CSEP 527 Computational Biology

http://courses.cs.washington.edu/courses/csep527/16sp

Larry Ruzzo
Spring 2016

He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

-- Chinese Proverb

Tonight

Admin

Why Comp Bio?

The world's shortest Intro. to Mol. Bio.

Admin Stuff

University of Washington Computer Science & Engineering

Please do this ASAP

CSE P527, Sp '16: Computational Biology (Professional Masters Program)

CSE Home

Administrative

Schedule & Reading

HW0: Backe

Homework 0 Course Em

Subscription opti Class List Archive GoPost BBoard

Homework

1: Assignment Electronic Turnin

Lecture Notes

Lecture Recordings

All recordings

Previous Versions

CSEP 590B, 2014

CSEP 590A, 2013

CSEP 590B, 2011

CSEP 590A, 2008

CSEP 590A, 2006

CSE 590TV, 2003

Resources

Pubmed NHGRI Talking Glossary http://courses.

Lecture: JHN 075 Th 6:30-9:20

Office Hours Location Phone

CSE 554 (206) 543-629° Larry Ruzzo, ruzzo@cs By appt.

Daniel Jones, dejones@cs By appt.

Course Email: multi_csep527a_sp16@uw.edu. Staff announcer Enrolled students are as well, but probably should change the

Discussion Board: Also feel free to use Catalyst Gop

Catalog Description: Introduction to the use of sequence analysis, structure prediction, phy' MCMC, expectation-maximization, and

Prerequisite: None

Credits: 4

TA:

Learning Objectives: 7 volume of data is r

objective of th

have

concepts <

work-based (no exams). Homework will include programming, paper & pencil exercises and some online of : In general, assignments are due at or before the start of class on the assigned date. The occasional assignment

cting points beyond that. Contact me if you get in a bind this way.

tra Credit: Assignments may include "extra credit" sections. These will enrich your understanding of the material, but a and don't start extra credit until the basics are complete.

Textbook: Richard Durbin, Sean R. Eddy, Anders Krogh and Graeme Mitchison, Biological Sequence Analysis: Probabilis (Available from U Book Store, Amazon, etc.) Errata.

References: See Schedule & Reading.

csep527/16sp

erest student/staff O&A about homew aon options. Messages are automatically a

ands for understanding biological systems at the molecular lotif discovery, expression analysis, and regulatory analysi

ngton.edulcourses/ are complete genome sequences of humans and other organisms is one of the la nallenge scientists for decades to come, and the nature and scope of the problem me and and solutions and solutions that arise in this of to understand the context for the computational problems presented in the rest of the course a courses can be applied to solve problems in modern molecular biology. An important component or the solution of these problems, as well as publicly available computational analysis tools and the a

