CSE P 527

Markov Models and Hidden Markov Models

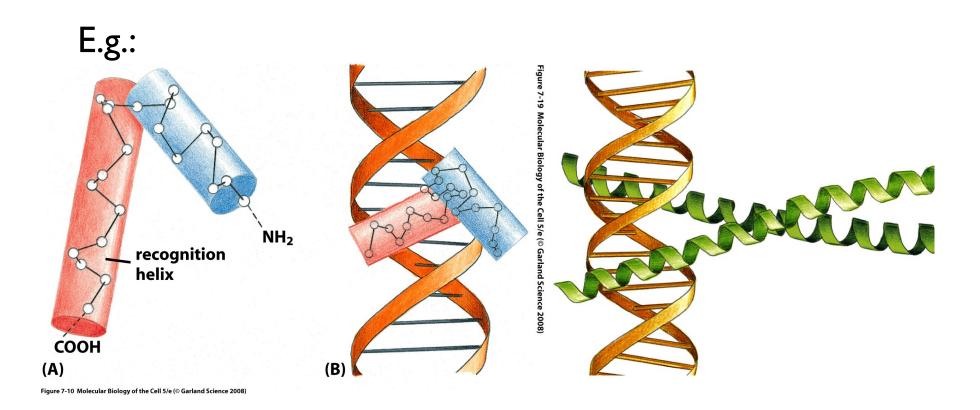
Dosage Compensation and X-Inactivation

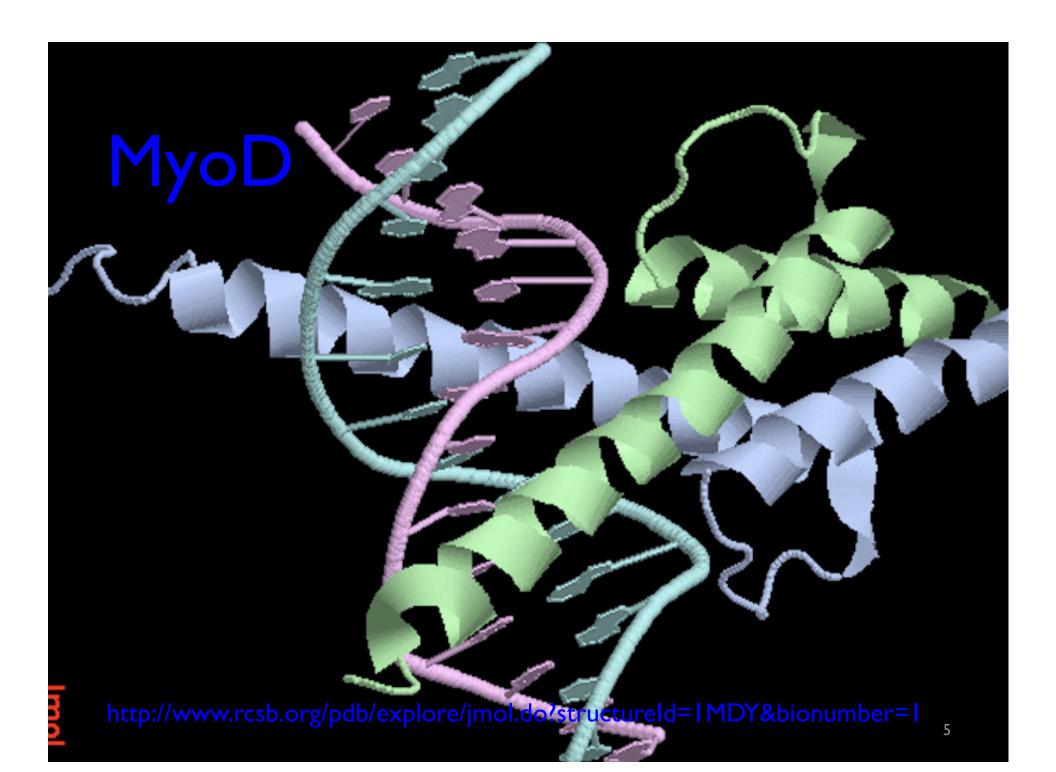
2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell
- Choice maintained in daughter cells

Calico: a major coat color gene is on X

Reminder: Proteins "Read" DNA





Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

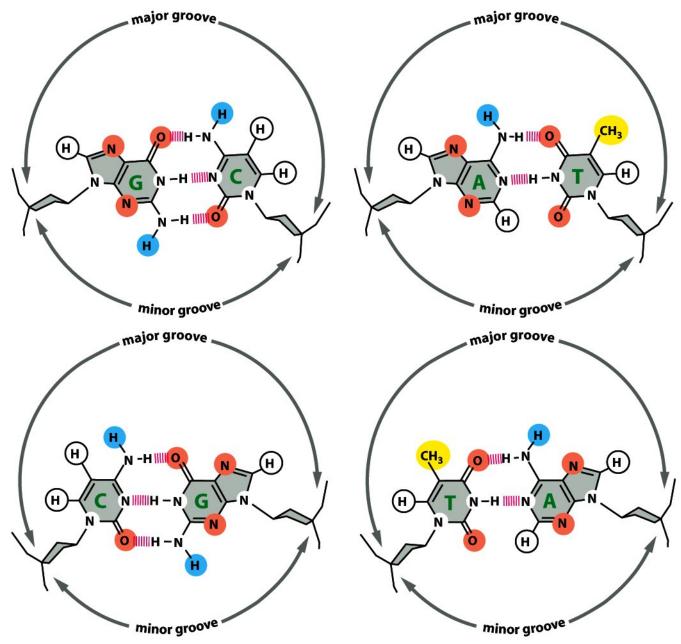


Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

CpG - 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)

cytosine

Same Pairing

Methyl-C alters major groove profile (: TF binding), but not base-pairing, transcription or replication

