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4.  Maximum Likelihood Estimation  
and the E-M Algorithm
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Outline

HW#2 Discussion

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery



   
   Species Name Description Access

-ion
score 
to #1

1 Homo sapiens (Human) MYOD1_HUMAN Myoblast determination protein 1 P15172 1709

2 Homo sapiens (Human) TAL1_HUMAN T-cell acute lymphocytic leukemia protein 1 (TAL-1) P17542 143

3 Mus musculus (Mouse) MYOD1_MOUSE Myoblast determination protein 1 P10085 1494

4 Gallus gallus (Chicken) MYOD1_CHICK Myoblast determination protein 1 homolog (MYOD1 homolog) P16075 1020

5 Xenopus laevis (African clawed frog) MYODA_XENLA Myoblast determination protein 1 homolog A (Myogenic factor 1) P13904 978

6 Danio rerio (Zebrafish) MYOD1_DANRE Myoblast determination protein 1 homolog (Myogenic factor 1) Q90477 893

7 Branchiostoma belcheri (Amphioxus) Q8IU24_BRABE MyoD-related Q8IU24 428

8 Drosophila melanogaster (Fruit fly) MYOD_DROME Myogenic-determination protein (Protein nautilus) (dMyd) P22816 368

9 Caenorhabditis elegans LIN32_CAEEL Protein lin-32 (Abnormal cell lineage protein 32) Q10574 118

10 Homo sapiens (Human) SYFM_HUMAN Phenylalanyl-tRNA synthetase, mitochondrial O95363 56

HW # 2 Discussion







MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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Smith-Waterman alignments of 
MyoD vs permuted versions of 
C. elegans Lin32.  
 
Looks roughly normal! 
 

       And real Lin32  
           scores well above  
     highest permuted seq. 

** 



Permutation Score Histogram vs Gaussian
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Red curve is approx fit of EVD to 
score histogram – fit looks better, 
esp. in tail.  Max permuted score 
has probability ~10-4, about what 
you’d expect in 2x104 trials. 
 

True score is still moderately 
unlikely, < one tenth the above. 
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Given: independent samples x1, x2, ..., xn from a 
parametric distribution f(x|θ)

Goal: estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH  
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ



P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s called likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.   
E.g., if θ = prob of heads in a sequence of coin flips then  
    P(HHTHH | .6) > P(HHTHH | .5),  
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And  what θ make HHTHH most likely?

Likelihood

11



Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn 

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach: 

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | �) =
n�

i=1

f(xi | �)

@
@✓L(~x | ✓) = 0 or

@
@✓ logL(~x | ✓) = 0



14

(Also verify it’s max, not min, & not better on boundary)

Example 1
n independent coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  
n0 + n1 = n;  θ = probability of heads 

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0
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Parameter Estimation
Given: indp samples x1, x2, ..., xn from a 
parametric distribution f(x|θ), estimate: θ.

E.g.:  Given n normal samples,  
estimate mean & variance 
f(x) = 1⇥

2⇥⇤2 e�(x�µ)2/(2⇤2)

� = (µ,⇤2)

-3 -2 -1 0 1 2 3

µ ± σ

μ



Ex2: I got data; a little birdie tells me  
it’s normal, and promises σ2 = 1

16

X          X  XX    X  XXX               X

Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (a) this?

17

X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



Which is more likely:  (b) or this?

18

-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

19

X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

20

X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?