11

Course Mechanics & Grading

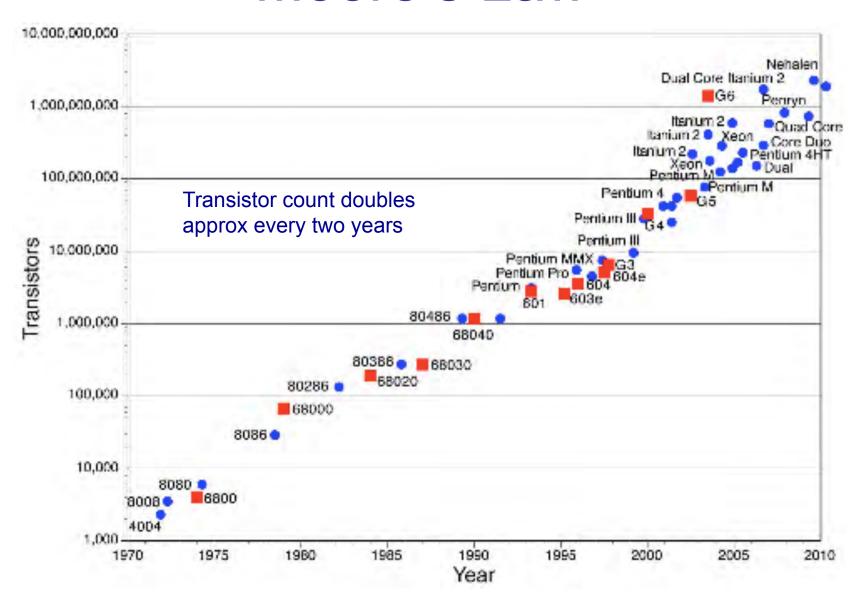
Web

http://courses.cs.washington.edu/courses/csep527/16au

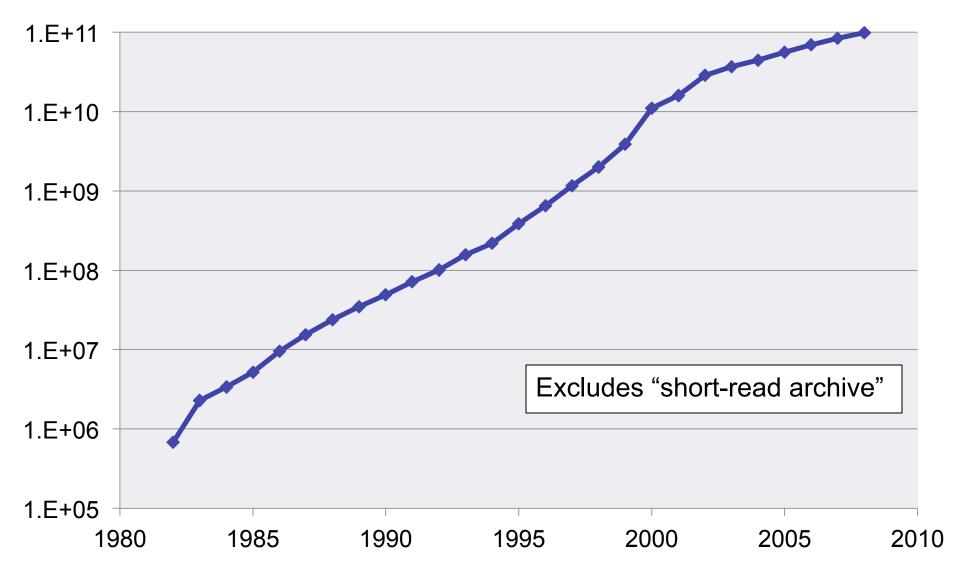
Reading

In class discussion

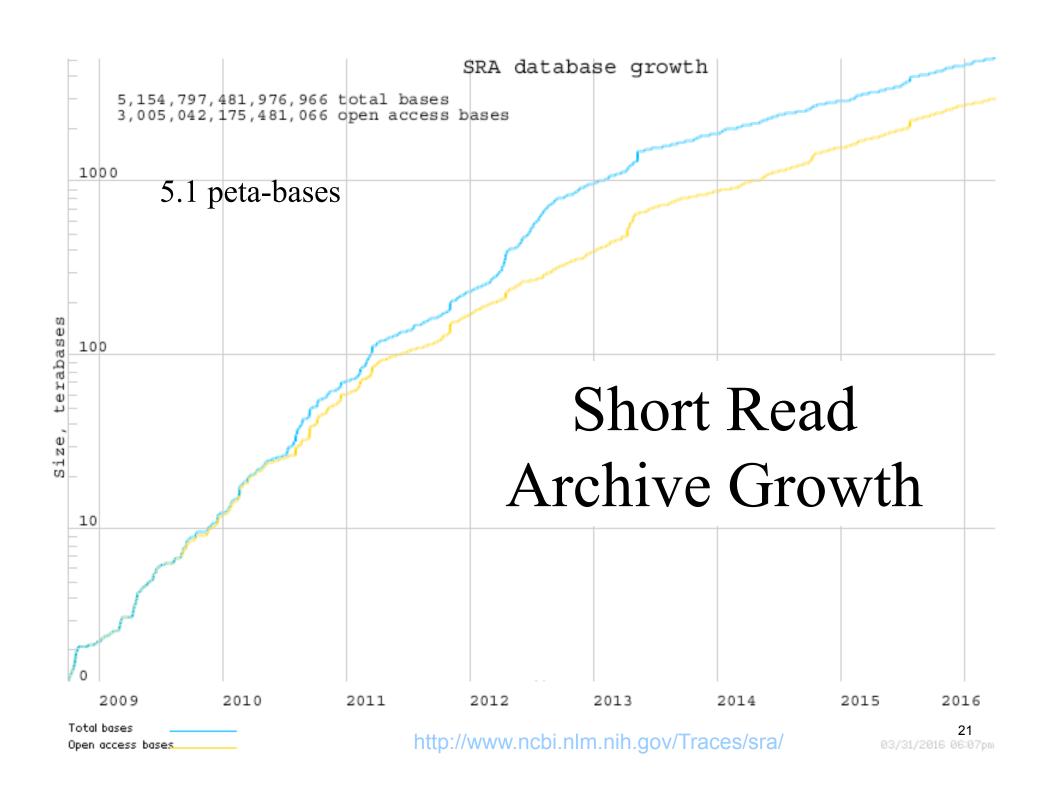
Homeworks

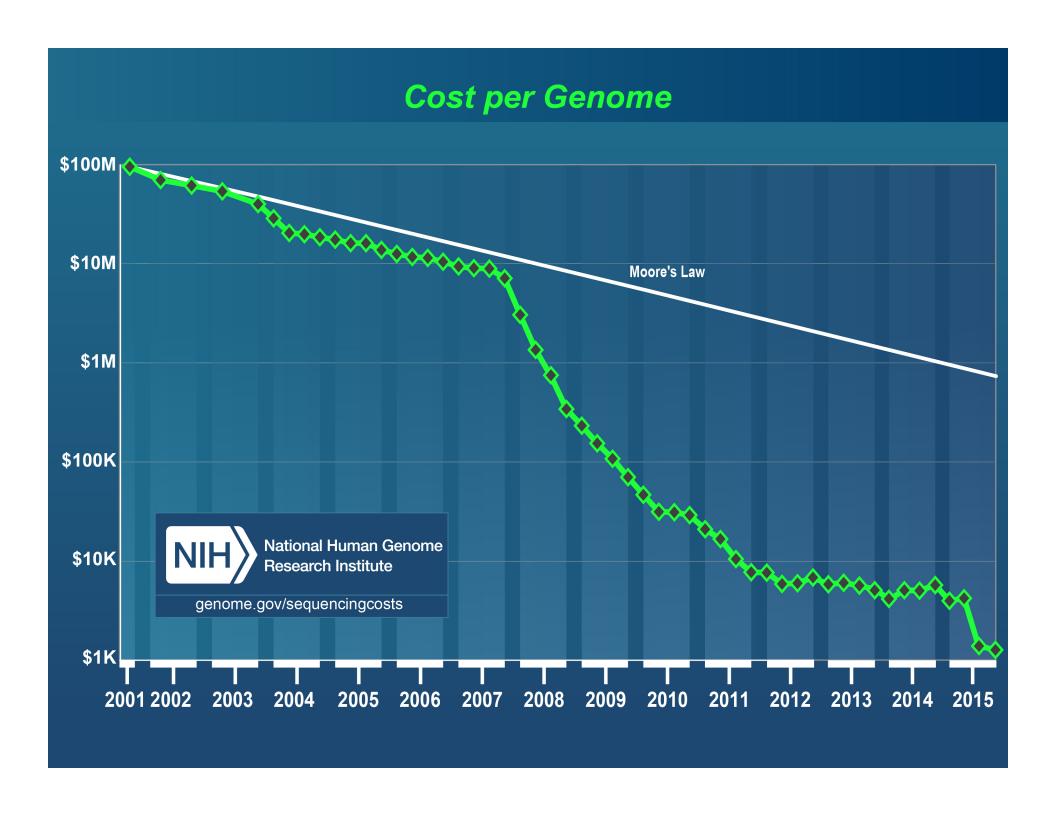

reading blogs paper exercises programming

No exams, but possible oversized last homework in lieu of final


Check web for 1st, soon

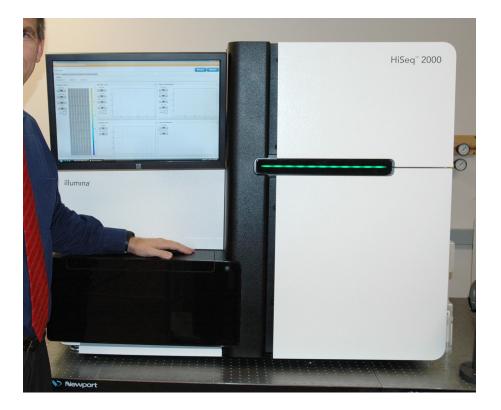
Background & Motivation


