CSEP 527 Computational Biology Spring 2016
 Lecture 2
 Sequence Alignment

"HW 0" Background Poll

In your own words, what is DNA? Its main role?
What is RNA? What is its main role in the cell?
How many amino acids are there? Are used in proteins?
Did human beings, as we know them, develop from earlier species of animals?
What are stem cells?
What did Viterbi invent?
What is dynamic programming?
What is a likelihood ratio test?
What is the EM algorithm?

Don't worry, we'll talk about all this stuff before the course ends

How would you find the max of $f(x)=a x^{3}+b x^{2}+c x+d$ in the interval $-10<x<25$?

Sequence Alignment

What
Why
A Dynamic Programming Algorithm

Sequence Alignment

Goal: position characters in two strings to "best" line up identical/similar ones with one another

We can do this via Dynamic Programming

What is an alignment?

Compare two strings to see how "similar" they are E.g., maximize the \# of identical chars that line up

ATGTTAT vs ATCGTAC

A	T	-	G	T	T	A	T
A	T	C	G	T	-	A	C

What is an alignment?

Compare two strings to see how "similar" they are E.g., maximize the \# of identical chars that line up

ATGTTAT vs ATCGTAC

Sequence Alignment: Why

Biology

Among most widely used comp. tools in biology
DNA sequencing \& assembly
New sequence always compared to data bases
Similar sequences often have similar origin and/or function
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$
Other
spell check/correct, diff, svn/git/..., plagiarism, ...

BLAST Demo
 http://www.ncbi.nlm.nih.gov/blast/

Taxonomy Report
root 64 hits 16 orgs
. Eukaryota 62 hits 14 orgs [cellular organisms]

Alternate demo:

- go to http://www.uniprot.org/uniprot/O14980 "Exportin-1"
- find "BLAST" button about $1 / 2$ way down page, under "Sequences", just above big grey box with the amino sequence of this protein
- click "go" button
- after a minute or 2 you should see the $1^{\text {st }}$ of 10 pages of "hits" - matches to similar proteins in other species
- you might find it interesting to look at the species descriptions and the "identity" column (generally above 50\%, even in species as distant from us as fungus -- extremely unlikely by chance on a 1071 letter sequence over a 20 letter alphabet)
- Also click any of the colored "alignment" bars to see the actual alignment of the human XPO1 protein to its relative in the other species - in 3-row groups (query $1^{\text {st }}$, the match $3^{\text {rd }}$, with identical letters highlighted in between)

Terminology

Formal definition of an alignment

An alignment of strings S, T is a pair of strings S^{\prime}, T^{\prime} with dash characters "-" inserted, so that

1. $\left|S^{\prime}\right|=|T|$, and (|S| = "length of S")
2. Removing dashes leaves S, T

Consecutive dashes are called "a gap."
(Note that this is a definition for a general alignment, not optimal.)

Scoring an arbitrary alignment

Define a score for pairs of aligned chars, e.g.

$$
\sigma(x, y)=\left\{\begin{array}{lr}
\text { match } & 2 \\
\text { mismatch } & -1
\end{array}\right.
$$

Apply that per column, then add.

\[

\]

More Realistic Scores: BLOSUM 62

(the " σ " scores)