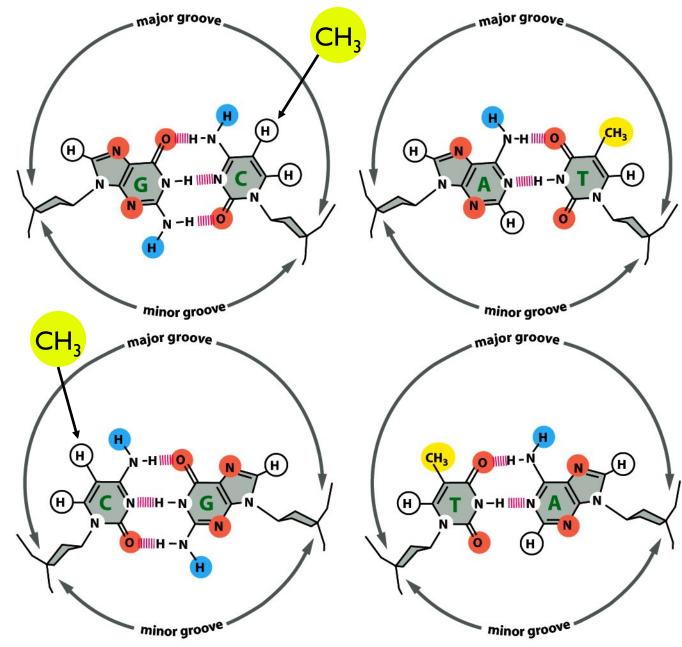


Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation—Why

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

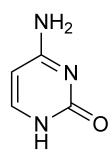
E.g., if an embryonic stem cell divides, one daughter fated to be liver, other kidney, need to

- (a) turn off liver genes in kidney & vice versa,
- (b) remember that through subsequent divisions

How? One way:

- (a) Methylate genes, esp. promoters, to silence them
- (b) after ÷, DNA methyltransferases convert hemi- to fully-methylated (& deletion of methyltransferase is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes



cytosine

"CpG Islands"

Methyl-C mutates to T relatively easily

Net: CpG is less common than expected genome-wide:

$$f(CpG) < f(C)*f(G)$$

BUT in some regions (e.g. active promoters), CpG remain unmethylated, so CpG → TpG less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)

More C & G than elsewhere, too (say, C+G>50%)

Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not?

Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References (see also online reading page):

Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.

Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)

Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions – sometimes a useful approximation, but in many cases definitely unrealistic.

Markov Chains

A sequence x_1, x_2, \dots of random variables is a k-th order Markov chain if, for all i, ith value is independent of all but the previous k values:

$$P(x_i \mid \underbrace{x_1, x_2, \dots, x_{i-1}}_{\text{i-l}}) = P(x_i \mid \underbrace{x_{i-k}, x_{i-k+1}, \dots, x_{i-1}}_{\text{k typically } \leqslant \text{i-l}})$$

Example I: Uniform random ACGT

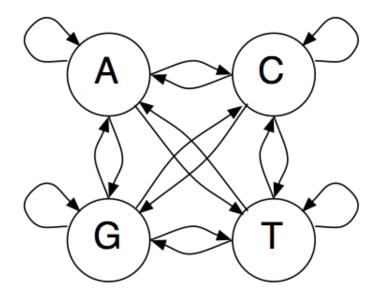
Example 2: Weight matrix model

Example 3: ACGT, but \(\psi \) Pr(G following C)

} 0th
order

} Ist
order

A Markov Model (1st order)

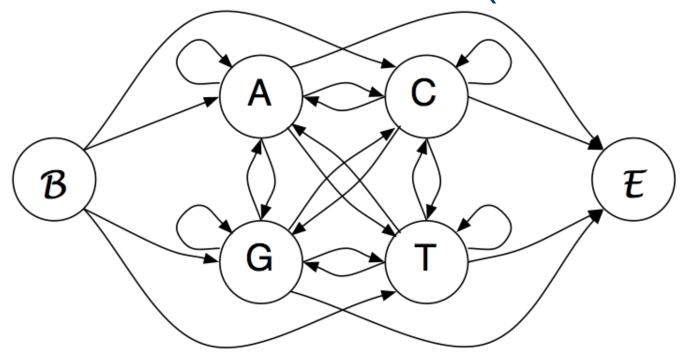


States: A,C,G,T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$ — Ist order

A Markov Model (1st order)



States: A,C,G,T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$

Begin/End states

Pr of emitting sequence x

$$x = x_1 x_2 \dots x_n$$
 $P(x) = P(x_1, x_2, \dots, x_n) \xrightarrow{\text{law of Probability}} P(x)$
 $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1)$
 $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}) \xrightarrow{\text{if Ist NC}} P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$
 $= \prod_{i=0}^{n-1} a_{x_i, x_{i+1}} \text{ (with Begin state)}$