Moore's Law



Growth of GenBank (Base Pairs)

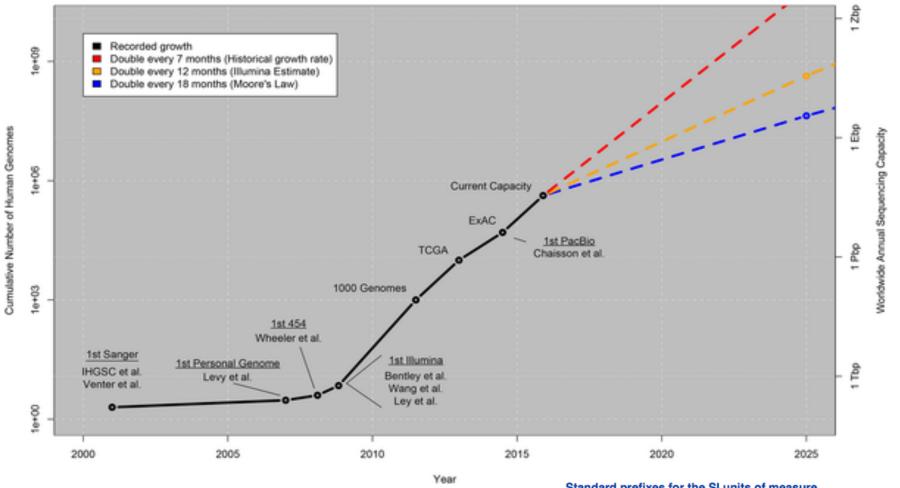
Source: http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html



Modern DNA Sequencing

A table-top box the size of your oven (but costs a bit more ...;-) can generate ~100 billion BP of DNA seq/day; i.e. = 2008 genbank,

= 30x your genome


PERSPECTIVE

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar lyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

Fig 1. Growth of DNA sequencing.

