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BLAST:
Basic Local Alignment Search Tool
Altschul, Gish, Miller, Myers, Lipman, J Mol Biol 1990
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The most widely used comp bio tool

Which is better: long mediocre match or a few nearby, 
short, strong matches with the same total score? 

• score-wise, exactly equivalent

• biologically, later may be more interesting, & is common
at least, if must miss some, rather miss the former  

BLAST is a heuristic emphasizing the later
speed/sensitivity tradeoff: BLAST may miss former, but gains 
greatly in speed



BLAST: What

Input: 
A query sequence (say, 300 residues)
A data base to search for other sequences similar to the query 
(say, 106 - 109 residues)
A score matrix s(r,s), giving cost of substituting r for s (& perhaps 
gap costs)
Various score thresholds & tuning parameters

Output:
“All” matches in data base above threshold
“E-value” of each
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AA or nt



Blast: demo

E.g. 

http://expasy.org/sprot

(or http://www.ncbi.nlm.nih.gov/blast/ )

look up MyoD

go to blast tab

paste in ID or seq for human MyoD

set params (gapped=yes, blosum62,…)

get top 100 (or 1000) hits
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BLAST: How

Idea: most interesting parts of the DB have a good
ungapped match to some short subword of the query

Break query into overlapping words wi of small fixed 

length (e.g. 3 aa or 11 nt)

For each wi, find (empirically, ~50) “similar” words vij with 

score s(wi, vij) > thresh1 (say, 1, 2, … letters different)

Look up each vij in database (via prebuilt index) --

i.e., exact match to short, high-scoring word

Grow each such “seed match” bidirectionally

Report those scoring > thresh2, calculate E-values
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BLAST: Example

deadly
de     (11) -> de ee dd dq dk
ea    ( 9) -> ea
ad   (10) -> ad sd
dl  (10) -> dl di dm dv
ly (11) -> ly my iy vy fy lf

ddgearlyk . . .
ddge 10

early 18

³7 (thresh1)

vij

query

wi

DB

hits ³ 10 (thresh2)
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BLOSUM 62 (the “σ” scores)
A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 8



BLAST Refinements

“Two hit heuristic” -- need 2 nearby, nonoverlapping, 
gapless hits before trying to extend either

“Gapped BLAST” -- run heuristic version of Smith-
Waterman, bi-directional from hit, until score drops by 
fixed amount below max

PSI-BLAST -- For proteins, iterated search, using 
“weight matrix” (next week?) pattern from initial pass to 
find weaker matches in subsequent passes

Many others
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Significance of alignment scores
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Significance of Alignments

Is “42” a good score?
Compared to what?

Usual approach: compared to a specific “null model”, 
such as “random sequences”
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Brief Review of Probability
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random variables

Discrete random variable: finite/countable set of values, 
e.g.

X∈{1,2, ..., 6} with equal probability

X is positive integer i with probability 2-i

§ Probability mass function assigns probabilities to 
points

Continuous random variable: uncountable set of values, 
e.g.

X is the weight of a random person (a real number)

X is a randomly selected angle [0 .. 2π)

§ Can’t put non-zero probability at points; probability 
density function assigns how probability mass is 
distributed near points; probability per unit length
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b

pdf and cdf

f(x)

F(a) = ∫   f(x) dxa
−∞ a

f(x) =     F(x), since F(a) = ∫   f(x) dx,a
−∞

d
dx

Need ∫    f(x) dx  (= F(+∞))  = 1-∞
+∞

f(x) : the probability density function (or simply “density”)

P(X ≤ a) = F(a): the cumulative distribution function

A key relationship:

P(a < X ≤ b) = F(b) - F(a)

1

0
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Densities are not probabilities; e.g. may be > 1

P(X = a) = limε→0 P(a-ε/2 < X ≤ a+ε/2) = F(a)-F(a) = 0

I.e., 

    the probability that a continuous r.v. falls at a specified point is zero.  

But 

   the probability that it falls near that point is proportional to the density:

P(a - ε/2 < X ≤ a + ε/2) = F(a + ε/2) - F(a - ε/2) 

    ≈ ε • f(a) 

I.e., 

• f(a) ≈ probability per unit length near a.

• in a large random sample, expect more samples where density is higher 
(hence the name “density”).

• f(a) vs f(b) give relative probabilities near a vs b.

densities

!X

a-ε/2  a  a+ε/2     

f(x)



X is a normal (aka Gaussian) random variable  X ~ N(μ, σ2)

normal random variable
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normal random variables

 X is a normal (aka Gaussian) random variable   X ~ N(μ, σ2)

μ±σ
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changing µ, σ

density at μ is ≈ .399/σ
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Z-scores

Z = (X-μ)/σ = (X - mean)/standard deviation

e.g.
Z = +3 means “3 standard deviations above the 

mean”

Applicable to any distribution, and gives a rough sense 
of how usual/unusual the datum is.
If X is normal(μ, σ2) then Z is normal(0,1), and you can 
easily calculate (or look up in a table) just how unusual
E.g., if normal, P(Z-score ≥ +3) ≈ 0.001 18



