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Assaying Gene Expression
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Microarrays
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RNAseq

DNA Sequencer

⬇        ⬇

⬇
map to genome, analyze
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Millions of reads, 
say, 100 bp each



Goals of RNAseq
#1: Which genes are being expressed?

How? assemble reads (fragments of mRNAs) into 
(nearly) full-length mRNAs and/or map them to a 
reference genome

#2: How highly expressed are they?
How?  count how many fragments come from each 
gene–expect more highly expressed genes to yield 
more reads, after correcting for biases like mRNA 
length

#3: What’s same/diff between 2 samples
E.g., tumor/normal

#4: ... 
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RNAseq Data Analysis
De novo Assembly

mostly deBruijn-based, but likely to change with longer reads 
more complex than genome assembly due to alt splicing, 
wide diffs in expression levels; e.g. often multiple “k’s” used
pro: no ref needed (non-model orgs), novel discoveries 
possible, e.g. very short exons
con: less sensitive to weakly-expressed genes

Reference-based (more later)
pro/con: basically the reverse

Both: subsequent bias correction, quantitation, 
differential expression calls, fusion detection, etc.
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“TopHat” (Ref based example)
n  map reads to ref transcriptome (optional)
n  map reads to ref genome
n  unmapped reads remapped as 25mers
n  novel splices = 25mers anchored 2 sides
n  stitch original reads across these
n  remap reads with minimal overlaps

n  Roughly: 10m reads/hr, 4Gbytes 
(typical data set 100m–1b reads)
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Figure 6

Kim,et al. 2013. “TopHat2: Accurate Alignment of 
Transcriptomes in the Presence of Insertions, 
Deletions and Gene Fusions.” Genome Biology 14 (4) 
(April 25): R36. doi:10.1186/gb-2013-14-4-r36.
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RNAseq protocol (approx)
Extract RNA (either polyA ↔ polyT or tot – rRNA)
Reverse-transcribe into DNA (“cDNA”)
Make double-stranded, maybe amplify
Cut into, say, ~300bp fragments
Add adaptors to each end
Sequence ~100-175bp from one or both ends

CAUTIONS: non-uniform sampling, sequence 
(e.g. G+C), 5’-3’, and length biases
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Story 1

RNAseq:  
   Bias Correction & Alt Splicing



“All High-Throughput 
Technologies are Crap

Q. Morris 
7-20-2015

– Initially”



RNA seq

RNA →                 → Sequence →           → Count
cDNA, fragment, 
end repair,  A-tail, 

ligate, PCR, …

QC filter, 
trim, map, 

…

It’s so easy, what could possibly go wrong?
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What we expect: 
Uniform Sampling

    Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 ± 4.7 per position, min ≈ 9, max ≈33 
 I.e., as expected, we see ≈ μ ± 3σ in 200 samples

Count reads starting at 
each position, not those 
covering each position



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

What we get: highly non-uniform coverage

–––––––––––       3’ exon      –––––––––

200 nucleotides

Mortazavi data

E.g., assuming uniform, the 8 peaks above 100 are > +10σ above mean~
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Count reads starting at 
each position, not those 
covering each position



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

What we get: highly non-uniform coverage

–––––––––––       3’ exon      –––––––––

200 nucleotides

Mortazavi data

E.g., assuming uniform, the 8 peaks above 100 are > +10σ above mean~

0

25

50

75

100

0 50 100 150 200

Uniform

Actual

Count reads starting at 
each position, not those 
covering each position

How to make it more uniform?
A: Math tricks like averaging/smoothing (e.g. “coverage”) 

or transformations (“log”), …, or 

B: Try to model (aspects of) causation         WE DO 
THIS



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

not perfect, but better:
38% reduction in LLR 

of uniform model; 
hugely more likely

What we get: highly non-uniform coverage

200 nucleotides

0
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100

0 50 100 150 200

Uniform

Actual

The Good News: we can (partially) correct the bias



Fragment Bias

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.

Bias is ^ sequence-dependent

                  Reads

and platform/sample-dependent

(in part)
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Fig. 2. An overview of the approach taken: (a) foreground sequences
are sampled from the regions surrounding the starts of mapped reads;
(b) background sequences are sampled by randomly offsetting foreground
positions; (c) a Bayesian network is trained to discriminate between the
set of sampled foreground and background sequences; (d) and the model
is evaluated at each position within a locus, predicting bias. The predicted
bias can then be used to adjust read counts, as in (e). In (d) and (e), we
show the results of this method applied to the 3′ UTR of Apoa2, using data
from Mortazavi et al. (2008). In bias coefficients predicted across 10 million
positions of chromosome 1, the log10 bias of 95% of the positions were
between −1.14 and 0.63, suggesting that most adjustments are not large.
The R2 measure, detailed in Section 3.2, gives the relative increase in log-
likelihood under a uniform sampling model, after correcting for bias, with
1.0 indicating a perfect fit, and the score of 0.38 here indicating a significant
increase.

any genomic position. Figure 2 gives a schematic overview of the proposed
model.

We have so far ignored one complication: the RNA abundance that
we wish to estimate is not itself independent of the nucleotide sequence.
Notably, exonic DNA tends to be more GC-rich than intergenic DNA. If
background sequences are sampled uniformly from the genome. we run the
risk of incorrectly adjusting for biological sequence bias, rather than technical
sequence bias. To avoid this, we propose using paired training data. Each
foreground training sequence is paired with a background sequence taken
from a nearby position that is likely to have similar abundance and general
nucleotide composition. Alternatively, we could pair foreground samples
with background samples from within the same transcript, but we prefer to
avoid dependence on existing gene annotations.

The methods proposed by Hansen et al. (2010) and (Roberts et al.,
2011) also treat bias correction as a problem of estimating foreground
and background sequence probabilities. They differ primarily in how these
sequence probabilities are estimated. Li et al. (2010) estimate reweighting
coefficients (bi, in our notation) directly, given training data consisting of
long annotated, highly expressed transcripts.

2.2 Estimation
To estimate sequencing bias, we train a Bayesian network in which each
node represents a position in the sequence, relative to the read start, and

edges encode dependency between positions. Bayesian networks have been
applied to recognize motifs in nucleotide sequences in the past, in particular
in modeling splice sites (Cai et al., 2000; Chen et al., 2005) and transcription
factor binding sites (Ben-Gal et al., 2005; Grau et al., 2006; Pudimat et al.,
2005).

In our model, we do not rely on constraining the set of networks (e.g. to
trees), and instead approximate the NP-Hard problem of determining the
optimal network structure using a fast hill-climbing algorithm. Furthermore,
we train our model discriminatively; only parameters that are deemed
informative in discriminating between foreground and background sequences
are included in the model. We thus seek to train a model that reduces
bias, without including uninformative parameters that would only increase
variance.

2.2.1 Sampling The model is trained on n sequences, one half labeled as
foreground, the other background, sampled from the reference genome. To
obtain the foreground sequences, we take sequences surrounding (extending
20 nt to either side, by default) the start positions of a randomly sampled
set of n/2 aligned reads. To avoid the risk of the method being overfit to
reads deriving from a few highly expressed genes, we ignore duplicate reads,
which we define as two reads mapping to the same location in the genome.
The nucleotide sequence is taken from the genome, rather than the reads
themselves, allowing us to include positions outside of the read.

To obtain background training sequences, we randomly offset the positions
from which the foreground sequences were sampled. The offset is drawn from
a zero-mean Gaussian (with σ2 =10, by default), and rounded to the nearest
integer, away from zero. By using such a scheme, we attempt to mitigate the
effects of biological sequence bias, sampling positions that are more likely
to be biologically similar.

This procedure produces a training set of n sequences with accompanying
labels T ={(s1,x1),(s2,x2),...,(sn,xn)}. The label xi is binary, indicating
classification as background (xi =0) or foreground (xi =1).

2.2.2 Training To determine the structure and parameters of the Bayesian
network, we use a hill-climbing approach similar to the algorithm described
by Grossman and Domingos (2004). The network structure is determined by
greedily optimizing the conditional log-likelihood:

ℓ=
n∑

i=1

logPr[xi|si]=
n∑

i=1

log
Pr[si|xi]Pr[xi]∑

x∈{0,1}Pr[si|x]Pr[x]

where Pr[x] is flat (i.e. Pr[x=0]=Pr[x=1]=0.5) since we sample
foreground and background positions equally.

As we will be estimating parameters and evaluating the likelihood on the
same set of samples, simply maximizing the likelihood would severely overfit
the training set. We thus penalize model complexity heuristically using the
Bayesian information criterion (Schwarz, 1978). Where m is the number of
parameters needed to specify the model, we maximize, ℓ′ =2ℓ−m logn.

Some benefit might be obtained from a more highly tuned complexity
penalty. However, since the model is trained greedily, additional parameters
will be decreasingly informative, and increasingly similar between
foreground and background. Adding more parameters will have little
effect. Only when m is allowed to grow exponentially does the prediction
become polluted by small deviations between thousands of uninformative
parameters.

At each step of the optimization procedure, every possible edge or position
addition, removal or edge reversal that produces a valid, acyclic network is
evaluated, and the alteration that increases the score ℓ′ the most is kept.
This process is repeated until a local maximum is found, in which no
single alteration to the network will increase the score. Given the network
structure, the parameters are estimated directly from the observed nucleotide
frequencies in the training data.

The run time of the training procedure is further reduced in practice by
imposing the following two restrictions on the structure of the network, First,
the in-degree (i.e. number of parents) of any node must be less than some
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sample (local) background sequences

sample foreground sequences  

train Bayesian network       I.e., learn sequence 
patterns associated w/ 
high / low read counts.