| | \mathbf{A} | \mathbf{R} | \mathbf{N} | \mathbf{D} | \mathbf{C} | \mathbf{Q} | \mathbf{E} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{L} | \mathbf{K} | \mathbf{M} | \mathbf{F} | \mathbf{P} | \mathbf{S} | \mathbf{T} | \mathbf{W} | \mathbf{Y} | \mathbf{V} |
| :--- | ---: |
| \mathbf{A} | $\mathbf{4}$ | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| \mathbf{R} | -1 | $\mathbf{5}$ | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| \mathbf{N} | -2 | 0 | $\mathbf{6}$ | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| \mathbf{D} | -2 | -2 | 1 | $\mathbf{6}$ | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| \mathbf{C} | 0 | -3 | -3 | -3 | $\mathbf{9}$ | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| \mathbf{Q} | -1 | 1 | 0 | 0 | -3 | $\mathbf{5}$ | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| \mathbf{E} | -1 | 0 | 0 | 2 | -4 | $\mathbf{2}$ | $\mathbf{5}$ | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{G} | 0 | -2 | 0 | -1 | -3 | -2 | -2 | $\mathbf{6}$ | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| \mathbf{H} | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | $\mathbf{8}$ | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| \mathbf{I} | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | $\mathbf{4}$ | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| \mathbf{L} | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | $\mathbf{4}$ | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| \mathbf{K} | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | $\mathbf{5}$ | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{M} | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | $\mathbf{2}$ | -1 | $\mathbf{5}$ | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| \mathbf{F} | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | $\mathbf{6}$ | -4 | -2 | -2 | 1 | 3 | -1 |
| \mathbf{P} | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | $\mathbf{7}$ | -1 | -1 | -4 | -3 | -2 |
| \mathbf{S} | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | $\mathbf{4}$ | 1 | -3 | -2 | -2 |
| \mathbf{T} | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | $\mathbf{5}$ | -2 | -2 | 0 |
| \mathbf{W} | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | $\mathbf{1 1}$ | 2 | -3 |
| \mathbf{Y} | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | $\mathbf{7}$ | -1 |
| \mathbf{V} | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | $\mathbf{4}$ |

Optimal Alignment: A Simple Algorithm

for all subseqs A of S, B of T s.t. $|A|=|B|$ do align $A[i]$ with $B[i], 1 \leq i \leq|A|$ align all other chars to spaces compute its value retain the max
end

$$
\begin{array}{|ll|}
\hline S=\operatorname{agct} & A=c t \\
T=w x y z & B=x z \\
-a g c-t & a-g c-t \\
w--x y z & -w-x y z \\
\hline
\end{array}
$$

output the retained alignment

Analysis

Assume $|\mathrm{S}|=|\mathrm{T}|=\mathrm{n}$
Cost of evaluating one alignment: $\geq \mathrm{n}$
$\begin{gathered}\text { How many alignments are there: } \\ \text { pick } \mathrm{n} \text { chars of } \mathrm{S}, \mathrm{T} \text { together }\end{gathered} \geq\binom{ 2 n}{n}$
say k of them are in S
match these k to the k unpicked chars of T
Total time: $\geq n\binom{2 n}{n}>2^{2 n}$, for $n>3$
E.g., for $n=20$, time is $>2^{40}$ operations

Polynomial vs Exponential Growth

Can we use Dynamic Programming?

1. Can we decompose into subproblems?
E.g., can we align smaller substrings (say, prefix/ suffix in this case), then combine them somehow?
2. Do we have optimal substructure?
I.e., is optimal solution to a subproblem independent of context? E.g., is appending two optimal alignments also be optimal? Perhaps, but some changes at the interface might be needed?

Optimal Substructure (In More Detail)

Optimal alignment ends in 1 of 3 ways: last chars of S \& T aligned with each other last char of S aligned with dash in T last char of T aligned with dash in S
(never align dash with dash; $\sigma(-,-)<0$)
In each case, the rest of $S \& T$ should be optimally aligned to each other

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal alignment
Easier to solve a "harder" problem:
$V(i, j)=$ value of optimal alignment of

$$
\begin{aligned}
& S[1], \ldots, S[i] \text { with } T[1], \ldots, T[j] \\
& \text { for all } 0 \leq i \leq n, 0 \leq j \leq m .
\end{aligned}
$$

Base Cases

$V(i, 0)$: first i chars of S all match dashes

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

$\mathrm{V}(0, \mathrm{j})$: first j chars of T all match dashes

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case

Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

Opt align of

$$
V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) \\
V(i, j(S[i],-) \\
V(\sigma(-, T[j])
\end{array}\right\},
$$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Calculating One Entry

$$
V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j)+\sigma(S[i],-) \\
V(i, j-1)+\sigma(-, T[j])
\end{array}\right\}
$$

Mismatch $=-1$
Match $=2$

Example

Mismatch $=-1$

Example

Match $=2$

Mismatch $=-1$

Example

Mismatch $=-1$

Example

i	j	0	1	2 a	3 t	4 g	5 t	$\leftarrow T$
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1				
2	c	-2						
3	g	-3			-1			$\frac{-2}{1}$
4	C	-4						$\sigma(-a)=-1$
5	t	-5						
6	g	-6			-1		\rightarrow	$2{ }^{1}$