μ unknown, σ2 = 1
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Ex. 2: xi � N(µ,⇥2), ⇥2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0

L(x1, x2, . . . , xn

|✓) =
nY

i=1

1p
2⇡

e

�(xi�✓)2/2

lnL(x1, x2, . . . , xn

|✓) =
nX

i=1

�1

2
ln(2⇡)� (x

i

� ✓)2

2

d

d✓

lnL(x1, x2, . . . , xn

|✓) =
nX

i=1

(x
i

� ✓)

=

 
nX

i=1

x

i

!
� n✓ = 0

b
✓ =

 
nX

i=1

x

i

!
/n = x



Hmm …, density ≠ probability
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So why is “likelihood” function equal to product of 
densities??  (Prob of seeing any specific xi is 0, right?)

a) for maximizing likelihood, we really only care about 
relative likelihoods, and density captures that

b) has desired property that likelihood increases with 
better fit to the model

and/or

c) if density at x is f(x), for any small δ>0, the probability 
of a sample within ±δ/2 of x is ≈ δf(x), but δ is constant 
wrt θ, so it just drops out of d/dθ log L(…) = 0.

-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  



Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me μ, σ2)
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X          X  XX    X  XXX               X

Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely: (a) this?

24

X          X  XX    X  XXX               X

Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely: (b) or this?
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μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ 3   

X          X  XX    X  XXX               X

Observed Data

μ ± 3                 

μ



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

26

X          X  XX    X  XXX               X

Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely:  (d) or this?

27

μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

X          X  XX    X  XXX               X

Observed Data

μ ± 0.5



Which is more likely:  (d) or this?

28

X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ2 ?
μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

μ ± 0.5
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓1
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

(xi � ✓1)

✓2
= 0

b
✓1 =

 
nX

i=1

xi

!
/n = x
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Ex. 3, (cont.) 

Sample variance is MLE of 
population variance

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓2
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

�1

2

2⇡

2⇡✓2
+

(xi � ✓1)2

2✓22
= 0

b
✓2 =

⇣Pn
i=1(xi � b

✓1)2
⌘
/n = s

2



Bias? if Y is sample mean
    Y = (Σ1≤i≤n Xi)/n 
then
    E[Y] = (Σ1≤i≤n E[Xi])/n = n μ/n = μ
so the MLE is an unbiased estimator of population mean

Similarly, (Σ1≤i≤n (Xi-μ)2)/n is an unbiased estimator of σ2.
Unfortunately, if μ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate is:

Moral: MLE is a great idea, but not a magic bullet
31

Ex. 3, (cont.) 

I.e., limn→∞ 

= correct



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then θ2 = 0; probably an underestimate!

Also, consider n = 2.  Then θ1 is exactly between the 
two sample points, the position that exactly minimizes 
the expression for θ2.   Any other choices for θ1, θ2 
make the likelihood of the observed data slightly lower.  
But it’s actually pretty unlikely (probability 0, in fact) 
that two sample points would be chosen exactly 
equidistant from, and on opposite sides of the mean, so 
the MLE θ2 systematically underestimates θ2.

(But not by much, & bias shrinks with sample size.)

More on Bias of θ2 

32

ˆ

θ̂1

θ̂2

θ̂2



Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Defining the “Likelihood Function” (based on the form of the model) is often the 
critical step; the math/algorithms to optimize it are generic

Often simply (d/dθ)(log Likelihood) = 0

Has the intuitively appealing property that the parameters maximize the likelihood 
of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a 
sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being unbiased, or 
at least consistent

33



Conditional Probability  
& 

Bayes Rule

34



conditional probability

S

S
F

F

Conditional probability of E given F:  probability that E occurs given 

that F has occurred.

 “Conditioning on F”

 Written as P(E|F)

 Means “P(E has happened, given F observed)”

E

E

35

where P(F) > 0



law of  total probability

E and F are events in the sample space S

E = EF ∪ EFc

EF ∩ EFc = ∅ 

⇒ P(E) = P(EF) + P(EFc)

S

E                          F       

36



Most common form:  
 
 

Expanded form (using law of total probability):

 
 
 
Proof:

Bayes Theorem

37
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EM 
The Expectation-Maximization Algorithm
(for aTwo-Component Gaussian Mixture)



A Hat Trick
Two slips of paper in a hat: 

Pink: μ = 3, and 
Blue: μ = 7. 