Modeling Sequence Bias

Want a probability distribution over k-mers, k ≈ 40?

Some obvious choices:

Full joint distribution:  4k-1 parameters

PWM (0-th order Markov):  (4-1)•k parameters

Something intermediate:

Directed Bayes network
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One “node” per nucleotide,  
±20 bp of read start

•Filled node means that 
position is biased 

•Arrow i → j means letter at 
position i modifies bias at j

•For both, numeric 
parameters say how much

How–optimize:
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number pmax. Secondly, for all edges (i,j), |j− i|≤dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure 3 shows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS
Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig. 1), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2, the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback–
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of Li et al. (2010) (‘GLM’ and
‘MART’) and Hansen et al. (2010) (7mer), which are implemented
in the R packages mseq and Genominator, respectively, to four
publicly available datasets (Bullard et al., 2010; Mortazavi et al.,
2008; Trapnell et al., 2010; Wetterbom et al., 2010), as well as an
unpublished dataset of our own (Table 1).

Each method was trained on data taken from chromosomes 1–8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(Hubbard et al., 2009), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and
below we describe the procedure used for each.

Li et al. (2010) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1–8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1–8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18–23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1–8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead et al., 2009)
using default parameters against, respectively, the hg19, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC
Genome Browser (Karolchik et al., 2008).
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Fig. 2. An overview of the approach taken: (a) foreground sequences
are sampled from the regions surrounding the starts of mapped reads;
(b) background sequences are sampled by randomly offsetting foreground
positions; (c) a Bayesian network is trained to discriminate between the
set of sampled foreground and background sequences; (d) and the model
is evaluated at each position within a locus, predicting bias. The predicted
bias can then be used to adjust read counts, as in (e). In (d) and (e), we
show the results of this method applied to the 3′ UTR of Apoa2, using data
from Mortazavi et al. (2008). In bias coefficients predicted across 10 million
positions of chromosome 1, the log10 bias of 95% of the positions were
between −1.14 and 0.63, suggesting that most adjustments are not large.
The R2 measure, detailed in Section 3.2, gives the relative increase in log-
likelihood under a uniform sampling model, after correcting for bias, with
1.0 indicating a perfect fit, and the score of 0.38 here indicating a significant
increase.

any genomic position. Figure 2 gives a schematic overview of the proposed
model.

We have so far ignored one complication: the RNA abundance that
we wish to estimate is not itself independent of the nucleotide sequence.
Notably, exonic DNA tends to be more GC-rich than intergenic DNA. If
background sequences are sampled uniformly from the genome. we run the
risk of incorrectly adjusting for biological sequence bias, rather than technical
sequence bias. To avoid this, we propose using paired training data. Each
foreground training sequence is paired with a background sequence taken
from a nearby position that is likely to have similar abundance and general
nucleotide composition. Alternatively, we could pair foreground samples
with background samples from within the same transcript, but we prefer to
avoid dependence on existing gene annotations.

The methods proposed by Hansen et al. (2010) and (Roberts et al.,
2011) also treat bias correction as a problem of estimating foreground
and background sequence probabilities. They differ primarily in how these
sequence probabilities are estimated. Li et al. (2010) estimate reweighting
coefficients (bi, in our notation) directly, given training data consisting of
long annotated, highly expressed transcripts.

2.2 Estimation
To estimate sequencing bias, we train a Bayesian network in which each
node represents a position in the sequence, relative to the read start, and

edges encode dependency between positions. Bayesian networks have been
applied to recognize motifs in nucleotide sequences in the past, in particular
in modeling splice sites (Cai et al., 2000; Chen et al., 2005) and transcription
factor binding sites (Ben-Gal et al., 2005; Grau et al., 2006; Pudimat et al.,
2005).

In our model, we do not rely on constraining the set of networks (e.g. to
trees), and instead approximate the NP-Hard problem of determining the
optimal network structure using a fast hill-climbing algorithm. Furthermore,
we train our model discriminatively; only parameters that are deemed
informative in discriminating between foreground and background sequences
are included in the model. We thus seek to train a model that reduces
bias, without including uninformative parameters that would only increase
variance.

2.2.1 Sampling The model is trained on n sequences, one half labeled as
foreground, the other background, sampled from the reference genome. To
obtain the foreground sequences, we take sequences surrounding (extending
20 nt to either side, by default) the start positions of a randomly sampled
set of n/2 aligned reads. To avoid the risk of the method being overfit to
reads deriving from a few highly expressed genes, we ignore duplicate reads,
which we define as two reads mapping to the same location in the genome.
The nucleotide sequence is taken from the genome, rather than the reads
themselves, allowing us to include positions outside of the read.

To obtain background training sequences, we randomly offset the positions
from which the foreground sequences were sampled. The offset is drawn from
a zero-mean Gaussian (with σ2 =10, by default), and rounded to the nearest
integer, away from zero. By using such a scheme, we attempt to mitigate the
effects of biological sequence bias, sampling positions that are more likely
to be biologically similar.

This procedure produces a training set of n sequences with accompanying
labels T ={(s1,x1),(s2,x2),...,(sn,xn)}. The label xi is binary, indicating
classification as background (xi =0) or foreground (xi =1).

2.2.2 Training To determine the structure and parameters of the Bayesian
network, we use a hill-climbing approach similar to the algorithm described
by Grossman and Domingos (2004). The network structure is determined by
greedily optimizing the conditional log-likelihood:

ℓ=
n∑

i=1

logPr[xi|si]=
n∑

i=1

log
Pr[si|xi]Pr[xi]∑

x∈{0,1}Pr[si|x]Pr[x]

where Pr[x] is flat (i.e. Pr[x=0]=Pr[x=1]=0.5) since we sample
foreground and background positions equally.

As we will be estimating parameters and evaluating the likelihood on the
same set of samples, simply maximizing the likelihood would severely overfit
the training set. We thus penalize model complexity heuristically using the
Bayesian information criterion (Schwarz, 1978). Where m is the number of
parameters needed to specify the model, we maximize, ℓ′ =2ℓ−m logn.

Some benefit might be obtained from a more highly tuned complexity
penalty. However, since the model is trained greedily, additional parameters
will be decreasingly informative, and increasingly similar between
foreground and background. Adding more parameters will have little
effect. Only when m is allowed to grow exponentially does the prediction
become polluted by small deviations between thousands of uninformative
parameters.

At each step of the optimization procedure, every possible edge or position
addition, removal or edge reversal that produces a valid, acyclic network is
evaluated, and the alteration that increases the score ℓ′ the most is kept.
This process is repeated until a local maximum is found, in which no
single alteration to the network will increase the score. Given the network
structure, the parameters are estimated directly from the observed nucleotide
frequencies in the training data.

The run time of the training procedure is further reduced in practice by
imposing the following two restrictions on the structure of the network, First,
the in-degree (i.e. number of parents) of any node must be less than some
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number pmax. Secondly, for all edges (i,j), |j− i|≤dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure 3 shows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS
Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig. 1), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2, the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback–
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of Li et al. (2010) (‘GLM’ and
‘MART’) and Hansen et al. (2010) (7mer), which are implemented
in the R packages mseq and Genominator, respectively, to four
publicly available datasets (Bullard et al., 2010; Mortazavi et al.,
2008; Trapnell et al., 2010; Wetterbom et al., 2010), as well as an
unpublished dataset of our own (Table 1).

Each method was trained on data taken from chromosomes 1–8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(Hubbard et al., 2009), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and
below we describe the procedure used for each.

Li et al. (2010) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1–8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1–8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18–23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1–8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead et al., 2009)
using default parameters against, respectively, the hg19, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC
Genome Browser (Karolchik et al., 2008).
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number pmax. Secondly, for all edges (i,j), |j− i|≤dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure 3 shows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS
Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig. 1), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2, the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback–
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of Li et al. (2010) (‘GLM’ and
‘MART’) and Hansen et al. (2010) (7mer), which are implemented
in the R packages mseq and Genominator, respectively, to four
publicly available datasets (Bullard et al., 2010; Mortazavi et al.,
2008; Trapnell et al., 2010; Wetterbom et al., 2010), as well as an
unpublished dataset of our own (Table 1).

Each method was trained on data taken from chromosomes 1–8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(Hubbard et al., 2009), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and
below we describe the procedure used for each.

Li et al. (2010) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1–8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1–8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18–23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1–8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead et al., 2009)
using default parameters against, respectively, the hg19, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC
Genome Browser (Karolchik et al., 2008).
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Fig. 4. The KL divergence compares the frequency of k-mers (here, for k =1 and k =4) surrounding the starts of aligned reads to the frequencies expected
under the assumption of uniform sampling from within exons. A large divergence indicates significant bias. Plotted here is the divergence from unadjusted
read counts as well as after adjusting read counts using each method.

3.1 Kullback–Leibler divergence
Plotting the nucleotide frequencies (Fig. 1), we observe an obvious
bias. To quantify the non-uniformity observed in these plots, we use
the symmetrized Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951).

If fx is the background frequency of a k-mer x, and f ′
x the observed

frequency, the KL divergence is computed as

Dk(f ,f ′)=
∑

x

(
fx log2(fx/f ′

x)+ f ′
x log2(f ′

x/fx)
)

where the sum is over all k-mers. This can be thought of as a
measure dissimilarity between two probability distributions. If fx
and f ′

x for a k-mer x are approximately equal, their log-ratio will be
approximately zero, leading to a small KL divergence (exactly zero,
when the distributions are equal). Conversely, very different k-mer
frequencies will result in a larger KL divergence.