Mismatch $=-1$

Example

 Match $=2$

Mismatch $=-1$

Example

 Match = 2| | j | 0 | 1
 c | 2
 a | 4
 t | 5
 g | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | | | 0 | -1 | -2 | -3 | -4 |
| 1 | a | -1 | -1 | 1 | 0 | -1 | -2 |
| 2 | c | -2 | 1 | 0 | 0 | -1 | -2 |
| 3 | g | -3 | 0 | 0 | -1 | 2 | 1 |
| 4 | c | -4 | -1 | -1 | -1 | 1 | 1 |
| 5 | t | -5 | -2 | -2 | 1 | 0 | 3 |
| 6 | g | -6 | -3 | -3 | 0 | 3 | 2 |

Finding Alignments: Trace Back

Arrows $=$ (ties for) max in $V(\mathrm{i}, \mathrm{j}) ; 3$ LR-to-UL paths $=3$ optimal alignments

Complexity Notes

Time $=O(m n),($ value and alignment $)$
Space $=O(m n)$
Easy to get value in Time $=O(m n)$ and Space $=O(\min (m, n))$

Possible to get value and alignment in Time $=O(m n)$ and Space $=O(\min (m, n))$, but tricky (DEKM 2.6)

Weekly Bio Interlude

DNA Replication

DNA Replication: Basics

Issues \& Complications, I

1st ~ 10 nt's added are called the primer In simple model, DNA pol has 2 jobs: prime \& extend
Priming is error-prone
So, specialized primase does the priming; pol specialized for fast, accurate extension

Still doesn't solve the accuracy problem (hint: primase makes an RNA primer)

Issue 2: Rep Forks \& Helices

"Replication Fork": DNA double helix is progressively unwound by a DNA helicase, and both resulting single strands are duplicated
DNA polymerase synthesizes new strand 5 ' -> 3'(reading its template strand 3' -> 5')
That means on one (the "leading") strand, DNA pol is chasing/pushing
 the replication fork
But on the other "lagging" strand, DNA pol is running away from it.

Issue 3: Fragments

Lagging strand gets a series of "Okazaki fragments" of DNA (~200nt in eukaryotes) following each primer
The RNA primers are later removed by a nuclease and DNA pol fills gaps (more accurate than primase; primed by DNA from adjacent Okazaki frag
Fragments joined by ligase

Issue 4: Coord of Leading/Lagging

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258

Very Nice DNA Repl. Animation

https://www.youtube.com/watch?v=yqESR7E4b 8

Issue 5: Twirls \& Tangles

Unwinding helix (~ 10 nucleotides per turn) would cause stress. Topoisomerase I cuts DNA backbone on one strand, allowing it to spin about the remaining
 bond, relieving stress
Topoisomerase II can cut \& rejoin both strands, after allowing another double strand to pass through the gap, de-tangling it.

Issue 6: Proofreading

Error rate of pol itself is $\sim 10^{-4}$, but overall rate is $\approx 10^{-8}$, due to proofreading \& repair, e.g. pol itself can back up \& cut off a mismatched base if one happens to be inserted
priming the new strand is hard to do accurately, hence RNA primers, later removed \& replaced
other enzymes scan helix for "bulges" caused by base mismatch, figure out which strand is original, cut away new (faulty) copy; DNA pol fills gap
which strand is original? Bacteria: "methylate" some A's, eventually. Euks: strand nicking

Replication Summary

Speed: 50 (eukaryotes) to 500 (prokaryotes) bp/sec
Accuracy: 1 error per $10^{8}-10^{9} \mathrm{bp}$
Complex \& highly optimized Highly similar across all living cells

More info:
Alberts et al., Mol. Biol. of the Cell

Sequence Alignment

Part II
Local alignments \& gaps

Variations

Local Alignment
Preceding gives global alignment, i.e. full length of both strings;
Might well miss strong similarity of part of strings amidst dissimilar flanks
Gap Penalties
10 adjacent spaces cost 10 x one space?
Many others
Similarly fast DP algs often possible

Local Alignment: Motivations

"Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole
"Active site" of a protein
Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions
Don't have whole sequence
Global alignment might miss them if flanking junk outweighs similar regions