Growth of DNA Sequencing

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. (2015) Big Data: Astronomical or Genomical? PLoS Biol 13(7): e1002195. doi:10.1371/ journal.pbio.1002195

http://127.0.0.1:8081/plosbiology/article?id=info:doi/10.1371/journal.pbio.1002195

Standard prefixes for the SI units of measure

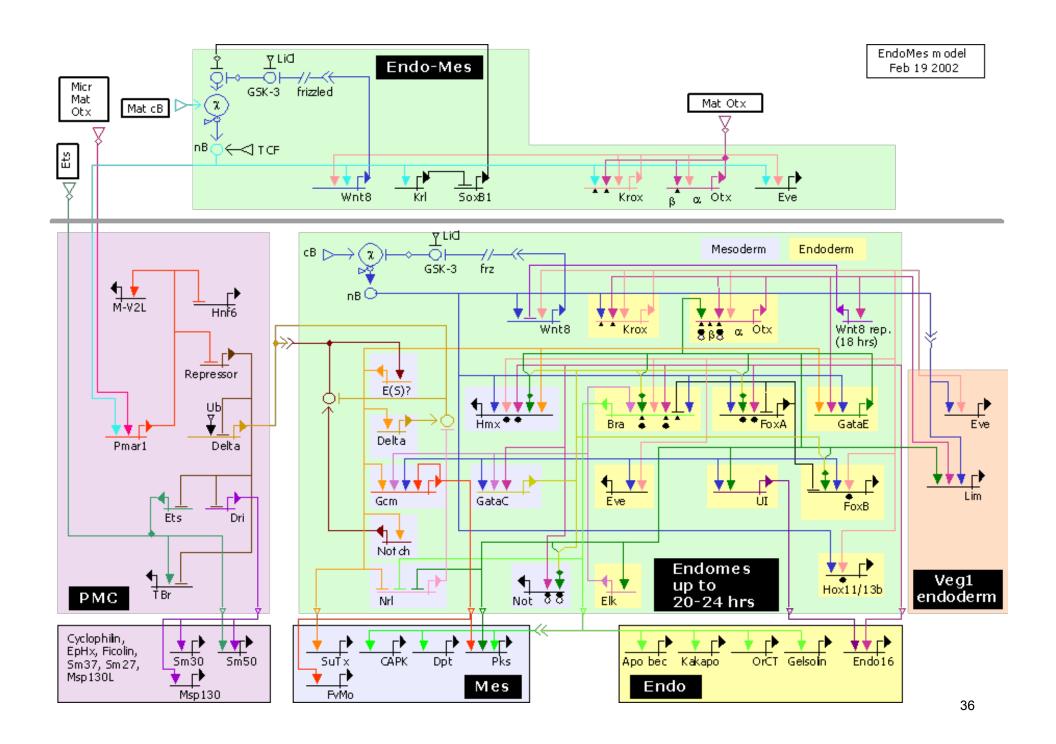
ctandard profixes for the or anits of measure										
Prefix name		deca	hecto	kilo	mega	giga	tera	peta	exa	zetta
Prefix symbol		da	h	k	М	G	Т	Р	E	Z
Factor	10 ⁰	10 ¹	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸	10 ²¹

Table 1. Four domains of Big Data in 2025.

In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

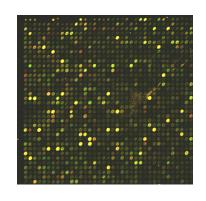
Data Phase		Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1–17 PB/year	1–2 EB/year	2–40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion CPU hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movements

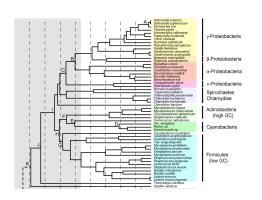
Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. (2015) Big Data: Astronomical or Genomical?. PLoS Biol 13(7): e1002195. doi: 10.1371/journal.pbio.1002195


http://127.0.0.1:8081/plosbiology/article?id=info:doi/10.1371/journal.pbio.1002195