When computing the KL divergence, there is a risk of the measure
being dominated by a small number of reads with many duplicates.
Yet, given the high coverage of the exons being tested, if duplicate
reads are excluded, it may not capture the full effect of bias
correction. To account for these opposing concerns, we adopt the
following method: all reads contained within the exon being tested
are ranked by the number of duplicates. We then exclude reads that
are ranked in the lower half, and count each read ranked in the upper
half only once, ignoring duplicates.

Under the assumption of uniform sampling, the set of reads
ranked in the upper half should not depend on sequence, and
we should expect the KL divergence to be low. We compute the
divergence by reweighting the read counts using the predicted bias
coefficient before ranking the reads, choosing those reads ranked
in the upper half of each exon, ignoring duplicate reads, and then
tallying frequencies of overlapping k-mers. The k-mer distribution
obtained is then compared to a background distribution obtained by
redistributing reads uniformly at random within their exons.

We repeated the procedure for k ∈ {1,2,3,4,5,6}. The results
of this analysis are plotted in Figure 4, for k =1 and k =4. The
remaining cases are plotted in Section 4 in Supplementary Material.

3.2 Poisson regression
In this comparison, we measure the uniformity of the data, or
more precisely how well the counts conform to a Poisson process.

The assumption of positional read counts following a Poisson
distribution is known to be a poor fit (Srivastava and Chen, 2010),
but measuring the improvement in the fit derived from correcting
for bias remains a principled and easily interpreted criterion. This
increase in uniformity is illustrated in Figure 2.

We perform maximum-likelihood fitting of two models. In the
null model, the Poisson rate is fixed for each test exon. That is, for
position j within exon i, the rate is λij =ai where ai is the parameter
being fit. For comparison, we then fit a model in which the rate is
also proportional to the predicted bias coefficients: λ′

ij =aibij .
If the null model has log-likelihood L, and the bias-corrected

model L′, a simple goodness of fit measure is the improvement in
log-likelihood [a statistic commonly known as McFadden’s pseudo-
coefficient of determination (McFadden, 1974)], defined as, R2 =
1−L′/L.

This measure can be interpreted as the improvement in fit over
the null model, with R2 =1 indicating a perfect fit, occurring when
the model being evaluated achieves a likelihood of 1. Smaller
number indicate an increasingly worse fit, with R2 =0 representing
no improvement over the null model, and R2 =0.5, for example,
indicating the model has a log-likelihood equal to half that of the
null model (a large improvement, corresponding to, for example, the
likelihood increasing over 100-fold if the initial log-likelihood was
−9.6, which is the mean per-position log-likelihood under the null
model). This measure has the added advantage that it can take on
values <0, indicating that the model has worse fit than the null model
(i.e. when adjusting read counts according the bias coefficients leads
to less uniform read coverage).

We compute R2 for each of the test exons, giving us a sense
of the variability of the effectiveness of each model. The results
of this analysis are plotted in Figure 5. To summarize each model
with a single number, we can examine the median R2 value, as
listed in Table 2. Our method shows a highly statistically significant
improvement in performance over other methods in all but one
comparison, in which the MART method performs equally.

3.3 qRT-PCR correlation
We used sequencing data previously published by Au et al.
(2010) to evaluate the effect bias correction has on correlation
to measurements made by TaqMan RT–PCR, made available by
the the Microarray Quality Control project (Shi et al., 2006).
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Fig. 4. The KL divergence compares the frequency of k-mers (here, for k =1 and k =4) surrounding the starts of aligned reads to the frequencies expected
under the assumption of uniform sampling from within exons. A large divergence indicates significant bias. Plotted here is the divergence from unadjusted
read counts as well as after adjusting read counts using each method.

3.1 Kullback–Leibler divergence
Plotting the nucleotide frequencies (Fig. 1), we observe an obvious
bias. To quantify the non-uniformity observed in these plots, we use
the symmetrized Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951).

If fx is the background frequency of a k-mer x, and f ′
x the observed

frequency, the KL divergence is computed as

Dk(f ,f ′)=
∑

x

(
fx log2(fx/f ′

x)+ f ′
x log2(f ′

x/fx)
)

where the sum is over all k-mers. This can be thought of as a
measure dissimilarity between two probability distributions. If fx
and f ′

x for a k-mer x are approximately equal, their log-ratio will be
approximately zero, leading to a small KL divergence (exactly zero,
when the distributions are equal). Conversely, very different k-mer
frequencies will result in a larger KL divergence.

When computing the KL divergence, there is a risk of the measure
being dominated by a small number of reads with many duplicates.
Yet, given the high coverage of the exons being tested, if duplicate
reads are excluded, it may not capture the full effect of bias
correction. To account for these opposing concerns, we adopt the
following method: all reads contained within the exon being tested
are ranked by the number of duplicates. We then exclude reads that
are ranked in the lower half, and count each read ranked in the upper
half only once, ignoring duplicates.

Under the assumption of uniform sampling, the set of reads
ranked in the upper half should not depend on sequence, and
we should expect the KL divergence to be low. We compute the
divergence by reweighting the read counts using the predicted bias
coefficient before ranking the reads, choosing those reads ranked
in the upper half of each exon, ignoring duplicate reads, and then
tallying frequencies of overlapping k-mers. The k-mer distribution
obtained is then compared to a background distribution obtained by
redistributing reads uniformly at random within their exons.

We repeated the procedure for k ∈ {1,2,3,4,5,6}. The results
of this analysis are plotted in Figure 4, for k =1 and k =4. The
remaining cases are plotted in Section 4 in Supplementary Material.

3.2 Poisson regression
In this comparison, we measure the uniformity of the data, or
more precisely how well the counts conform to a Poisson process.

The assumption of positional read counts following a Poisson
distribution is known to be a poor fit (Srivastava and Chen, 2010),
but measuring the improvement in the fit derived from correcting
for bias remains a principled and easily interpreted criterion. This
increase in uniformity is illustrated in Figure 2.

We perform maximum-likelihood fitting of two models. In the
null model, the Poisson rate is fixed for each test exon. That is, for
position j within exon i, the rate is λij =ai where ai is the parameter
being fit. For comparison, we then fit a model in which the rate is
also proportional to the predicted bias coefficients: λ′

ij =aibij .
If the null model has log-likelihood L, and the bias-corrected

model L′, a simple goodness of fit measure is the improvement in
log-likelihood [a statistic commonly known as McFadden’s pseudo-
coefficient of determination (McFadden, 1974)], defined as, R2 =
1−L′/L.

This measure can be interpreted as the improvement in fit over
the null model, with R2 =1 indicating a perfect fit, occurring when
the model being evaluated achieves a likelihood of 1. Smaller
number indicate an increasingly worse fit, with R2 =0 representing
no improvement over the null model, and R2 =0.5, for example,
indicating the model has a log-likelihood equal to half that of the
null model (a large improvement, corresponding to, for example, the
likelihood increasing over 100-fold if the initial log-likelihood was
−9.6, which is the mean per-position log-likelihood under the null
model). This measure has the added advantage that it can take on
values <0, indicating that the model has worse fit than the null model
(i.e. when adjusting read counts according the bias coefficients leads
to less uniform read coverage).

We compute R2 for each of the test exons, giving us a sense
of the variability of the effectiveness of each model. The results
of this analysis are plotted in Figure 5. To summarize each model
with a single number, we can examine the median R2 value, as
listed in Table 2. Our method shows a highly statistically significant
improvement in performance over other methods in all but one
comparison, in which the MART method performs equally.

3.3 qRT-PCR correlation
We used sequencing data previously published by Au et al.
(2010) to evaluate the effect bias correction has on correlation
to measurements made by TaqMan RT–PCR, made available by
the the Microarray Quality Control project (Shi et al., 2006).
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Fig. 5. For each of the 1000 test exons, we compute McFadden’s pseudo-
coefficient of determination R2, equivalent to the improvement in log-
likelihood under the bias-corrected model. The statistic is positive, and
increases as uniformity is increased, and negative when uniformity is
decreased. Marked with asterisks are methods over which the BN approach
showed a statistically significant improvement when applied to the same
data, according to a one-sided Wilcoxon signed-rank test. In each of those
marked, we observed P <10−23. Boxes are plotted to mark the 25, 50 and
75% quantiles, with whiskers extending to 1.5 times the interquartile range
(i.e. the span between the 25% and 75% quantiles), and dots marking more
extreme values.

Table 2. The median R2 goodness of fit statistic across test exons

BN MART GLM 7mer

Wetterbom 0.174 0.016 0.066 −0.079
Katze 0.280 0.243 0.158 0.033
Bullard 0.267 0.163 0.224 0.157
Mortazavi 0.240 0.210 0.197 0.091
Trapnell 0.289 0.289 0.248 0.138

The R2 statistic measures increased uniformity in read coverage, after correcting for
bias. Here the median R2 across the test exons is listed for each method and sample. A
higher R2 indicates a better fit. The highest value in each row is highlighted in bold.

The RNA-Seq data shows a pattern of bias similar to that seen
in the other samples sequenced on an Illumina platform (Section
6 in Supplementary Material). This evaluation does not rely on an
assumption that qRT-PCR is necessarily more accurate than RNA-
Seq-based quantification, only that qRT-PCR is not biased in the
same way as the RNA-Seq data.