Local Alignment

Optimal local alignment of strings S \& T: Find substrings A of S and B of T having max value global alignment

$$
\begin{array}{ll}
S=a b c x d e x & A=c x d e \\
T=x x x c d e & B=c-d e
\end{array} \quad \text { value }=5
$$

Local Alignment: "Obvious" Algorithm

for all substrings A of S and B of T :
Align $\mathrm{A} \& \mathrm{~B}$ via dynamic programming
Retain pair with max value
end ;
Output the retained pair
Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ choices for $\mathrm{A}, \mathrm{O}\left(\mathrm{m}^{2}\right)$ for B , $\mathrm{O}(\mathrm{nm})$ for DP, so $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)$ total.
[Best possible? Lots of redundant work...]

Local Alignment in O(nm) via Dynamic Programming

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal local alignment
Better to solve a "harder" problem for all $0 \leq i \leq n, 0 \leq j \leq m$:
$\mathrm{V}(\mathrm{i}, \mathrm{j})=$ max value of opt (global) alignment of a suffix of S[1], ..., S[i] with a suffix of T[1], ..., T[j]
Report best i,j

Base Cases

Assume $\sigma(x,-) \leq 0, \sigma(-, x) \leq 0$
$\mathrm{V}(\mathrm{i}, 0)$: some suffix of first i chars of S ; all match spaces in T; best suffix is empty

$$
V(i, 0)=0
$$

$\mathrm{V}(0, \mathrm{j})$: similar

$$
V(0, j)=0
$$

General Case Recurrences

Opt suffix align $\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$: $\left[\begin{array}{c}\sim \sim \sim \sim \\ \sim \sim \sim\end{array}\right]\left[\begin{array}{c}i] \\ \sim \sim \sim\end{array}\right], \quad\left[\begin{array}{l}\sim \sim \sim \sim \\ \sim \sim \sim \sim\end{array}\right],\left[\begin{array}{ll}\sim \sim \sim \sim & - \\ \sim \sim \sim \sim & T[j]\end{array}\right]$, or []

Opt align of

suffix of
$\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{i}-1}$ \&
$\mathrm{T}_{1} \ldots \mathrm{~T}_{\mathrm{j}-1}$

$$
V(i, j)=\max \begin{cases}V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) & +\sigma(S[i],-) \\
V(i, j-1) & +\sigma(-, T[j]) \\
0 & \begin{array}{l}
\text { opt suffix } \\
\text { alignent } \\
\text { ars: } \\
2,1,1,0 \\
\text { chars of } \\
\text { s/T }
\end{array}\end{cases}
$$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Scoring Local Alignments

i	j	0	1 \times	2 \times	3 \times	4 C C	5 d	6
0		0	0	0	0	0	0	0
1	a	0						
2	b	0						
3	c	0						
4	\times	0						
5	d	0						
6	e	0						
7	\times	0						

Again, arrows
Finding Local Alignments follow max term (not max neighbor)

	j	0	1	2	3	4	5	6
i			x	x	x	c	d	e
0		0	0	0	0	0	0	0
1	a	0	0	0	0	0	0	0
2	b	0	0	0	0	0	0	0
3	c	0	0	0	0	2	1	0
4	x	0	2	2	2	1	1	0
5	d	0	1	1	1	1	3	2
6	e	0	0	0	0	0	2	5
7	x	0	2	2	2	1	1	4
	s							

Notes

Time and Space $=O(m n)$
Space $O(\min (m, n))$ possible with time $\mathrm{O}(\mathrm{mn})$, but finding alignment is trickier

Local alignment: "Smith-Waterman"
Global alignment: "Needleman-Wunsch"

Significance of Alignments

Is "42" a good score?
Compared to what?