You draw one, then (without revealing color or μ) 
reveal a single sample X ~ Normal(mean μ, σ2 = 1). 

You happen to draw X = 6.001. 

Dr. Mean says “your slip = 7.” What is P(correct)?

What if X had been 4.9?

39
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Let “X ⇡ 6” be a shorthand for 6.001� �/2 < X < 6.001 + �/2

P (µ = 7|X = 6) = lim

�!0
P (µ = 7|X ⇡ 6)

P (µ = 7|X ⇡ 6) =

P (X ⇡ 6|µ = 7)P (µ = 7)

P (X ⇡ 6)

=

0.5P (X ⇡ 6|µ = 7)

0.5P (X ⇡ 6|µ = 3) + 0.5P (X ⇡ 6|µ = 7)

⇡ f(X = 6|µ = 7)�

f(X = 6|µ = 3)� + f(X = 6)|µ = 7)�
, so

P (µ = 7|X = 6) =

f(X = 6|µ = 7)

f(X = 6|µ = 3) + f(X = 6)|µ = 7)

⇡ 0.982

f = normal  
density

3σ σ

Bayes rule



Another Hat Trick
Two secret numbers, μpink and μblue

On pink slips, many samples of Normal(μpink, σ2 = 1), 

Ditto on blue slips, from Normal(μblue, σ2 = 1). 

Based on 16 of each, how would you “guess” the 
secrets (where “success” means your guess is within 
±0.5 of each secret)? 

Roughly how likely is it that you will succeed?

41



Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent

Given X1, …, X16 ~ N(μ, σ2),    σ2 = 1

Calculate Y = (X1 + … + X16)/16 ~ N( ? ,  ? )

E[Y] = 

Var(Y) = 

I.e., Xi’s are all ~ N(μ, 1);   Y is ~ N(μ, 1/16)

and since 0.5 = 2 sqrt(1/16), we have:

“Y within ±.5 of μ” = “Y within ±2 σ of μ” ≈ 95% prob

Note 1:  Y is a point estimate for μ;   
             Y ± 2 σ is a 95% confidence interval for μ  
               (More on this topic later)

42

μ
 16σ2/162 = σ2/16 = 1/16



Histogram of 1000 samples of the average of 16 N(0,1) RVs
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Hat Trick 2 (cont.)
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A Hat Trick

x

de
ns
ity

X XX X

Note 2: 

What would you do if some of the slips you pulled had 
coffee spilled on them, obscuring color?  

If they were half way between means of the others?  
If they were on opposite sides of the means of the 
others



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Previously:  
How to estimate μ given data

45

X          X  XX    X  XXX               X

Observed Data

For this problem, we got a nice, closed 
form, solution, allowing calculation of the μ, 
σ that maximize the likelihood of the 

observed data.

We’re not always so lucky...



This?

Or this?

(A modeling decision, not a math problem...,  
but if the later, what math?)

46

More Complex Example



A Living Histogram

47

Text

http://mindprod.com/jgloss/histogram.html

male and female genetics students, University of Connecticut in 1996



Another Real Example: 
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 
distinct classes of promoters”  Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences
48
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No 
closed-
form
max

Parameters �

means µ1 µ2

variances ⇤2
1 ⇤2

2

mixing parameters ⌅1 ⌅2 = 1� ⌅1

P.D.F. f(x|µ1,⇤2
1) f(x|µ2,⇤2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,⇤2
1 ,⇤2

2 , ⌅1, ⌅2)

=
⇥n

i=1

�2
j=1 ⌅jf(xi|µj ,⇤2

j )

Gaussian Mixture Models / Model-based Clustering

separately

together
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we  
knew the  
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF parameters θ known, could estimate zij 

E.g., |xi - µ1|/σ1 ≫ |xi - µ2|/σ2 ⇒ P[zi1=1] ≪ P[zi2=1]

IF zij known, could estimate parameters θ 
E.g., only points in cluster 2 influence µ2, σ2