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	A	C	G	T	-	A	C	G	Т
А	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298%	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292
From	DEKM								18

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

$$S(x) = \log \frac{P(x|\text{model} +)}{P(x|\text{model} -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

β	A	С	G	T
A	-0.740	0.419	0.580	-0.803
C	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
T	-1.169	0.573	0.393	-0.679

CpG Island Scores

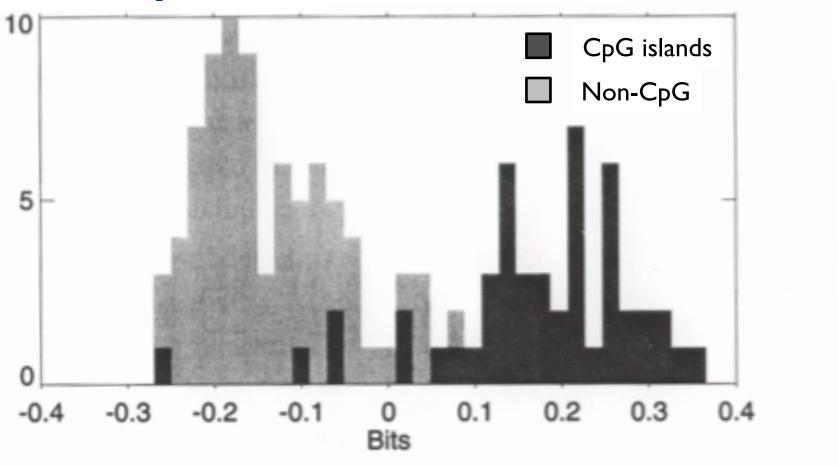


Figure 3.2 Histogram of length-normalized scores.

Questions

Q1: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

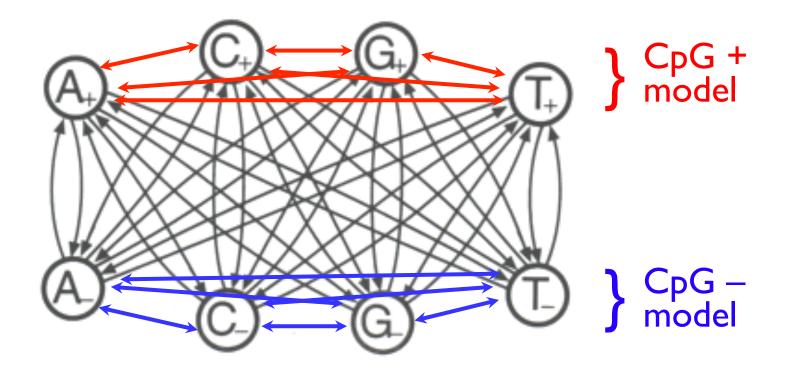
Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Combined Model



Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models

(HMMs; Claude Shannon, 1948)

States: $1, 2, 3, \ldots$

Paths: sequences of states $\pi = (\pi_1, \pi_2, ...)$

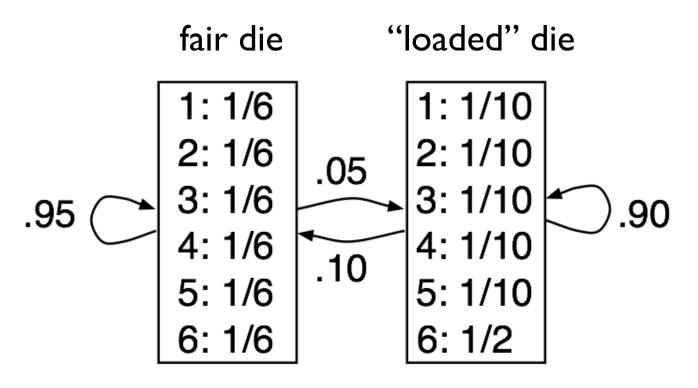
Transitions: $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$

Emissions: $e_k(b) = P(x_i = b \mid \pi_i = k)$

Observed data: emission sequence

Hidden data: state/transition sequence

The Occasionally Dishonest Casino



occasionally swapped

Rolls 315116246446644245311321631164152133625144543631656626566666 Die Rolls 651166453132651245636664631636663162326455236266666625151631 Die Rolls 222555441666566563564324364131513465146353411126414626253356 Die Rolls 366163666466232534413661661163252562462255265252266435353336 Die Rolls 2331216253644144323351632436336655624666626326666612355245242 Die

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path π & emission sequence x:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg\max_{\pi} P(x,\pi)$$

Sequence of most probable states

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Etc.