The Human Genome Project

```
61 gggcgcagcg gcggccgcag accgagcccc gggcgcggca agaggcggcg ggagccggtg
121 gcggctcggc atcatgcgtc gagggcgtct gctggagatc gccctgggat ttaccgtgct
181 tttagcgtcc tacacgagcc atggggcgga cgccaatttg gaggctggga acgtgaagga
241 aaccagagcc agtcgggcca agagaagagg cggtggagga cacgacgcgc ttaaaggacc
301 caatgtctgt ggatcacgtt ataatgctta ctgttgccct ggatggaaaa ccttacctgg
361 cggaaatcag tgtattgtcc ccatttgccg gcattcctgt ggggatggat tttgttcgag
421 gccaaatatg tgcacttgcc catctggtca gatagctcct tcctgtggct ccagatccat
481 acaacactgc aatattcgct gtatgaatgg aggtagctgc agtgacgatc actgtctatg
541 ccaqaaaqqa tacataggga ctcactgtgg acaacctgtt tgtgaaagtg gctgtctcaa
601 tggaggaagg tgtgtggccc caaatcgatg tgcatgcact tacggattta ctggacccca
661 gtgtgaaaga gattacagga caggcccatg ttttactgtg atcagcaacc agatgtgcca
721 gggacaactc agcgggattg tctgcacaaa acagctctgc tgtgccacag tcggccgagc
781 ctggggccac ccctgtgaga tgtgtcctgc ccagcctcac ccctgccgcc gtggcttcat
841 tccaaatatc cgcacqqqaq cttqtcaaqa tqtqqatqaa tqccaqqcca tccccqqqct
901 ctgtcaggga ggaaattgca ttaatactgt tgggtctttt gagtgcaaat gccctgctgg
961 acacaaactt aatgaagtgt cacaaaaatg tgaagatatt gatgaatgca gcaccattcc
1021 ...
```




Goals

Basic biology
Disease diagnosis/prognosis/treatment
Drug discovery, validation & development
Individualized medicine

. . .

"High-Throughput BioTech"

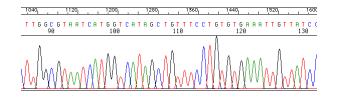
Sensors

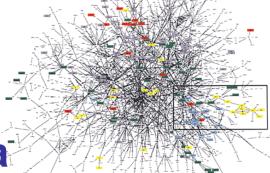
DNA sequencing

Microarrays/Gene expression

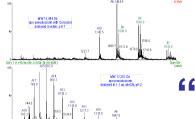
Mass Spectrometry/Proteomics

Protein/protein & DNA/protein interaction


Controls


Cloning

Gene knock out/knock in


RNAi

Floods of data

"Grand Challenge" problems

What's all the fuss?

The human genome is "finished"...
Even if it were, that's only the beginning
Explosive growth in biological data is
revolutionizing biology & medicine

"All pre-genomic lab techniques are obsolete"

(and computation and mathematics are crucial to post-genomic analysis)

CS Points of Contact & Opportunities

Scientific visualization

Gene expression patterns

Databases

Integration of complex, disparate, overlapping data sources Distributed genome annotation in face of shifting underlying genomic coordinates, individual variation, ...

AI/NLP/Text Mining

Information extraction from text with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models, ...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data (DNA seq, gene expression, protein interaction, mass spec,...)