But we know neither; (optimistically) iterate: 
E-step: calculate expected zij, given parameters

M-step: calculate “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 

Hat 
 

Tr
ick

 1

Hat 
 

Tr
ick

 2

Hat 
 

Tr
ick

 1

Hat 
 

Tr
ick

 2
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Simple Version: 
“Classification EM”

If E[zij] < .5, pretend zij = 0;  E[zij] > .5, pretend it’s 1

I.e., classify points as component 1 or 2
Now recalc θ, assuming that partition (standard MLE)
Then recalc E[zij], assuming that θ
Then re-recalc θ, assuming new E[zij],  etc., etc.   
“Full EM” is slightly more involved, (to account for 
uncertainty in classification) but this is the crux.

Not 
“E

M,” 
 bu

t m
ay
 

 he
lp 

cla
rif

y c
on

ce
pt

s

“K-means 
clustering,” 
essentially

Not 
wha

t’s
 ne

ed
ed

 fo
r 

ho
mew

or
k, 

 bu
t m

ay
 

he
lp 

cla
rif

y c
on

ce
pt

s

Another contrast:  HMM parameter estimation via “Viterbi” vs “Baum-Welch” training. In 
both, “hidden data” is “which state was it in at each step?”  Viterbi is like E-step in 
classification EM: it makes a single state prediction.  B-W is full EM: it captures the 
uncertainty in state prediction, too. For either, M-step maximizes HMM emission/
transition probabilities, assuming those fixed states (Viterbi) / uncertain states (B-W).
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Full EM
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The E-step:   
Find E(zij), i.e., P(zij=1)

Assume θ known & fixed
A (B): the event that xi was drawn from f1 (f2)
D: the observed datum xi

Expected value of zi1 is P(A|D)

Repeat 
for 

each 
xi}

E = 0 · P (0) + 1 · P (1)

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)

E[zi1] =
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X X

Let “X ⇡ 6” be a shorthand for 6.001� �/2 < X < 6.001 + �/2

P (µ = 7|X = 6) = lim

�!0
P (µ = 7|X ⇡ 6)

P (µ = 7|X ⇡ 6) =

P (X ⇡ 6|µ = 7)P (µ = 7)

P (X ⇡ 6)

=

0.5P (X ⇡ 6|µ = 7)

0.5P (X ⇡ 6|µ = 3) + 0.5P (X ⇡ 6|µ = 7)

⇡ f(X = 6|µ = 7)�

f(X = 6|µ = 3)� + f(X = 6)|µ = 7)�
, so

P (µ = 7|X = 6) =

f(X = 6|µ = 7)

f(X = 6|µ = 3) + f(X = 6)|µ = 7)

⇡ 0.982

f = normal  
density

3σ σRec
all
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Complete Data 
Likelihood

(Better):

equal, if zij are 0/1
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M-step: 
Find θ maximizing E(log(Likelihood))

wrt  dist of zij
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Hat Trick 2 (cont.)
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A Hat Trick
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Note 2: red/blue separation is just like the M-step of EM 
if values of the hidden variables (zij) were known.

What if they’re not?  E.g., what would you do if some of 
the slips you pulled had coffee spilled on them, 
obscuring color?  

If they were half way between means of the others?  
If they were on opposite sides of the means of the 
others

Rec
all



M-step:calculating mu’s

row sum avg

E[zi1] 0.99 0.98 0.7 0.2 0.03 0.01 2.91
E[zi2] 0.01 0.02 0.3 0.8 0.97 0.99 3.09

xi 9 10 11 19 20 21 90 15
E[zi1]xi 8.9 9.8 7.7 3.8 0.6 0.2 31.0 10.66
E[zi1]xi 0.1 0.2 3.3 15.2 19.4 20.8 59.0 19.09 ne

w
 μ

’s

ol
d 

E’
s

In words:  μj is the average of the observed xi’s, weighted by 
the probability that xi was sampled from component j.

