cray T3D implements these operations as
“shmem get” and “shmem put”

• A (non coherent) shared address space

T3D is a 3 dimensional
torus, i.e. mesh with wrap

 Copyright, Lawrence Snyder, 199931

Generic Shared Physical Address Space
• Conceptualize a pseudo-processor and a

pseudo-memory

Pseudo
Memory

Pseudo
Proc’r

Memory
P

MMU

$

Pseudo
Memory

Pseudo
Proc’r

Memory
P

MMU

$

Interconnection Network

 Copyright, Lawrence Snyder, 199932

Cray T3D Shmem
• Shmem get/put eliminate a synchronization for

the processor, though the pseudo-processor
synchronizes

• Virtual-to-physical translation is performed at
the “loading” end

• A transfer requires a short sequence of
instructions, and then ~100 cycles for Xfer

• There is separate network support for global
operations such as synchronization (eureka)

 Copyright, Lawrence Snyder, 199933

T3E
• Greater simplification over T3D through 512

64-bit E-registers used with load/store
• Gets/Puts move data to/from global address to

E-registers
• Also, read/modify/write is possible through them

• Loading data
• Put processor address portion if E-register

• Issue get by mem-mapped store with addresses
• Actual transfer is made from remote to E-register
• Load from E-register gets data

• Twice the speed of T3D

 Copyright, Lawrence Snyder, 199934

Clusters -- Network of Workstations

• Processors (SMPs) and Memorys on an
interconnect

• Bus (E-net) or Ring (FDDI) and point-to-point
(HPPI), Switched LAN (ATM), etc.

• Though cost effective in terms of hardware,
the programming problem is at least as hard
as any other solution

• Clusters are often used simply as servers
rather than parallel machines

 Copyright, Lawrence Snyder, 199935

Standard NOW
• A Workstation + Myrinet is a standard design

Memory

L2$ Proc

X-bar

Bus
Adapt

LANAI
NIC

Myrinet Network With 8-port Switches

Memory

L2$ Proc

X-bar

Bus
Adapt

LANAI
NIC

 Copyright, Lawrence Snyder, 199936

Performance

• Difficult to generalize on performance
• Get/put achieves direct communication that

can be superior to message passing and
coherent shared memory

• The hardware is easily built ... “it’s the
software, stupid”