The Viterbi Algorithm: The most probable path

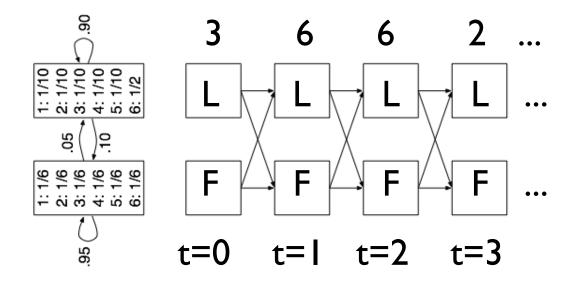
Viterbi finds: $\pi^* = \arg \max_{\pi} P(x, \pi)$

Possibly there are 10⁹⁹ paths of prob 10⁻⁹⁹ (If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths π

Unrolling an HMM



Conceptually, sometimes convenient Note exponentially many paths

Viterbi

 $v_l(i) = \text{probability of the most probable path}$ emitting x_1, x_2, \dots, x_i and ending in state l

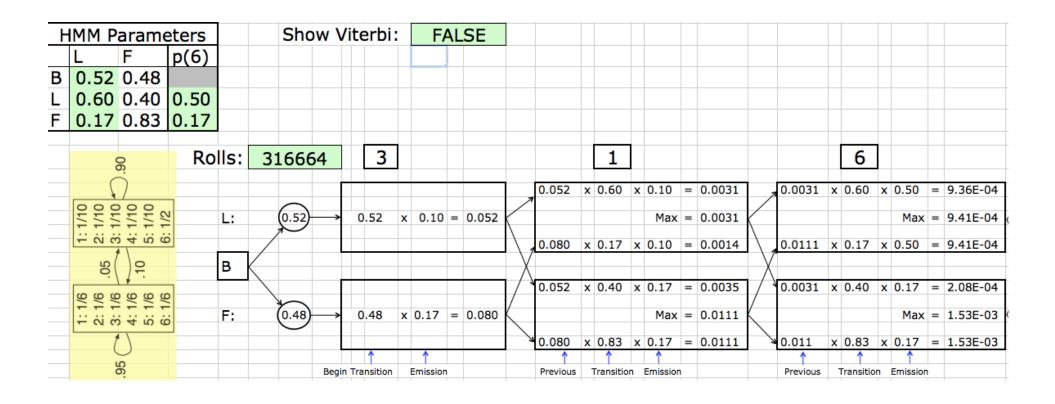
Initialize:

$$v_l(0) = \left\{ egin{array}{lll} 1 & \mbox{if } l = B \mbox{egin state} & \longrightarrow & \bigcirc & \cdots & \bigcirc & \bigcirc & \bigcirc \\ 0 & \mbox{otherwise} & & \bigcirc & \cdots & \bigcirc & \bigcirc & \bigcirc & \bigcirc \end{array}
ight.$$

General case:

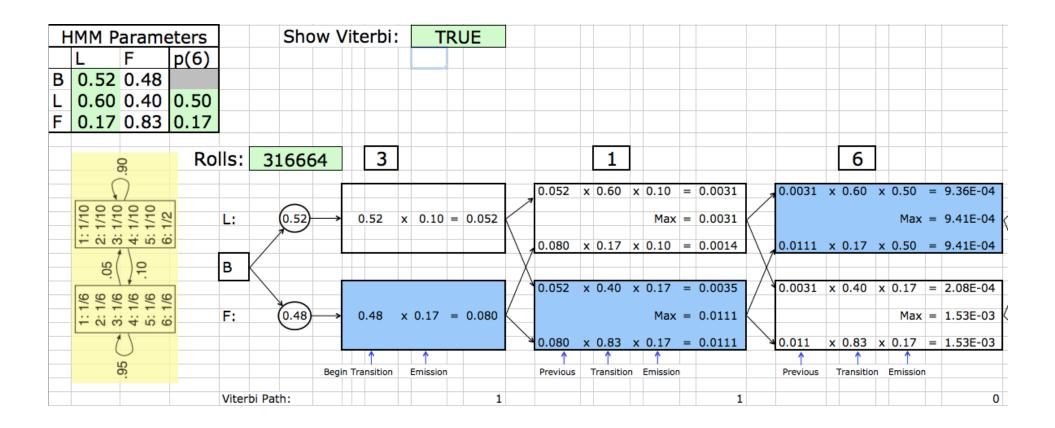
$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) \, a_{k,l})$$

HMM Casino Example



(Excel spreadsheet on web; download & play...)

HMM Casino Example



(Excel spreadsheet on web; download & play...)

Viterbi Traceback

Above finds *probability* of best path

To find the path itself, trace *backward* to the state *k* attaining the max at each stage

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$$

Rolls 315116246446644245311321631164152133625144543631656626	566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	LLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	LLLLLL
Rolls 651166453132651245636664631636663162326455236266666625	151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL	FFFFFF
Viterbi LLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL	FFFFF
Rolls 222555441666566563564324364131513465146353411126414626	253356
Die FFFFFFFLLLLLLLLLLLFFFFFFFFFFFFFFFFFFF	FFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFL
Rolls 366163666466232534413661661163252562462255265252266435	353336
Die LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFF
Viterbi LLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFF
Rolls 233121625364414432335163243633665562466662632666612355	245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
	FFFFFF

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.