61
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5

Essentially converged in 2 iterations

(Excel spreadsheet on course web)
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EM Summary

Fundamentally a maximum likelihood parameter 
estimation problem; broader than just Gaussian

Useful if 0/1 hidden data, and if analysis would be 
more tractable if hidden data z were known

Iterate: 
E-step: estimate E(z) for each z, given θ
M-step: estimate θ maximizing E[log likelihood]  
given E[z] [where “E[logL]” is wrt random z ~ E[z] = p(z=1)]

Ba
ye

s

MLE
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EM Issues
Under mild assumptions (DEKM sect 11.6), EM is 
guaranteed to increase likelihood with every 
E-M iteration, hence will converge.

But it may converge to a local, not global, max. 
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often 
applied to NP-hard problems (including 
clustering, above and motif-discovery, soon)

Nevertheless, widely used, often effective



Applications

65

Clustering is a remarkably successful exploratory data 
analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used
With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the 
visible data

EM is extremely widely used for “hidden-data” problems
Hidden Markov Models – speech recognition, DNA analysis, ...



27!

Given: 104 unlabeled, scanned images of  
handwritten digits, say 25 x 25 pixels, 

Goal: automatically classify new examples

Possible Method:  

Each image is a point in ℝ625; the “ideal” 7, say, is one such 
point; model other 7’s as a Gaussian cloud around it

Do EM, as above, but 10 components in 625 dimensions 
instead of 2 components in 1 dimension

“Recognize” a new digit by best fit to those 10 models, i.e., 
basically max E-step probability

A “Machine Learning” Example
Handwritten Digit Recognition
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Relative entropy 
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• AKA Kullback-Liebler Distance/Divergence, 
AKA Information Content

• Given distributions P, Q 

Notes:  
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]
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• Intuition:  A quantitative measure of how much P “diverges” from 
Q.  (Think “distance,” but note it’s not symmetric.)
• If P ≈ Q everywhere, then log(P/Q) ≈ 0, so H(P||Q) ≈ 0
• But as they differ more, sum is pulled above 0 (next 2 slides)

• What it means quantitatively: Suppose you sample x, but aren’t 
sure whether you’re sampling from P (call it the “null model”) or 
from Q (the “alternate model”).  Then log(P(x)/Q(x)) is the log 
likelihood ratio of the two models given that datum.  H(P||Q) is 
the expected per sample contribution to the log likelihood ratio for 
discriminating between those two models.

• Exercise: if H(P||Q) = 0.1, say.  Assuming Q is the correct model, 
how many samples would you need to confidently (say, with 
1000:1 odds) reject P?

Relative Entropy
H(P ||Q) =

∑

x∈Ω

P (x) log
P (x)
Q(x)
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lnx ≤ x − 1

− lnx ≥ 1 − x
ln(1/x) ≥ 1 − x

lnx ≥ 1 − 1/x

0.5 1 1.5 2 2.5

-2

-1

1

(y = 1/x)

y y
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Theorem: H(P ||Q) ≥ 0

Furthermore:  H(P||Q) = 0 if and only if P = Q
Bottom line:  “bigger” means “more different”

H(P ||Q) =
∑

x P (x) log P (x)
Q(x)

≥
∑

x P (x)
(
1 − Q(x)

P (x)

)

=
∑

x(P (x) − Q(x))

=
∑

x P (x) −
∑

x Q(x)

= 1 − 1

= 0

Idea: if P ≠ Q, then

P(x)>Q(x) ⇒ log(P(x)/Q(x))>0 

and

P(y)<Q(y) ⇒ log(P(y)/Q(y))<0  

Q: Can this pull H(P||Q) < 0?  
A: No, as theorem shows.  
Intuitive reason: sum is 
weighted by P(x), which is 
bigger at the positive log ratios 
vs the negative ones.