To evaluate the efficacy of each of the bias correction methods
considered, we counted reads overlapping each gene, defining the
gene by the union of every transcript in release 60 of the Ensembl
gene annotations. Counts were then normalized by dividing by the

Table 3. The Pearson’s correlation coefficient r between log-adjusted read
counts and log-adjusted TaqMan values

Method Correlation

Unadjusted 0.6650∗∗

7mer 0.6680∗∗

GLM 0.6874∗∗

MART 0.6998∗

BN 0.7086

We estimated the statistical significance of the improvement in correlation using the
BN method over the other methods using a simple boostrap procedure. A bootstrap
sample is formed by sampling, with replacement, 648 genes from the original set of the
same size. The correlation is then computed for this set, using the adjusted count from
each method. We repeated this procedure one million times, and counted the number
of times each of the competing methods achieved a higher correlation than the BN
method. Those marked with a single asterisk achieved a higher correlation fewer than
1000 times, resulting in a P <10−3. Those marked with two asterisks achieved a higher
correlation in none of the bootstrap samples, indicating a P <10−6.

length of these genes. We then removed any genes with a read count
<10, or that did not correspond to a unique TaqMan probe.

Each method was trained in a manner identical to that used in the
analysis of Sections 3.1 and 3.2, but without restricting the training
data to the first eight chromosomes. After adjusting read counts
according to the predicted sequence bias, we computed the Pearson’s
correlation coefficient r between log read counts and log TaqMan
expression values, which are averaged across three replicates. These
correlations are listed in Table 3. Our method shows a statistically
significant increase in correlation compared with the other methods.

3.4 Robustness
Training our model on more reads leads to more accurate estimation
of bias, but an increasingly long training time. For example, in our
tests, fitting our model to 100 000 reads from the Mortazavi data,
training time was approximately 45 min, running on one core of a
3 GHz Intel Xeon processor. However, limiting the training to 25 000
reads leads to a model that is nearly as accurate while requiring
<4 min to train. A full discussion of this trade-off is provided in
Section 6 in Supplementary Material.

The quality of the solution depends also on two other parameters:
the standard deviation at which background sequences are sampled,
and the weight applied to the penalty term of the BIC, yet it is not
particularly sensitive to their values. (The median R2 goodness-of-
fit statistic used in Section 3.2 varied by <25% as these parameters
were varied over a range of 104. See Section 2 in Supplementary
Material.) The same is true of the pmax and dmax parameters, used
restrict the in-degree and edge distance of the model, respectively, in
order to control training time. Our tests show that these parameters
need only be greater than zero for an adequate model to be trained
for the Mortazavi data. In all our evaluation, no special tuning of
the parameters was performed, suggesting it can be used effectively
across datasets without any intervention.

Additionally, experimental and theoretical analysis suggest that
the procedure is very resistant to inclusion of extraneous parameters.
In Section 11 in Supplementary Material, we prove an upper bound
on the probability of our model predicting any bias, if the experiment
is in fact unbiased, showing that there very little risk in the applying
the method to an unbiased data set. In particular, if >10 000 reads are
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… and after a modicum of algebra: 

… which empirically is a good approximation:

LLR of error rises with 
number of parameters r, 

declines with size of 
training set n



… while accuracy and runtime rise with n (empirically)
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R2

R2

104

Training time:  

104 reads in minutes;  
105 reads in an hour



does it matter?

Possible objection to the approach:

Typical expts compare gene A in sample 1 to itself in 
sample 2.  Gene A’s sequence is unchanged, “so the 
bias is the same” & correction is useless/dangerous

Responses:

SNPs and/or alternative splicing might have a big effect, if 
samples are genetically different and/or engender 
changes in isoform usage

Atypical experiments, e.g.,  imprinting, allele specific 
expression, xenografts, ribosome profiling, ChIPseq, RAPseq, …

Bias is sample-dependent, to an unknown degree

Strong control of  “false bias discovery” ⇒ little risk

24

In Progress: Isolator 
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ABSTRACT
Motivation: Quantification of sequence abundance in RNA-Seq
experiments is often conflated by protocol-specific sequence bias.
The exact sources of the bias are unknown, but may be influenced by
polymerase chain reaction amplification, or differing primer affinities
and mixtures, for example. The result is decreased accuracy in
many applications, such as de novo gene annotation and transcript
quantification.
Results: We present a new method to measure and correct for
these influences using a simple graphical model. Our model does
not rely on existing gene annotations, and model selection is
performed automatically making it applicable with few assumptions.
We evaluate our method on several datasets, and by multiple criteria,
demonstrating that it effectively decreases bias and increases
uniformity. Additionally, we provide theoretical and empirical results
showing that the method is unlikely to have any effect on unbiased
data, suggesting it can be applied with little risk of spurious
adjustment.
Availability: The method is implemented in the seqbias
R/Bioconductor package, available freely under the LGPL license
from http://bioconductor.org
Contact: dcjones@cs.washington.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on September 30, 2011; revised on January 5, 2012;
accepted on January 23, 2012

1 INTRODUCTION
In the last few years, RNA-Seq has emerged as a promising
alternative to microarrays in quantifying RNA abundance. But,
as microarray technology has brought with it technical challenges
ranging from developing robust normalization to accounting for
cross-hybridization, RNA-Seq presents a new set of challenges. As
first noted by Dohm et al. (2008), a particular challenge is the often
complex and protocol-specific influence of nucleotide sequence on
quantification.

In an ideal experiment, the number of RNA-Seq reads mapping to
a particular position in the genome is a function of RNA abundance
and should not be additionally dependent on the sequence at that
position. Yet, this is not the case. As illustration, Figure 1 plots this
non-uniformity in nucleotide frequencies on five datasets (Table 1),
each using a different protocol.

∗To whom correspondence should be addressed.

These biases may adversely effect transcript discovery, as
low level noise may be overreported in some regions, and in
others, active transcription may be underreported. They render
untrustworthy comparisons of relative abundance between genes
or isoforms, and any test of differential expression hangs on the
assumption that these biases are identical between replicates, an
undesirable assumption given that the causes of the bias are not well
understood. Additionally, in many tests of differential expression
higher read count will result in higher statistical confidence. It
follows that the sensitivity of such a test will also be biased by
sequence, affecting downstream analysis such as gene ontology
enrichment tests.

This bias, though observed primarily in the 5′ end of a read, is
not resolved by trimming the reads prior to mapping (Hansen et al.,
2010) (Section 1 in Supplementary Material), suggesting it is not a
result of erroneous base calling, and that a more sophisticated means
of correction is needed.

Li et al. (2010) propose two models. The first is a Poisson
linear model, in which read counts across a transcript follow an
inhomogeneous Poisson process. The read count at position i within
the transcript is Poisson distributed with parameter λi, where, log(λi)
is the sum of independent weights determined by the nucleotide
at each position surrounding the read start, in addition to a term
capturing the abundance of the transcript.

The second model is based on multiple additive regression trees,
or MART (Friedman and Meulman, 2003). In their tests, the MART
model shows a moderate improvement over the Poisson linear
model. Both models are fit to a number of abundant test genes,
requiring existing gene annotations for the reference genome.

Another model, proposed by Hansen et al. (2010), directly
estimates the distribution of initial heptamers within reads,
then estimates a presumed background heptamer distribution,
sampled from the ends of reads. The read count at a given
position is then adjusted by the ratio of the foreground and
background heptamer probabilities. Specifying two distributions
over heptamers (i.e. foreground and background distributions)
requires 2(47 −1)=32766 parameters, so while no gene annotations
are needed to train such a model, a significant number of reads are
required, and a number that increases exponentially with k, if it were
desirable to model k-mers for k >7.

Lastly, Roberts et al. (2011) have recently published a description
of another approach, in which sequence probabilities are modeled by
variable-order Markov chains. The structure of these Markov chains
are hard-coded, chosen in advance using a hill-climbing algorithm
on a representative dataset. This method is implemented in the latest

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Alternate Splicing
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Is Isoform Quantification Hard?

Sequencing depth per-isoform is lower

Many reads ambiguously mapped to multiple isoforms

Isoform proportions and total expression may both vary

All the previously-mentioned bias issues, including batch 
effects, affect all measurements

Differences among isoforms may be only a small fraction 
of nucleotides in transcript, potentially exacerbating bias

Isoform annotation is incomplete/poor
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Liu, et al. BMC  
Bioinformatics 
15.1 (2014): 364



Isolator 

Soon to be the world’s best isoform quantitation tool

Bayesian hierarchical model + fast MCMC sampler 
give mean and uncertainty in estimates

Can handle dozens of RNAseq samples per hour

In Progress

34

When data is lacking, estimates are shrunk towards each other,
supressing suprious changes.

1 read vs. 2 reads is probably not a 2-fold change in transcription!

Experiment

1 YearDay 20

1 2 3 1 2 3

Experiment

Conditions

Replicates



Why a Hierarchical Bayesian Model?

In a nutshell:

A natural assumption is that “nothing has changed,” 
unless refuted by data.  (Most genes don’t change.)

Hierarchical model allows estimation of baseline 
expression/isoform usage/variability across all samples

This helps compensate for lower per-isoform coverage

Ex: Given 4 isoforms with 

1, 1, 2, 2 reads in condition A vs 

2, 2, 1, 1 reads in condition B

do you think all 4 are 2x different?
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Why MCMC?

In a nutshell: posterior means are more stable than MLEs
Likelihood surface max often a broad plateau, not a sharp peak

Toy example:

Isoform 1, length 1k:

Isoform 2, length 2k:

36

–   –
For simple likelihood 
model, one read here 
yields MLE expression  
of Iso1 twice that of Iso2

But one read  
here gives zero 
as MLE for Iso1!