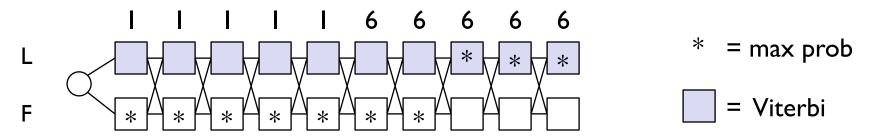
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Most probable path ≠ Sequence of most probable states

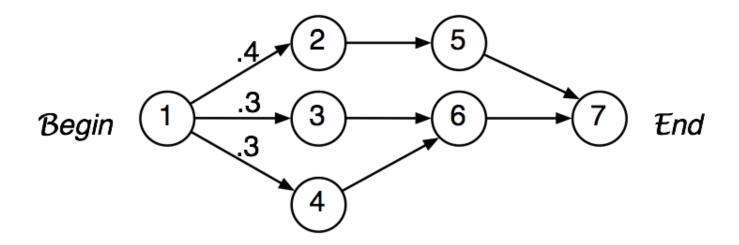
Another example, based on casino dice again

Suppose p(fair \leftrightarrow loaded) transitions are 10^{-99} and roll sequence is IIIII...66666; then fair state is more likely all through I's & well into the run of 6's, but eventually loaded wins, and the improbable $F \rightarrow L$ transitions make Viterbi = all L.



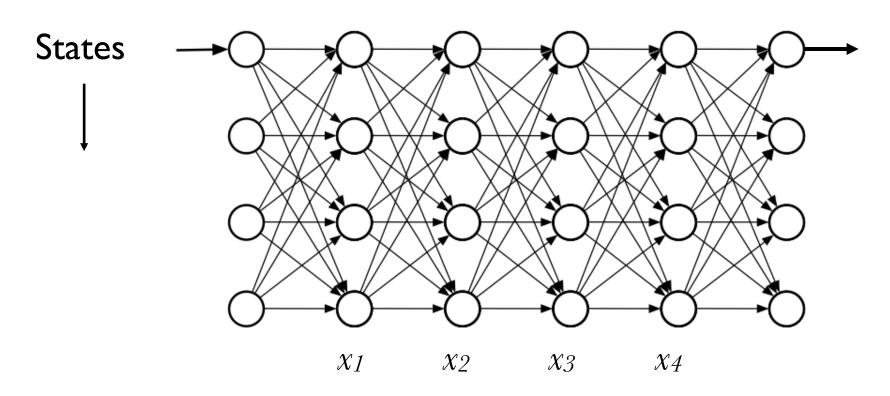
Is Viterbi "best"?

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$



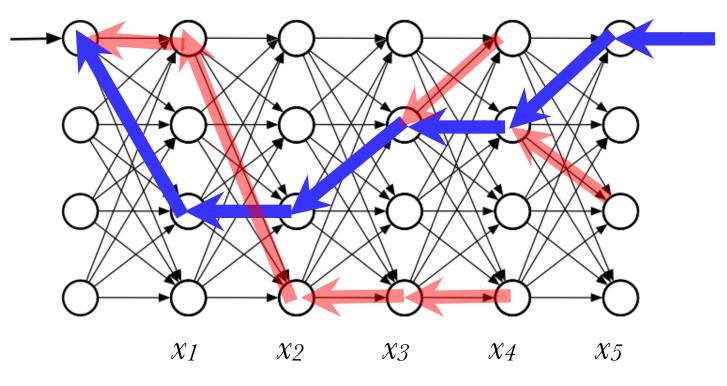
Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)