- - -

Algorithms

Computers in biology: Then & now

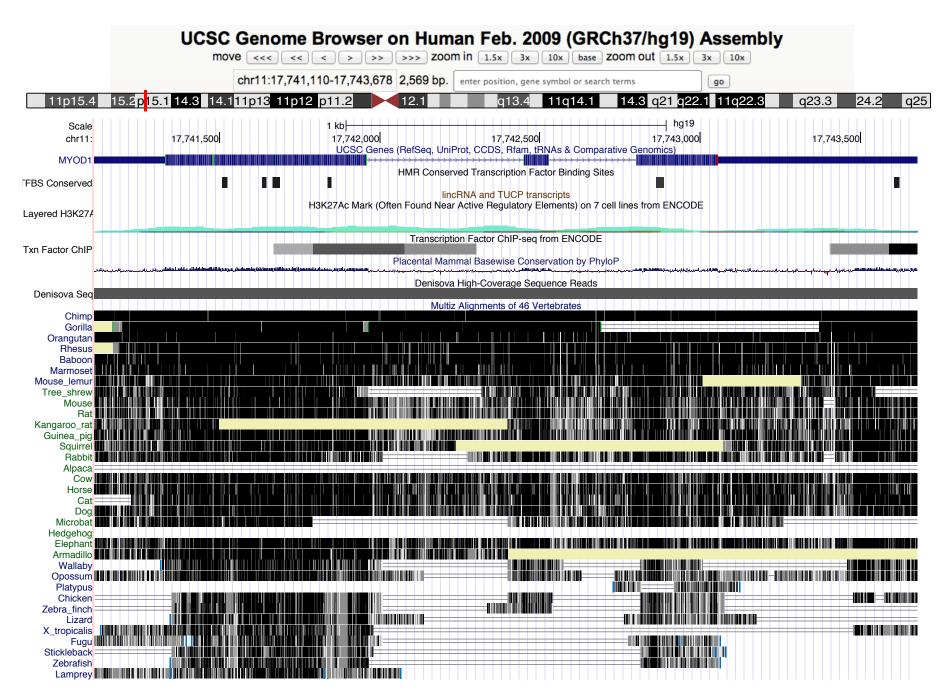
Trends in Biochemical Sciences

Volume 12 , 1987, Pages 279-280

doi:10.1016/0560-0004(87)50155-6

Copyright © 1987 Publisher: by Elsevier Science Ug.

ACGGGTAA


AC GGTAA

Microfile

Sequence alignment by word processor

D. Ross Boswell

Department of Hacmatological Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's I Road, Cambridge CB2 2QL, UK

More Admin

Course Focus & Goals

Mainly sequence analysis

Algorithms for alignment, search, & discovery

Specific sequences, general types ("genes", etc.)

Single sequence and comparative analysis

Techniques: HMMs, EM, MLE, Gibbs, Viterbi...

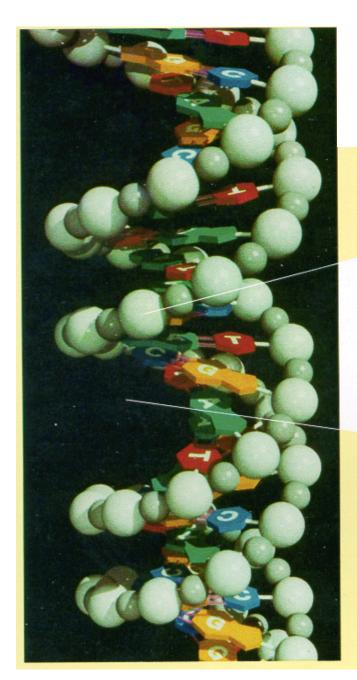
Enough bio to motivate these problems

including very light intro to modern biotech supporting them

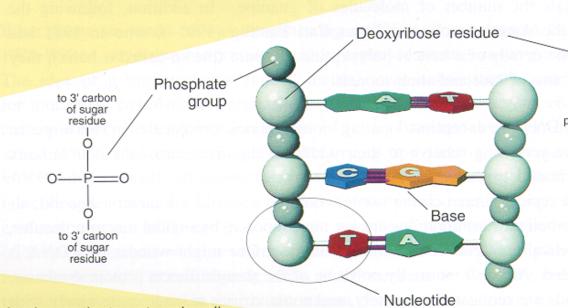
Math/stats/cs underpinnings thereof

Applied to real data

A VERY Quick Intro To Molecular Biology


The Genome

The hereditary info present in every cell


DNA molecule -- a long sequence of nucleotides (A, C, T, G)

Human genome -- about 3 x 10⁹ nucleotides

The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, ...

The Double Helix

As shown, the two strands coil about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base A always bonds to T (A and T are comple-

Shown in (b)

is an uncoiled fragment of (a three complementary base pai chemist's viewpoint, each stra a polymer made up of four re called deoxyribonucleotides

Los Alamos Science

DNA

Discovered 1869

Role as carrier of genetic information – 1940's

4 "bases":

adenine (A), cytosine (C), guanine (G), thymine (T)

The Double Helix - Watson & Crick (& Franklin) 1953 Complementarity

$$A \longleftrightarrow T \quad C \longleftrightarrow G$$

Visualization:

http://www.rcsb.org/pdb/explore.do?structureId=123D

Genetics - the study of heredity

A *gene* -- classically, an abstract heritable attribute existing in variant forms (*alleles*) ABO blood type–1 gene, 3 alleles

Mendel

Each individual two copies of each gene Each parent contributes one (randomly) Independent assortment (approx, but useful)

Genotype vs phenotype

I.e., genes vs their outward manifestation AA or AO genotype → "type A" phenotype

Cells

- Chemicals inside a sac a fatty layer called the plasma membrane
- Prokaryotes (bacteria, archaea) little recognizable substructure
- Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) genetic material in nucleus, other organelles for other specialized functions

Chromosomes

1 pair of (complementary) DNA molecules (+ protein wrapper)

Most prokaryotes: just 1 chromosome

most

Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, ...