OTOH, posterior mean is not zero in either case



Some Benchmarks
“Sequencing Quality Consortium” (SEQC)

4 RNA samples with spike-ins
They ran RNAseq
They did extensive PCR for “gold standard”

We ran multiple tools (on common alignment)
Evaluated “Proportionality correlation”

(2•covariance/sum-of-variances, log-scale; usual -1 … 1 range)
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Table 2: Proportionality correlation between gene-level quanti ︎fication 
of 18353 genes using PrimePCR qPCR and RNA-Seq quanti ︎fication. 

c 0.75a + 0.25b d 0.25a + 0.75b
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c 0.75a + 0.25b d 0.25a + 0.75b
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c 0.75a + 0.25b d 0.25a + 0.75b
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A: Pairwise proportionality correlation between technical replicates; 1 lane 
of 2 fl ︎owcells each at ︎5 sites, all HiSeq 2000.  B: The absolute change in 
correlation induced by enabling bias correction (where available).  
For clarity, BitSeq est. of "MAY 2”, excluded; bias correction was extremely detrimental there. 
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Let-7 family of microRNA is required for maturation
and adult-like metabolism in stem
cell-derived cardiomyocytes
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Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 14, 2015 (received for review December 18, 2014)

In metazoans, transition from fetal to adult heart is accompanied by
a switch in energymetabolism-glycolysis to fatty acid oxidation. The
molecular factors regulating this metabolic switch remain largely
unexplored. We first demonstrate that the molecular signatures in
1-year (y) matured human embryonic stem cell-derived cardiomyo-
cytes (hESC-CMs) are similar to those seen in in vivo-derived
mature cardiac tissues, thus making them an excellent model to
study human cardiac maturation. We further show that let-7 is
the most highly up-regulated microRNA (miRNA) family during
in vitro human cardiac maturation. Gain- and loss-of-function
analyses of let-7g in hESC-CMs demonstrate it is both required
and sufficient for maturation, but not for early differentiation of
CMs. Overexpression of let-7 family members in hESC-CMs en-
hances cell size, sarcomere length, force of contraction, and respi-
ratory capacity. Interestingly, large-scale expression data, target
analysis, and metabolic flux assays suggest this let-7–driven CM
maturation could be a result of down-regulation of the phosphoi-
nositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an
up-regulation of fatty acid metabolism. These results indicate let-7 is
an important mediator in augmenting metabolic energetics in ma-
turing CMs. Promoting maturation of hESC-CMs with let-7 overex-
pression will be highly significant for basic and applied research.

let-7 | cardiac maturation | hESC-cardiomyocyte | metabolism | microRNA

Several coronary heart diseases (CHDs) are characterized by
cardiac dysfunctions predominantly manifested during car-

diac maturation (1, 2). Dramatic changes in energy metabolism
occur during this postnatal cardiac maturation (3). At early em-
bryonic development, glycolysis is a major source of energy for
cardiomyocytes (CMs) (4, 5). However, as the cardiomyocytes ma-
ture, mitochondrial oxidative metabolism increases with fatty acid
oxidation, providing 90% of the heart’s energy demands (6–8). This
switch in cardiac metabolism has been shown to have important
implications during in vivo cardiac maturation (9). In contrast to the
relatively advanced knowledge of the genetic network that con-
tributes to heart development during embryogenesis (10, 11), mo-
lecular factors that regulate peri- and postnatal cardiac maturation,
particularly in relation to the metabolic switch, remain largely un-
clear. So far, studies to understand the transition of the glycolysis-
dependent fetal heart to oxidative metabolism in the adult
heart have been mostly related to the peroxisome proliferator-
activated receptor (PPAR)/estrogen-related receptor/PPARγ
coactivator-1α circuit (7, 8, 12). However, it is currently unknown
what other factors act upstream or in synergy with this pathway in
controlling cardiac energetics.
miRNAs have emerged as key factors in controlling the com-

plex regulatory network in a developing heart (13). Genetic
studies that enrich or deplete miRNAs in specific cardiac tissue

types and large-scale gene expression studies have demonstrated
that they achieve such complex control at the level of cardiac gene
expression (14–16). We sought to determine whether these small
noncoding RNAs have an important role during cardiac matura-
tion, specifically in relation to cardiac energetics. The in vitro-
generated human embryonic stem cell-derived CMs (hESC-CMs),
despite displaying several functional and physiological similarities
to the CMs in the developing heart, are in a fetal state with respect
to their ion channel expression and electrophysiological activ-
ity, as well as their metabolic phenotype (17–21). In this study,
we therefore have used hESC-CMs as a powerful platform to
understand and elucidate cardiac maturation. Using large-scale
transcriptome analysis, we first show that molecular signature
patterns of hESC-CMs taken through 1 y of culturing for cardiac
maturation reflect in vivo cardiac maturation. Furthermore, large-
scale miRNA sequencing of in vitro-derived mature hESC-CMs
reveals several key differentially regulated miRNAs and miRNA
families. Target analysis using miRNA and mRNA datasets from
mature CMs indicates that the let-7 family, which is one of the
most highly up-regulated families, targets several key genes in the
PI3K/AKT/insulin pathway during cardiac maturation. Because
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background

It is possible to grow cardiomyocytes (heart muscle 
cells) from human embryonic stem cells (hESC-CMs)

Can grow billions of them

Can transplant them into animals after heart attack

Cells integrate/heart function improves (after a few weeks)

BUT – arrhythmias, at least in the early stages

Why?  Probably because hESC-CMs were immature.  

This will be tried in humans within a few years; ability to 
lab-culture mature hESC-CMs will greatly improve 
chances for success.  Growing them quickly will greatly 
improve the economics.  How can we do that?
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step 1: find molecular biomarkers for maturity
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the let-7 family has been previously associated with energy me-
tabolism (22, 23), it was chosen as a prime candidate for further
analyses. Knock-down (KD) of let-7 results in a significant de-
crease in a number of maturation parameters such as CM size,
area, sarcomere length, and expression of several cardiac matu-
ration markers. Overexpression of selected members of the let-7
family for just 2 wk in hESC-CMs significantly increases cell
size, sarcomere length, contractile force, and action potential
duration. More importantly, the overexpression (OE) of let-7 in
CMs exhibit higher respiratory capacity and increased efficiency in
using palmitate as an energy source, thus strongly implying a
metabolic transition in these cells. This switch is synchronized with
a significant down-regulation of a number of let-7 target genes in
the PI3K/AKT/insulin pathway and other key regulators such as
the histone methyl transferase enhancer of zeste homolog 2
(EZH2), suggesting let-7 acts as a global regulator to bring about
the metabolic and functional changes required during cardiac
maturation. Finally, repression of insulin receptor substrate 2
(IRS2) and EZH2 in CMs mimics the effect of let-7 OE, sug-
gesting these targets could be important components of a let-7-

driven maturation pathway. Altogether, our results indicate the
let-7 family as a novel endogenous regulator that can simulta-
neously accelerate maturation and adult-like metabolism in hu-
man cardiac tissue.

Results
In Vitro Cardiac Maturation Physiologically Simulates in Vivo Cardiac
Maturation. To examine whether hESC-CMs can be used as a
model to study CM maturation, we adopted two different matu-
ration protocols for hESC (H7)-CMs: 3D engineered heart tissue
culture and prolonged 2D culture conditions (Fig. 1A). 3D engi-
neered heart tissue was generated in gels of type I collagen and
mechanically conditioned via static stress for 2 wk by fixing the
ends of the constructs between two posts (termed cEHT here, for
conditioned engineered heart tissue) (24). Previous reports have
shown that prolonged culturing of hESC-CMs for up to 1 y can
result in a tightly packed and parallel array of myofibrils with
mature Z, A, H, I, and M bands (25). Thus, in the second protocol
we adopted, standard 2D CMs were subjected to prolonged cul-
turing (13.5 mo, termed 1y-CM). In the current investigation, CM
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Fig. 1. The molecular signatures of in vitro cardiac maturation reflect in vivo cardiac maturation. (A) Schematic representation of large-scale mRNA and
miRNA sequencing using Illumina platform from day 20-CMs and in vitro-matured CMs derived from hESC (H7). (B and C) qPCR analysis of maturation markers
in day 20-CMs and in vitro-matured CMs. Means ± SEM are shown. **P ≤ 0.05 (Student’s t test). (D) 2D principal component analysis using genomewide
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expression of genes from four representative categories for HAH (F), 1y-CM (G), HFA (H), and HFV (I) relative to gene expression of day 20-CMs. X axis in-
dicates log2 fold change in gene expression. Black line indicates expression of all genes. Colored lines toward the left and right side of the black line indicate
down-regulation and up-regulation of pathways, respectively. All experiments were repeated at least three times.