Emissions/sequence positions ——

Viterbi: best path to each state

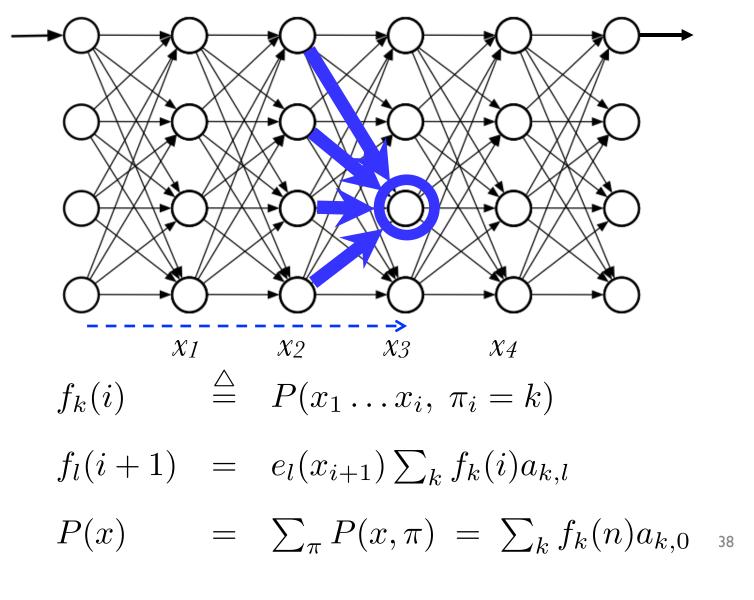


Viterbi score: $v_l(i+1) = e_l(x_{i+1}) \cdot \max_{k} (v_k(i) a_{k,l})$

Viterbi path^R: $back_l(i+1) = \arg\max_k(v_k(i) \, a_{k,l})$

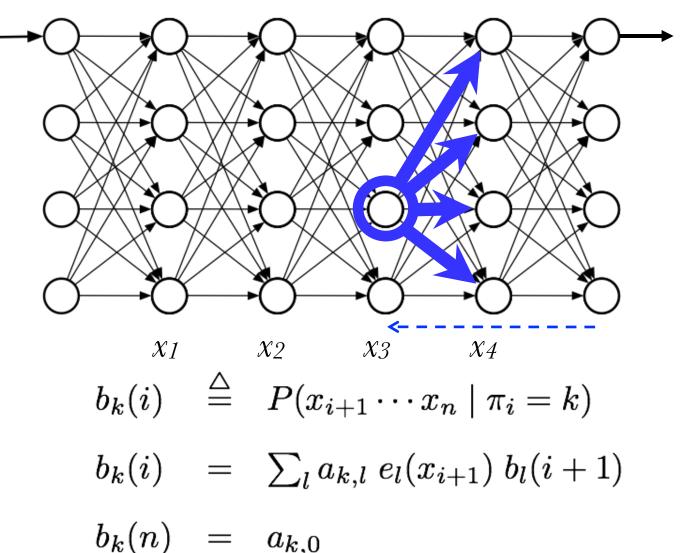
The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions



The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.



In state k at step i?

$$P(x, \pi_i = k)$$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid x_1, \dots, x_i, \pi_i = k)$$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid \pi_i = k)$$

$$= f_k(i) \cdot b_k(i)$$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

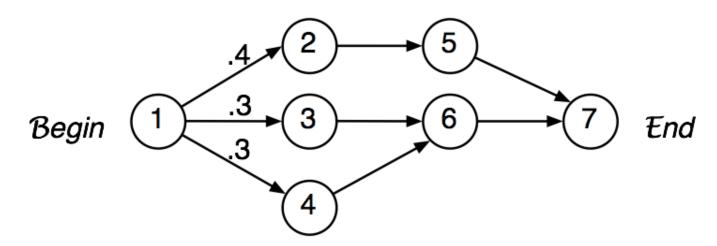
The posterior probability of being in state k at time i

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

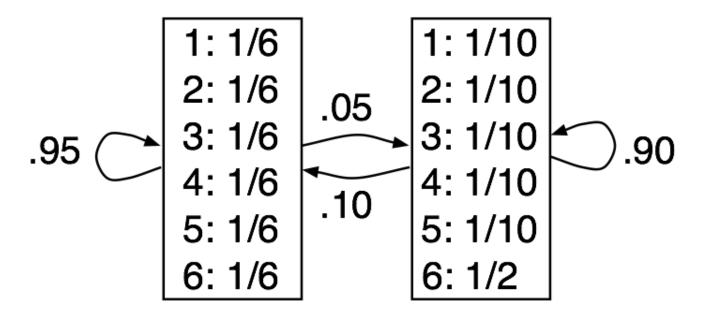
$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states ≠ the most likely sequence of states. May not even be legal!



The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped



Rolls	315116246446644245311321631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Posterior Decoding

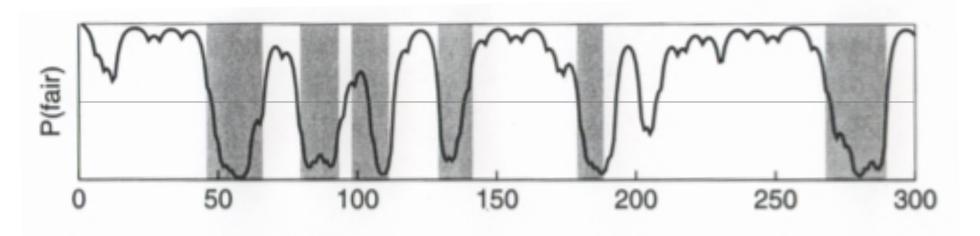


Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1) iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi: Post-process:

Found 46 of 48 46/48

plus 121 "false positives" 67 false pos

Posterior Decoding:

same 2 false negatives 46/48

plus 236 false positives 83 false pos

Post-process: merge within 500; discard < 500 46

Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = rac{ ext{count of } k o l ext{ transitions}}{ ext{count of } k o anywhere transitions} \leftarrow e_k(b) = \dots$$

If π hidden, then use EM: given π , estimate θ ; given θ estimate π ; repeat $\frac{1}{2}$ ways

Viterbi Training

given π , estimate θ ; given θ estimate π ; repeat

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.

(Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training

the forward.

EM: given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_{i} = k, \, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_{k}(i \mid \theta) \, a_{k,l} \, e_{l}(x_{i+1}) \, b_{l}(i+1 \mid \theta)}{P(x \mid \theta)}$$

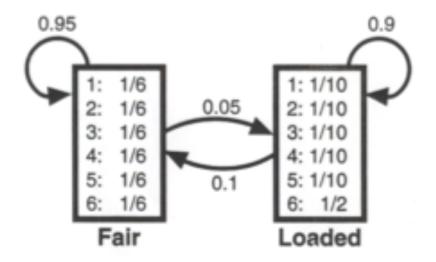
Estimated # of k o l transitions $\hat{A}_{k,l}$ on set of seqs x^{j}

$$=\sum_{\text{training seqs }x^j}\sum_{i}P(\pi_i=k,\,\pi_{i+1}=l\mid x^j,\theta)$$