Mitosis/Meiosis

Most "higher" eukaryotes are *diploid* - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)

Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell

Meiosis - 2 divisions form 4 haploid gametes (egg/sperm)

Recombination/crossover -- exchange maternal/ paternal segments

Proteins

Chain of amino acids, of 20 kinds

Proteins: the major functional elements in cells

Structural/mechanical

Enzymes (catalyze chemical reactions)

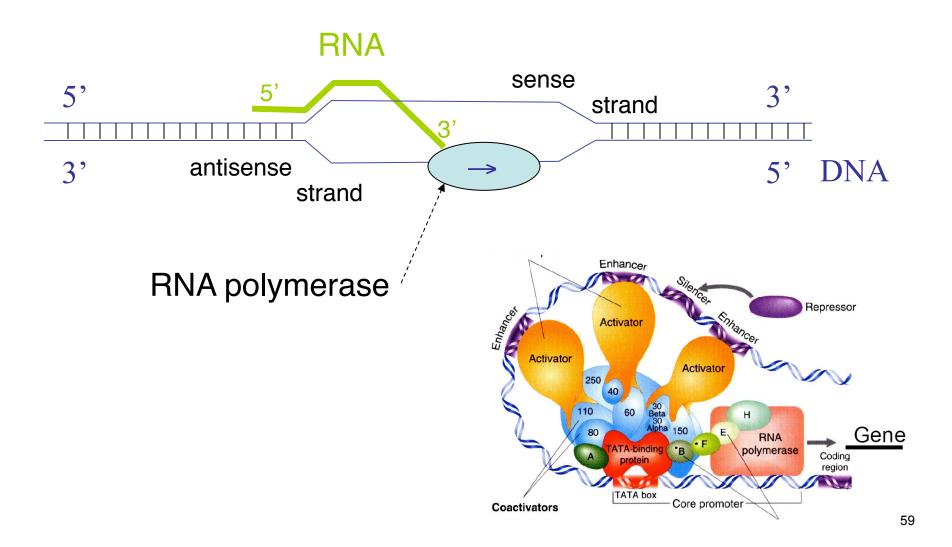
Receptors (for hormones, other signaling molecules, odorants,...)

Transcription factors

. . .

3-D Structure is crucial: the protein folding problem

The "Central Dogma"


Genes encode proteins

DNA transcribed into messenger RNA

mRNA translated into proteins

Triplet code (codons)

Transcription: DNA → RNA

Codons & The Genetic Code

		Second Base					
		U	С	Α	G		
First Base	U	Phe	Ser	Tyr	Cys	U	
		Phe	Ser	Tyr	Cys	С	
		Leu	Ser	Stop	Stop	Α	
		Leu	Ser	Stop	Trp	G	
	С	Leu	Pro	His	Arg	U	
		Leu	Pro	His	Arg	С	
		Leu	Pro	Gln	Arg	Α	Base
		Leu	Pro	Gln	Arg	G	B
	A	lle	Thr	Asn	Ser	U	Third
		lle	Thr	Asn	Ser	С	Гhі
		lle	Thr	Lys	Arg	Α	•
		Met/Start	Thr	Lys	Arg	G	
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	С	
		Val	Ala	Glu	Gly	Α	
		Val	Ala	Glu	Gly	G	