E2786 | www.pnas.org/cgi/doi/10.1073/pnas.1424042112 Kuppusamy et al.



step  1 (cont.): find miRNA biomarkers for maturity, too 

48

modulated during cardiac developmental maturation (21). For
these studies, we performed α-actinin (Z-disk protein) staining to
visualize the EV control and Lin28a OE CMs (n = 3; >50 cells
each) (Fig. 3D). We found a significant decrease in cell perim-
eter (Lin28a OE, 25 ± 3 μm vs. EV, 108 ± 13 μm; P < 0.001), cell
area (Lin28a OE, 30 ± 17.5 μm2 vs. EV, 400 ± 30 μm2; P <
0.001), and sarcomeric length (Lin28a OE, 1.1 ± 0.09 μm vs.
1.65 ± 0.13 μm; P < 0.001) (Fig. 3 E–G). Conversely, circularity
index [4π area/(perimeter)2] increased from 0.44 ± 0.03 in EV to
0.60 ± 0.04 in Lin28a OE CMs (Fig. 3H). To determine whether
the Lin28 OE phenotype is dependent on let-7 function, we
overexpressed let-7g, using let-7g mimics in Lin28 OE CMs.
Using multiple parameters, we found that let-7g OE was able to
partially rescue the Lin28 OE phenotype (Fig. A–H). In ad-
dition, we also knocked down let-7g, using let-7g antagomir
(Fig. 3I). Interestingly, KD of let-7g resulted in a phenotype
similar to that seen in lin28OE CMs (Fig. 3 J–N and SI Ap-
pendix, Fig. S6A), suggesting a normal level of let-7 is required
for maturation in hESC-CMs.
To further examine whether let-7 is sufficient to induce CM

maturation, we selected two members of the let-7 family, let-7g
and let-7i, according to their fold-change, as well as P values.
These were further validated for their up-regulation using qPCR
in cEHTs, 1y-CMs, and HAH samples in comparison with day
20-CMs (Fig. 4A). For further functional analyses, we used a
lentiviral-based pLKO cloning system to independently overexpress
these candidates for up to 2 wk in RUES2-CMs. The overall
transduction efficiency of the lentivirus in the RUES2-CMs was

assessed to be ∼60%, using a Ds-Red-encoding virus (SI Ap-
pendix, Fig. S5; n > 25 cells from three biological replicates).
qPCR analysis validated let-7i and let-7g overexpression in CMs
that were transduced with let-7 OE lentiviruses (Fig. 4B). In
comparison with the EV control, let-7 OE CMs also exhibited a
significant increase in all of the cardiac maturation markers that
were previously found to be up-regulated in the cEHTs and
1y-CMs (Figs. 1B and 4C). However, let-7 OE did not change the
expression of myomiRs. Similar results were obtained when let-7g
OE was carried out using let-7g mimics. In this case, transient
transfections were carried out in RUES2-CMs at day 15 and day
22, and end-point assays were done at day 30 (SI Appendix, Fig.
S6 B and C). This provided the first indication that overex-
pression of let-7 could accelerate the maturation process. Ap-
plying the same parameters used for Lin28a OE CMs, we further
characterized let-7 OE CMs. In contrast to what we observed
with the Lin28a OE CMs, α-actinin (Z-disk protein) staining
demonstrated a significant increase in cell perimeter (let-7i OE,
300 ± 7.4 μm; let-7g OE, 302 ± 3 μm vs. 108 ± 15 μm; P < 0.001),
cell area (let-7i OE, 1,110 ± 101 μm2; let-7g OE, 980 ± 95 μm2 vs.
380 ± 70 μm2; P < 0.001) (Fig. 4 D–F and SI Appendix, Fig. S6D)
in let-7 OE CMs. Circularity index decreased in CMs that were
overexpressing let-7i and let-7g vs. EV control (let-7i OE, 0.15 ±
0.04; let-7g OE, 0.12 ± 0.02 vs. 0.41 ± 0.02) (Fig. 4 D and G).
We also found that the sarcomere length increased from 1.65 ±
0.02 μm in EV control cells to 1.70 ± 0.01 μm and 1.69 ± 0.01 (P <
0.001) in let-7i and let-7g OE samples, respectively (Fig. 4D andH).
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modulated during cardiac developmental maturation (21). For
these studies, we performed α-actinin (Z-disk protein) staining to
visualize the EV control and Lin28a OE CMs (n = 3; >50 cells
each) (Fig. 3D). We found a significant decrease in cell perim-
eter (Lin28a OE, 25 ± 3 μm vs. EV, 108 ± 13 μm; P < 0.001), cell
area (Lin28a OE, 30 ± 17.5 μm2 vs. EV, 400 ± 30 μm2; P <
0.001), and sarcomeric length (Lin28a OE, 1.1 ± 0.09 μm vs.
1.65 ± 0.13 μm; P < 0.001) (Fig. 3 E–G). Conversely, circularity
index [4π area/(perimeter)2] increased from 0.44 ± 0.03 in EV to
0.60 ± 0.04 in Lin28a OE CMs (Fig. 3H). To determine whether
the Lin28 OE phenotype is dependent on let-7 function, we
overexpressed let-7g, using let-7g mimics in Lin28 OE CMs.
Using multiple parameters, we found that let-7g OE was able to
partially rescue the Lin28 OE phenotype (Fig. A–H). In ad-
dition, we also knocked down let-7g, using let-7g antagomir
(Fig. 3I). Interestingly, KD of let-7g resulted in a phenotype
similar to that seen in lin28OE CMs (Fig. 3 J–N and SI Ap-
pendix, Fig. S6A), suggesting a normal level of let-7 is required
for maturation in hESC-CMs.
To further examine whether let-7 is sufficient to induce CM

maturation, we selected two members of the let-7 family, let-7g
and let-7i, according to their fold-change, as well as P values.
These were further validated for their up-regulation using qPCR
in cEHTs, 1y-CMs, and HAH samples in comparison with day
20-CMs (Fig. 4A). For further functional analyses, we used a
lentiviral-based pLKO cloning system to independently overexpress
these candidates for up to 2 wk in RUES2-CMs. The overall
transduction efficiency of the lentivirus in the RUES2-CMs was

assessed to be ∼60%, using a Ds-Red-encoding virus (SI Ap-
pendix, Fig. S5; n > 25 cells from three biological replicates).
qPCR analysis validated let-7i and let-7g overexpression in CMs
that were transduced with let-7 OE lentiviruses (Fig. 4B). In
comparison with the EV control, let-7 OE CMs also exhibited a
significant increase in all of the cardiac maturation markers that
were previously found to be up-regulated in the cEHTs and
1y-CMs (Figs. 1B and 4C). However, let-7 OE did not change the
expression of myomiRs. Similar results were obtained when let-7g
OE was carried out using let-7g mimics. In this case, transient
transfections were carried out in RUES2-CMs at day 15 and day
22, and end-point assays were done at day 30 (SI Appendix, Fig.
S6 B and C). This provided the first indication that overex-
pression of let-7 could accelerate the maturation process. Ap-
plying the same parameters used for Lin28a OE CMs, we further
characterized let-7 OE CMs. In contrast to what we observed
with the Lin28a OE CMs, α-actinin (Z-disk protein) staining
demonstrated a significant increase in cell perimeter (let-7i OE,
300 ± 7.4 μm; let-7g OE, 302 ± 3 μm vs. 108 ± 15 μm; P < 0.001),
cell area (let-7i OE, 1,110 ± 101 μm2; let-7g OE, 980 ± 95 μm2 vs.
380 ± 70 μm2; P < 0.001) (Fig. 4 D–F and SI Appendix, Fig. S6D)
in let-7 OE CMs. Circularity index decreased in CMs that were
overexpressing let-7i and let-7g vs. EV control (let-7i OE, 0.15 ±
0.04; let-7g OE, 0.12 ± 0.02 vs. 0.41 ± 0.02) (Fig. 4 D and G).
We also found that the sarcomere length increased from 1.65 ±
0.02 μm in EV control cells to 1.70 ± 0.01 μm and 1.69 ± 0.01 (P <
0.001) in let-7i and let-7g OE samples, respectively (Fig. 4D andH).
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An increase in sarcomeric length generally corresponds to an
increase in the force of contraction.
To characterize force production on a per cell basis, we used

arrays of microposts to measure their contractile forces (Fig. 4I)
(38). EV control CMs exhibited a twitch force of 7.77 ± 0.7 nN/
cell. Let-7i and let-7g OE CMs exhibited a significantly higher
average twitch force of 11.32 ± 0.86 and 9.28 ± 0.7 nN per cell
(P < 0.001), respectively (Fig. 4 I and J). In addition, let-7 OE CMs
(let-7i OE, 1.05 ± 0.1 hz; let-7g OE, 0.92 ± 0.094 hz) exhibited
lower beat frequency compared with EV control (1.57 ± 0.1h z).
This decrease in frequency corresponds well with what is seen in
in vivo human heart development (i.e., as CMs mature, they
begin to exhibit reduced beating frequency) (39). To examine
whether let-7 supports CM maturation at an electrophysiological
level, we overexpressed let-7g and let7i in transgenic RUES2-
CMs stably expressing a voltage sensor protein called Arclight
(40, 41). Using the Arclight sensor, we found that induction of
let-7i and let-7g prolonged the action potential duration at 90%
(APD90) repolarization time at room temperature (500 ± 22 ms;
control, 900 ± 90 ms; P < 0.01) (Fig. 4 L–N). Moreover, let-7i
OE and let-7g OE CMs displayed an increase in the ratio of
action potential duration (APD50/APD90) (Fig. 4O), suggesting

let-7 overexpression drives the CMs toward more ventricular-
type CMs. Consistently, we also saw an increase in the expression
of CACNA1C, an L-type Ca channel protein, suggesting there is
an increase in inward depolarizing current (Fig. 4C) in let-7 OE
CMs. The increase in APD90 and APD50/90, as well as in-
creased expression of CACNA1C, has been shown to occur
during cardiac maturation (42, 43). These data together demon-
strate not only that let-7 OE results in morphological and mo-
lecular changes indicative of maturation but also that functionally
relevant parameters, such as APD, contraction, and beat fre-
quency, are appropriately regulated.
To further understand the effects of let-7 OE during CM