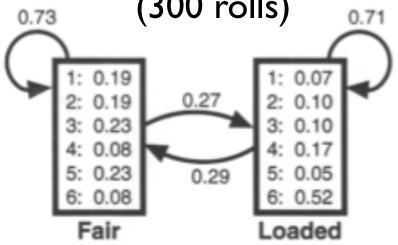
New estimate
$$\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_{l} \hat{A}_{k,l}}$$

Emissions: similar

True Model



B-W Learned Model (300 rolls)



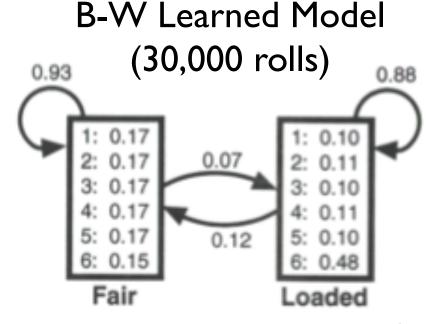
Log-odds (vs all F) per roll

True model 0.101 bits

300-roll est. 0.097 bits

30k-roll est. 0.100 bits

(NB: overestimated)



HMMs in Action: Pfam

http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within species Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...

Identifying family very useful: suggests function, etc.

So, search & alignment are both important

Q. Why not just use Blast/Smith-Waterman?

A. There is more info in multiple examples

One very successful approach: profile HMMs

```
Helix
                     AAAAAAAAAAAAAA
                                       BBBBBBBBBBBBBBBBCCCCCCCCCC
HBA HUMAN
          -----VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN
              ----VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA
          -----VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP -----LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU -----GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI -----GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus
                    Ls.... vaWkv. .
                                            a . L., f . P .
Helix
              DDDDDDDEEEEEEEEEEEEEEE
                                                     FFFFFFFFFFF
HBA_HUMAN -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA
          KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAOSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus
                   .. . v..Hg kv. a a...l
Helix
           FFGGGGGGGGGGGGGG
                                    ННИНИНИНИНИНИНИНИНИНИНИНИ
HBA HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-
HBB HUMAN
          -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYQKVVAGVANALAHKYH-----
MYG_PHYCA
          -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYOG
GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-----
GLB5_PETMA -QVDPQYFKVLAAVIADTVAAG------DAGFEKLMSMICILLRSAY-----
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---
GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS-----
Consensus
                 f
                                                     1 sky
                                       . aa. k. .
```

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

```
Helix
                     AAAAAAAAAAAAAA
                                        HBA HUMAN
             -----VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN
               ----VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA
               ----VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP -----LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU -----GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI -----GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus
                    Ls.... vaWkv. .
                                            a . L., f . P .
Helix
              DDDDDDDEEEEEEEEEEEEEEE
                                                     FFFFFFFFFFF
HBA HUMAN
          -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-
HBB_HUMAN
          GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA
          KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAOSHATKH-
GLB3_CHITP_AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus
                   ... v...Hg kv. a a....l
                                                 . a 1. 1
Helix
           FFGGGGGGGGGGGGGG
                                    <u>ННННННННННННННННННННН</u>
HBA HUMAN
           -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
HBB HUMAN
           HVDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOKVVAGVANALAHKYH
           KIPIKYLEFISEAIIHVLHSRHPGDFGADAOGAMNKALELFRKDIAAKYKELGYOG
MYG_PHYCA
           -VTHDOLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM
GLB3_CHITP
GLB5_PETMA
           QVDPQYFKVLAAVIADTVAAG-----DAGFEKLMSMICILLRSAY
LGB2_LUPLU
           -VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDA
GLB1_GLYDI
          KHIKAOYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS-
Consensus
                                     . aa. k.
```

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Profile Hmm Structure

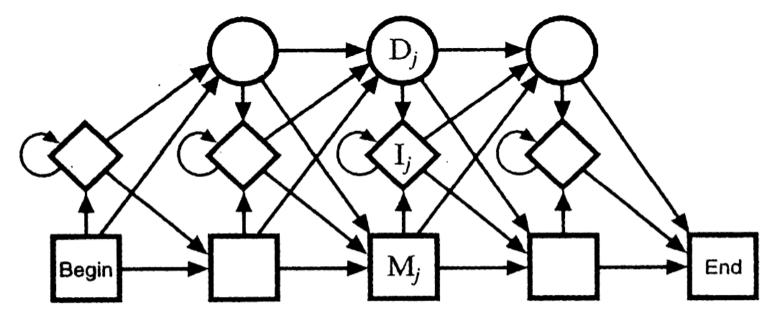


Figure 5.2 The transition structure of a profile HMM.

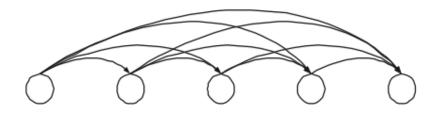
M_j: Match states (20 emission probabilities)

Ij: Insert states (Background emission probabilities)

Dj: Delete states (silent - no emission)

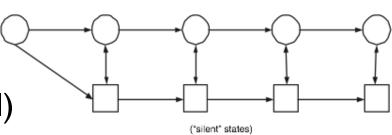
Silent States

Example: chain of states, can skip some



Problem: many parameters.

A solution: chain of "silent" states; fewer parameters (but less detailed control)



Algorithms: basically the same.

