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• Mitosis
• all chromosomes duplicated
• one division of a (typically) diploid cell
• carefully allocate Chrs to the two (diploid) daughter cells

• Meiosis & Recombination
• all chromosomes duplicated
• homologous chromosomes pair (pairs of sister chromed pairs)

• recombination occurs between homologous pairs
• then cells divide, twice, yielding 4 haploid gametes, each with 

chromosomes that are a mix of maternal/paternal

Quick review:  
genetics of sex
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Hardy-Weinberg Equilibrium
Very simple model of distribution of alleles in a 
population, assuming:
• sexually reproducing diploid organisms
• non-overlapping generations
• random mating
• infinite population size
• equal allele frequencies in both sexes
• no migration, mutation or selection
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Hardy-Weinberg Equilibrium
• Suppose 2 alleles, say A & a,exist at one site with population-

wide frequencies of p and q=1-p 
• What are frequencies of the diploids AA, Aa, aa?

• AA:  p2

• Aa: 2pq

• aa: q2

• NB:  p2 + 2pq + q2 = (p+q)2 = 1

• And assume no linkage, so adjacent site B & b, etc. will  
independently appear with analogous probabilities p2, 2pq, q2 
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Cost/Benefit of Sex

Sex is ancient, ubiquitous
+ Allows deleterious alleles to be shed (or not)
+ Accelerates mixing of alleles (for better or worse)
- BUT: Meiosis is complex, slow & expensive, Finding 

mates is hard, Only 1/2 of genes are passed on, …
- Ancient eukaryotic asexuals are rare, but theoretical 

support for benefit of sex is still debated
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Diatoms

http://sarahjanemaki.com/diatoms-3/
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Diatoms
• First formally described in scientific literature by Danish 

naturalist Otto Friedrich Müller, 1783.

• Photosynthetic, unicellular, mostly aquatic, eukaryotes

• Plausibly about the same age as land plants, but at least 
an order of magnitude more species-rich

• Also noted for high in-species genetic diversity

• Estimated to contribute 20–40% of primary production

• Silica cell wall; they dominate oceanic SiO2 cycling
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Phytoplankton bloom across the Barents Sea off the coast of Cape Nordkinn in Norway.  
http://www.esa.int/Our_Activities/Observing_the_Earth/Space_for_our_climate/Earth_from_Space_Summer_in_bloom 8



Sex and the Diatom
• Eukaryotes, normally diploid
• Most cell divisions are mitotic

• 2 diploid daughter cells, each gets one valve  
(1/2 of cell wall)

• New valve inside old ⇒ one daughter is smaller

• Occasionally  undergo meiosis
• Haploid gametes, die if they don’t fuse with a partner (unlike 

yeast, e.g.)
• Triggers for sex are largely unknown; one is thought 

to be cell-size reduction – Auxospore (fertilized egg) 
outgrows its valve & makes new, larger ones
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Thalassiosira pseudonana

Photo: N. Kröger
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Thalassiosira pseudonana
• A marine diatom

• Named long ago

• In continuous culture since 1958

• “Cosmopolitan” = found all over the world

• First diatom genome sequence (Sanger-based, 2004)

• Diploid, ~ 32 Megabases, “SNP” every 100-200bp
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Re-Sequenced 7 Isolates

Biogeography – correlate diversity with geography
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Re-Sequenced 7 Isolates
• Goal:

• Biogeography – correlate diversity with geography
• Findings:

• There is (almost) no geographical diversity!
• 5 of 7 are nearly identical, genetically
• Down to the level of sharing heterozygous positions
• Why?  They are obligate asexual clones!
• And they rapidly colonized the world’s oceans
• The other 2: we see nothing that contradicts sex and Hardy-

Weinberg (tho sex has never been observed)
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Non-reference Read to Coverage is Imperfect Proxy
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Allelic-Distribution of Two Isolates
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I Plot the distribution of R-values for Chromosome 1 (Blue)
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Blue: Histogram of R-value distribution (Chr 1)

  R ≈ 0 : homozygous, reference
  R ≈ 1 : homozygous, non-reference
  R ≈ 0.5: heterozygous (ref + non-ref)

Why ≠ 0/1?  
Seq & map errs}
Why ≠ .5? Sampling

Why ≠ 0/1?

Why ≠ .5?



Matches H-W Expectation
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A Digression: Mapping Bias
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New York does not match HWE
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I Missing homozygous non-reference peak at R = 1

 NY is the  
 reference strain
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New York does not match HWE...nor does Washington
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Not only the same distribution but the same heterozygous
positions
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Strong agreement of heterozygous positions

Heterozygous concordance with the reference is at least 96%.
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Heterozygous concordance implies extreme departure from
HWE

We have detected:

1. Clonal cultures from 5 dispersed regions

2. � 96% concordance in SNPs

What is the probability that this population is in Hardy-Weinberg
Equilibrium along with the above constraints?

Simple Binomial Model
. . .

Using 1 heterozygous position per chromosome to avoid linkage.

p  1.2⇥ 10�29

Using the estimated 1 crossover per 30KB.

p  2.9⇥ 10�100
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Data Summary 
• 5 of 7 isolates share 96% or their SNPs

• Essentially no mixing of alleles as expected under Hardy-
Weinberg, e.g. heterozygous positions are abundant in 
all individuals but (almost) never re-assort, (almost) never 
result in homozygous but non-reference positions, …

• Estimated crossover rate in the 5 is ~20x lower than in 
the other 2

• CONCLUSION: they are obligate asexuals, reproducing 
exclusively by mitotic cell division for ~1000 years
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Spacial uniformity of heterozygous sites reveals
evolutionary history

Isolates from 5 Dispersed Ecosystems Share Loss of
Heterozygous Regions

a. Chromosome One Coordinate
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The blue regions are nearly homozygous regions (aka SNP deserts)
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LoH Events Happened 
Nearly Simultaneously
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T. Pseudonana History?

                          Shared SNPs

Venice, Italy (3367)

Wales, UK (1013)

e Virginia, USA (1007)

d Perth, W. Australia (1012)

c Washington, USA (1015)

b New York, USA (1335)

a N. Pacific Gyre (1014)
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Summary
• A population bottleneck / inbreeding caused a loss of 

heterozygosity in a sub-population of T. pseudonana 

• A functional loss of sex occurred within this sub-population 

• This obligate asexual lineage spread across the world's 
oceans

• At least 5 CCMP isolates are descendants of this lineage

• At least 2 CCMP isolates maintain sexual reproduction in 
the wild
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Re-Sequenced 7 Isolates
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Sex

Clonal/Asexual: 
Global Invasion



Implications
• A clonal global dispersal implies the existence of a general purpose 

genotype for T. pseudonana.

• It is unlikely that this type of obligate asexuality is unique to a single 
marine microbe.

• Environmental isolates may be biased in favor of such genotypes 
explaining the lack of sexual reproduction in culture despite 
attempted induction. 

• This clonal sub-population is susceptible to global disruption by 
disease or environmental perturbations.

• Counters the classical assumption - genetic diversity correlates with 
geographic distance (biogeography).
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Systematic DNA Loss in Culture  
 (⇒ No Contamination)
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