Usual approach: compared to a specific
"null model", such as "random sequences"

More on this later; a taste now, for use in next HW

Overall Alignment Significance, II Empirical (via randomization)

You just searched with x, found "good" score for x : y
Generate N random " y -like" sequences (say $\mathrm{N}=10^{3}-10^{6}$)
Align x to each \& score
If k of them have score than better or equal to that of x to y, then the (empirical) probability of a chance alignment as good as observed x : y alignment is $(\mathrm{k}+1) /(\mathrm{N}+1)$ e.g., if 0 of 99 are better, you can say "estimated $p \leq .01$ "

How to generate "random y-like" seqs? Scores depend on:
Length, so use same length as y
Sequence composition, so uniform $1 / 20$ or $1 / 4$ is a bad idea; even background p_{i} can be dangerous (if y unusual)
Better idea: permute y N times

Generating Random Permutations

$$
\begin{aligned}
& \text { for }(\mathrm{i}=\mathrm{n}-1 ; \mathrm{i}>0 ; \mathrm{i}--)\{ \\
& \mathrm{j}=\operatorname{random}(0 . \mathrm{i}) ; \\
& \text { swap X[i] <-> X[j]; }
\end{aligned}
$$

\}

All n ! permutations of the original data equally likely: A specific element will be last with prob $1 / n$; given that, another specific element will be next-to-last with prob $1 /(n-1), \ldots$; overall: $1 /(n!)$
C.f. http://en.wikipedia.org/wiki/Fisher-Yates shuffle and (for subtle way to go wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.htn触

Alignment With Gap Penalties

Gap: maximal run of dashes in S' or T'

$$
\begin{array}{ll}
\text { ag--ttc-t } & 2 \text { gaps in } S^{\prime} \\
a---t t c g t & 1 \text { gap in } T^{\prime}
\end{array}
$$

Motivations, e.g.: mutation might insert/delete several or even many residues at once matching mRNA (no introns) to genomic DNA (exons and introns)
some parts of proteins less critical

A Protein Structure: (Dihydrofolate Reductase)

Alignment of 5 Dihydrofolate reductase proteins

Topoisomerase I

Affine Gap Penalties

Gap penalty $=g+e^{*}($ gaplen -1$), g \geq e \geq 0$

Note: no longer suffices to know just the score of best subproblem(s) - state matters: do they end with '-' or not.

Global Alignment with Affine Gap Penalties

$\mathrm{V}(\mathrm{i}, \mathrm{j})=$ value of opt alignment of $S[1], \ldots, S[i]$ with $T[1], \ldots, T[j]$
$G(i, j)=\ldots$, s.t. last pair matches $S[i]$ \& $T[j]$ $F(i, j)=\ldots$, s.t. last pair matches $S[i] \&-$
$E(i, j)=\ldots$, s.t. last pair matches $-\& T[j]$

S	τ
$x-$	$x-$
\times	x
x	-
-	x

Time: $\mathrm{O}(\mathrm{mn})$ [calculate all, $\mathrm{O}(1)$ each]

Affine Gap Algorithm

Gap penalty $=g+e^{*}($ gaplen -1$), g \geq e \geq 0$

$$
V(i, 0)=E(i, 0)=V(0, i)=F(0, i)=-g-(i-1)^{\star} e
$$

$V(i, j)=\max (G(i, j), F(i, j), E(i, j))$

\mathbf{S}	\mathbf{T}
$x /-$	$x /-$
x	x

$G(i, j)=V(i-1, j-1)+\sigma(S[i], T[j])$
$F(i, j)=\max (F(i-1, j)-e, V(i-1, j)-g)$
$E(i, j)=\max (\underset{\text { old gap }}{E(i, j-1)-e}, \underset{\text { new gap }}{V(i, j-1)-g)}$

x	-
-	x

Q. Why is the " V " case a "new gap" when V includes E \& F ?

Other Gap Penalties

Score $=\mathrm{f}$ (gap length $)$
Kinds, \& best known alignment time
affine
convex

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ [really, $\mathrm{O}(\mathrm{mn})$]

$O\left(n^{2} \log n\right)$
general

$O\left(n^{3}\right)$

Summary: Alignment

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
Surprisingly simple scoring works well in practice: score positions separately \& add, usually w/ fancier affine gap model
Simple dynamic programming algorithms can find optimal alignments under these assumptions in poly time (product of sequence lengths)
This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to
a) identify the subproblems (usually repeated/overlapping)
b) solve them in a careful order so all small ones solved before they are needed by the bigger ones, and
c) build table with solutions to the smaller ones so bigger ones just need to do table lookups (no recursion, despite recursive formulation implicit in (a))
d) Implicitly, optimal solution to whole problem devolves to optimal solutions to subproblems

A really important algorithm design paradigm