Ala : Alanine Arg : Arginine

Asn : Asparagine

Asp : Aspartic acid

Cys : Cysteine

Gln: Glutamine

Glu: Glutamic acid

Gly: Glycine

His: Histidine

lle : Isoleucine

Leu : Leucine

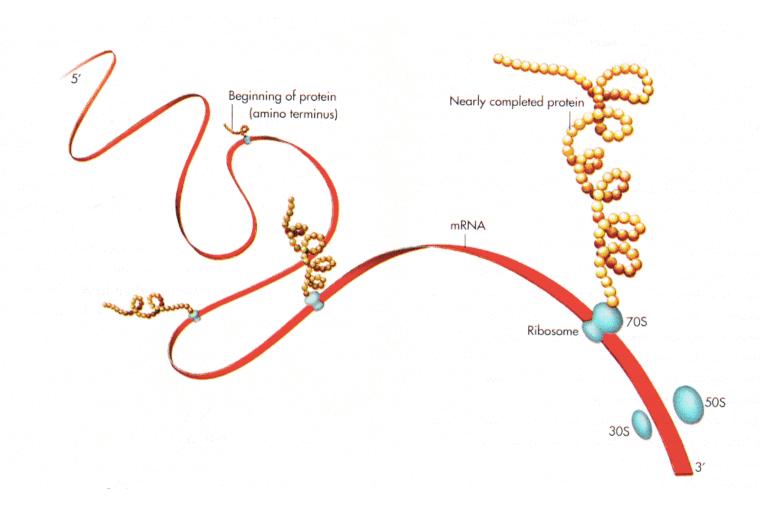
Lys: Lysine

Met: Methionine

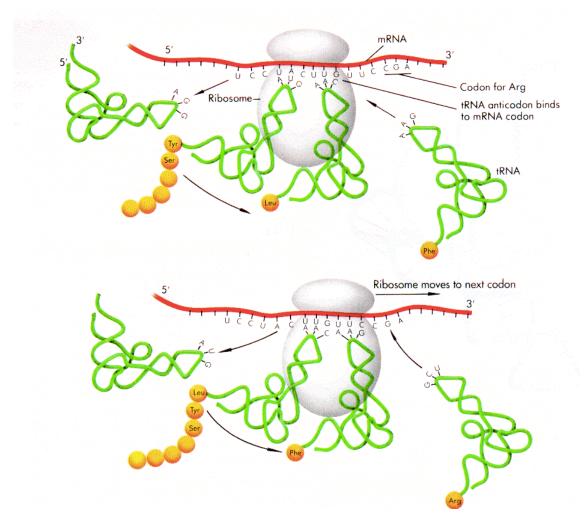
Phe: Phenylalanine

Pro: Proline

Ser : Serine


Thr: Threonine

Trp: Tryptophane


Tyr : Tyrosine

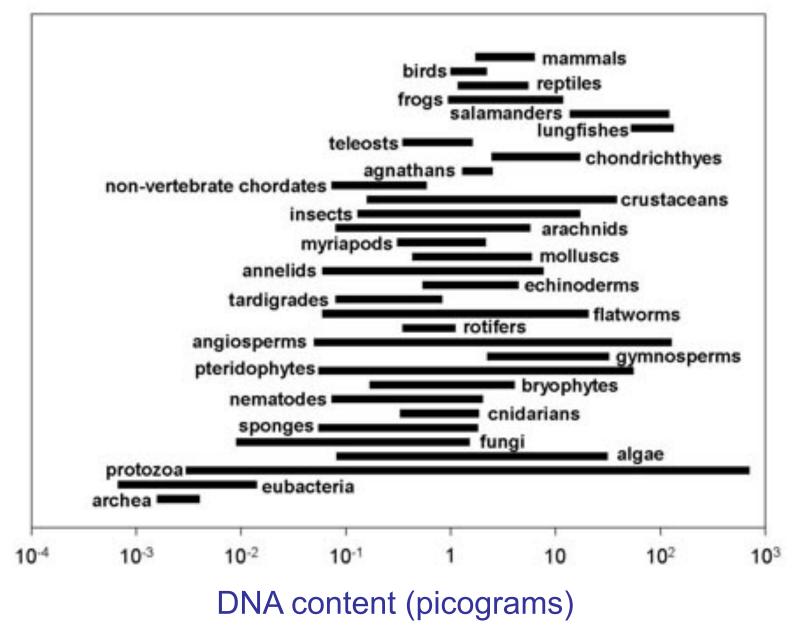
Val : Valine

Translation: mRNA → Protein

Ribosomes

Gene Structure

mRNA built 5' to 3'


Promoter region and transcription factor binding sites (usually) precede 5' end

Transcribed region includes 5' and 3' untranslated regions

In eukaryotes, most genes also include *introns*, spliced out before export from nucleus, hence before translation

Genome Sizes

	Base Pairs	Genes	
Mycoplasma genitalium	580,073	483	
Pandora Virus	2,900,000	2,500	
E. coli	4,639,221	4,290	
Saccharomyces cerevisiae	12,495,682	5,726	
Caenorhabditis elegans	95,500,000	19,820	
Arabidopsis thaliana	115,409,949	25,498	
Drosophila melanogaster	122,653,977	13,472	
Humans	3.3×10^9	~21,000	
Amoeba dubia	~ 200 x human		

http://www.genomesize.com/statistics.php

Genome Surprises

Humans have < 1/3 as many genes as expected

But perhaps more proteins than expected, due to *alternative* splicing, alt start, alt end

Protein-wise, all mammals are just about the same

But more individual variation than expected

And many more *non-coding RNAs --* more than protein-coding genes, by some estimates

Many other non-coding regions are highly conserved, e.g., across all vertebrates

Subset of DNA being transcribed is >> 2% coding

Complex, subtle "epigenetic" information

... and much more ...

Read one of the many intro surveys or books for much more info.

Homework #1 (partial)

Read Hunter's "bio for cs" primer;

Find & read another

Post a few sentences saying

What you read (give me a link or citation)

Critique it for your meeting your needs

Who would it have been good for, if not you

See class web (coming soon) for more details

Bio Concept Summary

cells

DNA

base pairing

genome

replication, transcription, translation