Using Profile HMM's

Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

Likelihood vs Odds Scores

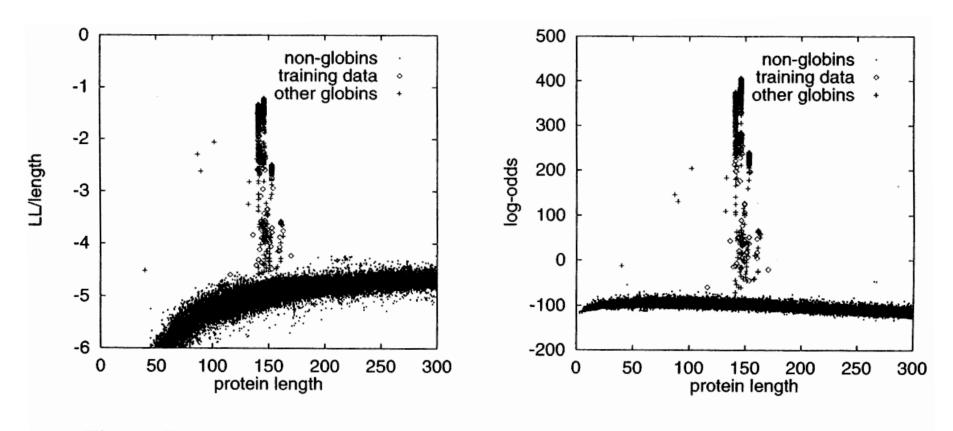


Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Z-Scores

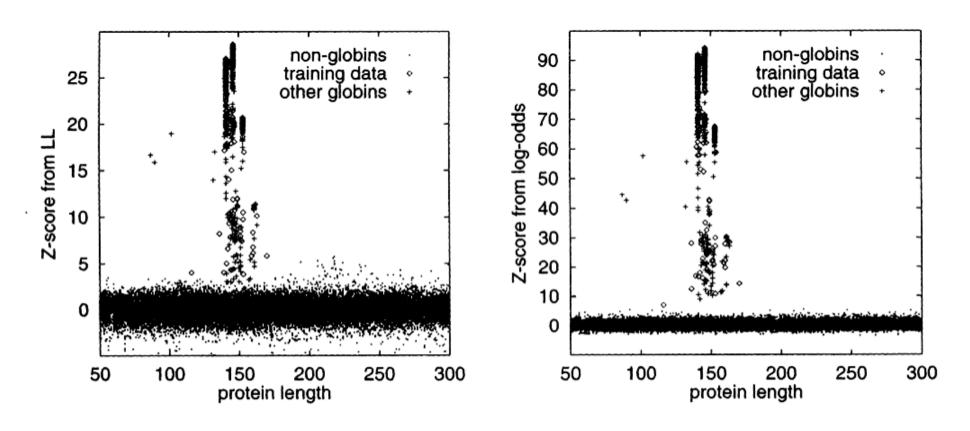


Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated "seed" multiple alignments

Train profile HMM from seed alignment

Hand-chosen score threshold(s)

Automatic classification/alignment of all other protein sequences

Pfam 25.0 (March 2011, 12273 families; covers

≥ I domain of ~75% of human proteins)

Pfam 27.0 (March 2013, 14831 families; \approx 90%)

Pfam 29.0 (Dec 2015, 16295 families)

Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa's)

$$e_i(a) = rac{C_{i,a} + A \cdot q_a}{\sum_a C_{i,a} + A}, \quad A \sim 20, \ q_a = \ \ ext{background}$$
 (~50 training sequences)

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(~10-20 training sequences)

More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. "> 50% gap ⇒ insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max a posteriori assignment.

Numerical Issues

```
Products of many probabilities → 0

For Viterbi: just add logs

For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation

Keep high precision and perhaps scale factor Working with log-odds also helps.
```

Model structure

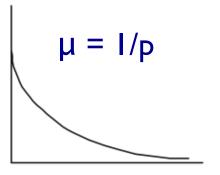
Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima

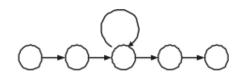
aents

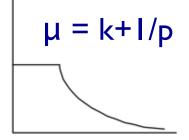
Duration Modeling

Self-loop duration: geometric pⁿ(1-p)

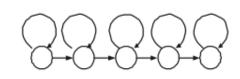


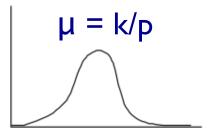
min, then geometric





"negative binomial"





More general: possible (but slower)

HMM Summary

```
joint vs
conditional probs
```

```
Inference
  Viterbi – best single path
                                          (max of products)
  Forward – sum over all paths
                                          (sum of products)
  Backward – similar
  Posterior decoding
Model building
  Semi-supervised – typically fix architecture (e.g. profile
     HMM), then learn parameters
   Baum-Welch – training via EM and forward/backward
     (aka the forward/backward algorithm)
  Viterbi training – also "EM-like", but Viterbi-based
```

HMM Summary (cont.)

```
Search:
```

Viterbi or forward

Scoring:

Odds ratio to background

Z-score

E-values, etc., too

Excellent tools available (HMMer, Pfam, ...)

A very widely used tool for biosequence analysis (and many other applications)