maturation at a molecular level, we carried out whole-genome
transcriptome profiling of let-7g OE CMs and corresponding EV
control CMs using an Illumina RNA sequencing platform. Con-
sistent with our qPCR data, several known maturation markers
such as ryanodine receptor 2 (RYR2), myosin heavy chain 7
(MyH7), and inward rectifier potassium channel protein KCNJ2,
showed increased expression in the let-7g OE CMs compared with
EV control (Fig. 5A and SI Appendix, Fig. S7A). Using expression
values for the genes that belonged to the 12 pathways (Fig. 1E and
Dataset S2), we carried out a 2D-PCA comparing let-7g OE CMs
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and EV control CMs with H7-CMs at day 20 and 1y, IMR90 iPSC
CMs at 1y, HAH, and 3-mo-old HFA and HFV samples. This
analysis clearly separated the day 20-CMs from 1y-CMs derived
from H7 and IMR90iPSCs and HAH in dimension 1 (41% vari-
ance), suggesting dimension 1 portrays the effect of maturation
(Fig. 5B and SI Appendix, Fig. S7B). Significantly, let-7g OE was
closer to 1 y than the EV and day 20 CMs in the first dimension,
suggesting overexpression of let-7g does indeed accelerate matu-
ration. Further evidence of let-7g–directed maturation was
observed from known isoform changes accompanying CM
maturation, such as a decrease in ratio of myosin heavy chain
6/myosin heavy chain 7 (SI Appendix, Fig. S8) (44, 45). Further, a
new differential splicing analysis tool (Materials and Methods)
identified 80 isoforms that show a consistent differential splicing
pattern across all of the sequenced samples, selected excluding
let-7 OE CMs (Datasets S7 and S8). When comparing H7-CM day
20 and the EV control with H7-CM 1 y fetal and adult samples,
all but three of these isoforms were found to change mono-

tonically, either increasing or decreasing in relative expression
with maturity (Fig. 5C), indicating that despite the variety of
tissues sequenced, cell maturation is the strongest determinant
in the splicing changes we observe. We then used these iso-
forms as a benchmark of splicing maturity, evaluating splicing
rates in let-7 OE CMs. Hierarchical clustering groups let-7 OE
CMs with the 1 y and fetal samples (Fig. 5C), and a similar
pattern is seen when principal component analysis is applied
(Fig. 5D). In short, concerted and dynamic changes in splicing
during maturation are observed in in vitro-matured and let-7
OE CM samples. Interestingly, among the 80 genes, several
have been shown to be involved in cardiogenesis, including tro-
ponin T2 (TNNT2) (46) (SI Appendix, Fig. S9). The fact that both
differential splicing and differential expression analyses cluster
let-7 OE CMs with H7 1y-CM and fetal samples (Fig. 5 B and D)
clearly strengthens the finding that let-7 is critical for maturation.
These results demonstrate that let-7 is not only required but also
sufficient for maturation of hESC-CMs.
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Let-7 Promotes hESC-CM Maturation by Acting as a Metabolic Switch.
To understand the molecular signaling components of the mat-
uration program that are modulated in let-7g OE CMs, we fur-
ther probed the transcript profiling data from let-7g OE CMs for
each of the 12 pathways previously identified (Fig. 5E). Pathways
related to Ca signaling, G protein-coupled receptor signaling,
cAMP-mediated signaling, and cardiac beta adrenergic signaling
and hypertrophic signaling were significantly up-regulated in
let-7 OE CMs, similar to that seen in 1y-CMs and fetal heart tissue
samples (Fig. 5 E and F and SI Appendix, Fig. S10A). Importantly,
fatty acid metabolism was significantly up-regulated, whereas PI3/
AKT/insulin signaling was significantly down-regulated in the
let-7g OE CMs in comparison with EV control (Fig. 6A). Programs
related to cell cycle, actin-cytoskeleton, and integrin signaling also

showed the correct trends (SI Appendix, Fig. S10 A and B). The
inverse relationship between fatty acid metabolism and PI3/AKT/
insulin signaling in let-7g OE CMs was similar to that observed in
the 1-y-old CMs and consistent with the metabolic switch seen in
maturing CMs in in vivo studies. Using let-7 OE CMs, we validated
by qPCR the down-regulation of candidate let-7 targets such as
EZH2 and those in the insulin pathway, as well as the up-regulation
of genes in fatty acid metabolism (Fig. 6B).
To test the functional relevance for these gene expression

changes, we carried out metabolic analysis of let-7 OE CMs vs.
EV control, using the Sea Horse metabolic flux assay. First, we
analyzed mitochondrial maximal respiration capacity by mea-
suring the oxygen consumption rate (OCR), a metabolic pa-

p= 0.001 
p= 0.008 
p= 0.002 
p= 1.14E-05 

let-7g OE/EV

H7 
Day20-

CM

EV HFA HFV let-7g 
OECM 

IMR90 

CM

HAH

Lo
g2

 g
en

e 
ex

pr
es

si
on

 
In

 D
ay

 3
0 

le
t-7

g 
O

E

Log2 gene expression in  Day 30 EV 

Maturation marker genes
(let-7g OE vs EV)

B C

Cardiac hypertrophy signaling

Cardiac maturation markers

Cardiac beta adrenergic 
signaling

cAMP-mediated signaling 

Ca signaling

G protein coupled 
receptor signaling

Actin-cytoskeleton

Integrin signaling 

FA metabolism

Pluripotency associated 

Cell cycle 

PI3/AKT-insulin signaling 

EV let-7g OE

PC1

H7 Day 20-CM

EV

let-7g OE

H7 1y -CM 

HFV
HFA

HAH

-10 -5 0 10 155
-5
-4
-3
-2
-1

1

3

0

2

PC
2

cardiac beta adrenergic
signaling

cAMP-mediated
signaling 

G protein coupled 
receptor signaling 

All genes

-40

-20

0

20

40

60

-40 -20 0 20 40

MYH7

RYR2

GJA1

TNNI3
KCNJ2

ACTC1

H7 1y-CM H7
Day 20-CM

EV

HFV
HFA

let-7g OE

HAH

40

20

-20

-40
-30 -20 -10 0 10 20

PC1

PC
2

0

Ca signaling  

-4 -2 0 2 4

-1

-2

1

2

0

0 1 2-1-2

0
0.

2
0.

4
0.

6

D
en

si
ty

IMR90 iPSC
1y -CM 

E

F

A

D

H7 1y-
iPSC 1y-

Fig. 5. Let-7 is critical for cardiac maturation (A, B, E, and F are analyses done with gene expression analyses and C and D are analyses based on splice
variant signatures). (A) Scatter plot of let-7g OE (y axis) vs. EV control (x axis) from the mRNA sequencing dataset. Red dots indicate maturation marker
genes in the dataset. A few are labeled in the plot: troponin I type 3 (TNNI3); gap junction protein alpha 1 (GJA1); actin alpha cardiac muscle 1 (ACTC1);
myosin heavy chain 7 (MYH7); ryanodine receptor 2 (RYR2); potassium channel, subfamily J2 (KCNJ2); sodium channel protein 5 alpha (SCN5A); sarco
endoplasmic reticulum Ca2+ATPase 2 (SERCA2); troponin T type 2 (TNNT2); calcium channel, voltage dependent, alpha 1C (CACNA1C). (B) 2D-PCA using
mRNA signatures from 12 pathways (indicated in Fig. 1E) across the analyzed samples, as indicated in the figure. (C) Heat map showing the proportion of
each of the 80 isoforms identified as differentially spliced across each condition. Each value is the estimated proportion of that isoform among all expressed
isoforms of the same gene in that condition. (D) 2D-PCA based on the proportions of the 80 identified differentially spliced transcripts, applied to all
replicates from these eight conditions. (E ) Heat map demonstrating changes in gene expression of 12 different pathways between EV control and let-7g OE
CMs. Left to right, columns 1–2 and 3–5 represent biological replicates of EV and let-7g OE CMs, respectively. The rows reflect read counts of various genes
in the different categories. Rows are standardized individually and colored according to the Z score. Yellow and blue represent up- and down-regulation,
respectively. (F) Density plots using R generated with fold change expression (x axis indicates log2-fold change) of genes from four categories, indicative of
cardiac function for let-7 OE/EV CMs. Black curve indicates expression of all genes. Curves toward the left and right side of the black curve indicate down-
regulation and up-regulation of pathways, respectively.
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Let-7 Promotes hESC-CM Maturation by Acting as a Metabolic Switch.
To understand the molecular signaling components of the mat-
uration program that are modulated in let-7g OE CMs, we fur-
ther probed the transcript profiling data from let-7g OE CMs for
each of the 12 pathways previously identified (Fig. 5E). Pathways
related to Ca signaling, G protein-coupled receptor signaling,
cAMP-mediated signaling, and cardiac beta adrenergic signaling
and hypertrophic signaling were significantly up-regulated in
let-7 OE CMs, similar to that seen in 1y-CMs and fetal heart tissue
samples (Fig. 5 E and F and SI Appendix, Fig. S10A). Importantly,
fatty acid metabolism was significantly up-regulated, whereas PI3/
AKT/insulin signaling was significantly down-regulated in the
let-7g OE CMs in comparison with EV control (Fig. 6A). Programs
related to cell cycle, actin-cytoskeleton, and integrin signaling also

showed the correct trends (SI Appendix, Fig. S10 A and B). The
inverse relationship between fatty acid metabolism and PI3/AKT/
insulin signaling in let-7g OE CMs was similar to that observed in
the 1-y-old CMs and consistent with the metabolic switch seen in
maturing CMs in in vivo studies. Using let-7 OE CMs, we validated
by qPCR the down-regulation of candidate let-7 targets such as
EZH2 and those in the insulin pathway, as well as the up-regulation
of genes in fatty acid metabolism (Fig. 6B).
To test the functional relevance for these gene expression

changes, we carried out metabolic analysis of let-7 OE CMs vs.
EV control, using the Sea Horse metabolic flux assay. First, we
analyzed mitochondrial maximal respiration capacity by mea-
suring the oxygen consumption rate (OCR), a metabolic pa-

p= 0.001 
p= 0.008 
p= 0.002 
p= 1.14E-05 

let-7g OE/EV

H7 
Day20-

CM

EV HFA HFV let-7g 
OECM 

IMR90 

CM

HAH

Lo
g2

 g
en

e 
ex

pr
es

si
on

 
In

 D
ay

 3
0 

le
t-7

g 
O

E

Log2 gene expression in  Day 30 EV 

Maturation marker genes
(let-7g OE vs EV)

B C

Cardiac hypertrophy signaling

Cardiac maturation markers

Cardiac beta adrenergic 
signaling

cAMP-mediated signaling 

Ca signaling

G protein coupled 
receptor signaling

Actin-cytoskeleton

Integrin signaling 

FA metabolism

Pluripotency associated 

Cell cycle 

PI3/AKT-insulin signaling 

EV let-7g OE

PC1

H7 Day 20-CM

EV

let-7g OE

H7 1y -CM 

HFV
HFA

HAH

-10 -5 0 10 155
-5
-4
-3
-2
-1

1

3

0

2

PC
2

cardiac beta adrenergic
signaling

cAMP-mediated
signaling 

G protein coupled 
receptor signaling 

All genes

-40

-20

0

20

40

60

-40 -20 0 20 40

MYH7

RYR2

GJA1

TNNI3
KCNJ2

ACTC1

H7 1y-CM H7
Day 20-CM

EV

HFV
HFA

let-7g OE

HAH

40

20

-20

-40
-30 -20 -10 0 10 20

PC1

PC
2

0

Ca signaling  

-4 -2 0 2 4

-1

-2

1

2

0

0 1 2-1-2

0
0.

2
0.

4
0.

6

D
en

si
ty

IMR90 iPSC
1y -CM 

E

F

A

D

H7 1y-
iPSC 1y-

Fig. 5. Let-7 is critical for cardiac maturation (A, B, E, and F are analyses done with gene expression analyses and C and D are analyses based on splice
variant signatures). (A) Scatter plot of let-7g OE (y axis) vs. EV control (x axis) from the mRNA sequencing dataset. Red dots indicate maturation marker
genes in the dataset. A few are labeled in the plot: troponin I type 3 (TNNI3); gap junction protein alpha 1 (GJA1); actin alpha cardiac muscle 1 (ACTC1);
myosin heavy chain 7 (MYH7); ryanodine receptor 2 (RYR2); potassium channel, subfamily J2 (KCNJ2); sodium channel protein 5 alpha (SCN5A); sarco
endoplasmic reticulum Ca2+ATPase 2 (SERCA2); troponin T type 2 (TNNT2); calcium channel, voltage dependent, alpha 1C (CACNA1C). (B) 2D-PCA using
mRNA signatures from 12 pathways (indicated in Fig. 1E) across the analyzed samples, as indicated in the figure. (C) Heat map showing the proportion of
each of the 80 isoforms identified as differentially spliced across each condition. Each value is the estimated proportion of that isoform among all expressed
isoforms of the same gene in that condition. (D) 2D-PCA based on the proportions of the 80 identified differentially spliced transcripts, applied to all
replicates from these eight conditions. (E ) Heat map demonstrating changes in gene expression of 12 different pathways between EV control and let-7g OE
CMs. Left to right, columns 1–2 and 3–5 represent biological replicates of EV and let-7g OE CMs, respectively. The rows reflect read counts of various genes
in the different categories. Rows are standardized individually and colored according to the Z score. Yellow and blue represent up- and down-regulation,
respectively. (F) Density plots using R generated with fold change expression (x axis indicates log2-fold change) of genes from four categories, indicative of
cardiac function for let-7 OE/EV CMs. Black curve indicates expression of all genes. Curves toward the left and right side of the black curve indicate down-
regulation and up-regulation of pathways, respectively.
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Let-7 Promotes hESC-CM Maturation by Acting as a Metabolic Switch.
To understand the molecular signaling components of the mat-
uration program that are modulated in let-7g OE CMs, we fur-
ther probed the transcript profiling data from let-7g OE CMs for
each of the 12 pathways previously identified (Fig. 5E). Pathways
related to Ca signaling, G protein-coupled receptor signaling,
cAMP-mediated signaling, and cardiac beta adrenergic signaling
and hypertrophic signaling were significantly up-regulated in
let-7 OE CMs, similar to that seen in 1y-CMs and fetal heart tissue
samples (Fig. 5 E and F and SI Appendix, Fig. S10A). Importantly,
fatty acid metabolism was significantly up-regulated, whereas PI3/
AKT/insulin signaling was significantly down-regulated in the
let-7g OE CMs in comparison with EV control (Fig. 6A). Programs
related to cell cycle, actin-cytoskeleton, and integrin signaling also

showed the correct trends (SI Appendix, Fig. S10 A and B). The
inverse relationship between fatty acid metabolism and PI3/AKT/
insulin signaling in let-7g OE CMs was similar to that observed in
the 1-y-old CMs and consistent with the metabolic switch seen in
maturing CMs in in vivo studies. Using let-7 OE CMs, we validated
by qPCR the down-regulation of candidate let-7 targets such as
EZH2 and those in the insulin pathway, as well as the up-regulation
of genes in fatty acid metabolism (Fig. 6B).
To test the functional relevance for these gene expression

changes, we carried out metabolic analysis of let-7 OE CMs vs.
EV control, using the Sea Horse metabolic flux assay. First, we
analyzed mitochondrial maximal respiration capacity by mea-
suring the oxygen consumption rate (OCR), a metabolic pa-
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Fig. 5. Let-7 is critical for cardiac maturation (A, B, E, and F are analyses done with gene expression analyses and C and D are analyses based on splice
variant signatures). (A) Scatter plot of let-7g OE (y axis) vs. EV control (x axis) from the mRNA sequencing dataset. Red dots indicate maturation marker
genes in the dataset. A few are labeled in the plot: troponin I type 3 (TNNI3); gap junction protein alpha 1 (GJA1); actin alpha cardiac muscle 1 (ACTC1);
myosin heavy chain 7 (MYH7); ryanodine receptor 2 (RYR2); potassium channel, subfamily J2 (KCNJ2); sodium channel protein 5 alpha (SCN5A); sarco
endoplasmic reticulum Ca2+ATPase 2 (SERCA2); troponin T type 2 (TNNT2); calcium channel, voltage dependent, alpha 1C (CACNA1C). (B) 2D-PCA using
mRNA signatures from 12 pathways (indicated in Fig. 1E) across the analyzed samples, as indicated in the figure. (C) Heat map showing the proportion of
each of the 80 isoforms identified as differentially spliced across each condition. Each value is the estimated proportion of that isoform among all expressed
isoforms of the same gene in that condition. (D) 2D-PCA based on the proportions of the 80 identified differentially spliced transcripts, applied to all
replicates from these eight conditions. (E ) Heat map demonstrating changes in gene expression of 12 different pathways between EV control and let-7g OE
CMs. Left to right, columns 1–2 and 3–5 represent biological replicates of EV and let-7g OE CMs, respectively. The rows reflect read counts of various genes
in the different categories. Rows are standardized individually and colored according to the Z score. Yellow and blue represent up- and down-regulation,
respectively. (F) Density plots using R generated with fold change expression (x axis indicates log2-fold change) of genes from four categories, indicative of
cardiac function for let-7 OE/EV CMs. Black curve indicates expression of all genes. Curves toward the left and right side of the black curve indicate down-
regulation and up-regulation of pathways, respectively.
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B: gene expression in cardiac- pathways 
(E) tracks maturation (unsurprisingly)

C/D: so does splicing (indp of level) via 
Isolator-detected probable monotonic 
changes.  (Not easily assessed by 
MLE-based methods…)
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summary

RNAseq data shows strong technical biases

Of course, compare to appropriate control samples 

But that’s not enough, due to:

batch effects, SNPs/genetic heterogeneity, alt splicing, 
…

all of which tend to differently bias sample/control 

BUT careful modeling can help.
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summary

Alternative splicing changes are very hard to quantify: 

lower coverage, ambiguous mapping, bias, …

BUT careful modeling can help:

Bayesian hierarchical model borrows power across all 
samples

Sampling/posterior mean estimation is more robust 
than MLE

Sampling allows novel questions to be addressed, e.g., 
“is isoform shift probably monotonic in time”

It doesn’t have to be slow

AND 90% of genes undergo alt splicing for a reason; 
you can’t see what it is if you don’t look
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summary

Amazing progress in stem cell technology

Ability to study and control cellular developmental 
pathways is one of the frontiers of modern biology

Multi-faceted, multi-disciplinary problems with rich data

In this study, microRNA let-7 identified as a key driver 
of cardiomyocyte maturation

Differential splicing of many transcripts clearly 
implicated; their exact roles remain to be determined.
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