Central Limit Theorem

If a random variable X is the sum of many independent 
random variables, then X will be approximately normally 
distributed.
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Hypothesis Tests and P-values
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Hypothesis Tests

Competing models might explain some data
E.g., you’ve flipped a coin 5 times, seeing  HHHTH

Model 0 (The “null” model): P(H) = 1/2
Model 1 (The “alternate” model): P(H) = 2/3

Which is right?
A possible decision rule: reject the null if you see 4 or 
more heads in 5 tries
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p-values

The p-value of such a test is the probability, assuming that the null 
model is true, of seeing data at leasy as extreme as what you 
actually observed
E.g., we observed 4 heads; p-value is prob of seeing 4 or 5 heads 
in 5 tosses of a fair coin
Why interesting?  It measures probability that we would be making 
a mistake in rejecting null.
Can analytically find p-value for simple problems like coins; often 
turn to simulation/permutation tests (introduced earlier) or to 
approximation (coming soon) for more complex situations
Usual scientific convention is to reject null only if p-value is < 0.05; 
sometimes demand p ≪ 0.05 (esp. if estimates are inaccurate)

obs

p-value
null
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Alignment Scores
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perhaps do 

normal with 

determined 

Distribution of alignment scores

A straw man: suppose I want a simple null model for alignment 
scores of, say MyoD versus random proteins of similar lengths.  
Consider this: Write letters of MyoD in one row; make a random 
alignment by filling 2nd row with random permutation of the other 
sequence plus gaps.

MELLSPPLR…
uv---wxyz…

Score for column 1 is a random number from the M row of 
BLOSUM 62 table, column 2 is random from E row, etc.

By central limit theorem, total score would be approximately normal
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Permutation Score Histogram vs Gaussian

score
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Permutation Score Histogram vs Gaussian
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And, we can try to estimate p-
value: from mean/variance of the 
data, true Lin32 has z-score = 7.9, 
corresponding p-value is 1.4x10-15.

But something is fishy:
a) Histogram is skewed w.r.t. blue 

curve, and, especially,
b) Is above it in right tail (e.g. 111 

scores ≥ 80, when only 27 expected; 
highest permuted score is z=5.7, p = 
6x10-9, very unlikely in only 20k 
samples)

norm
al



Rethinking score distribution

Strawman above is ok: random permutation of letters & 
gaps should give normally distributed scores.  

But S-W doesn’t stop there; it then slides the gaps 
around so as to maximize score, in effect taking the 
maximum over a huge number of alignments with same 
sequence but different gap placements.
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Overall Alignment Significance, I
A Theoretical Approach: EVD

Let Xi, 1 £ i £ N, be indp. random variables drawn from some (non-
pathological) distribution
Q. what can you say about distribution of y = sum{ Xi }?  
A. y is approximately normally distributed (central limit theorem)
Q. what can you say about distribution of y = max{ Xi }?
A. it’s approximately an Extreme Value Distribution (EVD)

[one of only 3 kinds; for our purposes, the relevant one is:]

For ungapped local alignment of seqs x, y, N ~ |x|*|y|
l, K depend on score table & gap costs, or can be estimated by 
curve-fitting random scores to (*).  (cf. reading)

€ 

P(y ≤ z) ≈ exp(−KNe−λ(z−µ )) (*)
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Permutation Score Histogram vs Gaussian

score
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Red curve is approx fit of EVD to 
score histogram – fit looks better, 
esp. in tail.  Max permuted score 
has probability ~10-4, about what 
you’d expect in 2x104 trials.

True score is still moderately 
unlikely, < one tenth the above.



EVD Pro/Con

Pro:
Gives p-values for alignment scores

Con:
It’s only approximate
You must estimate parameters
Theory may not apply.  E.g., known to hold for ungapped local 
alignments (like BLAST seeds).  It is NOT proven to hold for 
gapped alignments, although there is strong empirical support 
that it does.
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Overall Alignment Significance, II
Empirical (via randomization)

You just searched with x, found “good” score for x:y
Generate N random “y-like” sequences (say N = 103 - 106)
Align x to each & score
If k of them have better score than alignment of x to y, 
then the (empirical) probability of a chance alignment as 
good as observed x:y alignment is (k+1)/(N+1)

e.g., if 0 of 99 are better, you can say “estimated p < .01”
How to generate “random y-like” seqs? Scores depend 
on: 

Length, so use same length as y
Sequence composition, so uniform 1/20 or 1/4 is a bad idea; even 
background pi can be dangerous
Better idea: permute y N times 32



Generating Random Permutations

for (i = n-1; i > 0; i--){

j = random(0..i);

swap X[i] <-> X[j];

}

All n! permutations of the original data equally likely: A 
specific element will be last with prob 1/n; given that, a 
specific other element will be next-to-last with prob
1/(n-1), …; overall: 1/(n!)

0

1

2

3

4

5

...
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C.f. http://en.wikipedia.org/wiki/Fisher–Yates_shuffle and (for subtle way to go 
wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.html



Permutation Pro/Con

Pro:
Gives empirical p-values for alignments with characteristics like 

sequence of interest, e.g. residue frequencies
Largely free of modeling assumptions (e.g., ok for gapped…)

Con:
Can be inaccurate if your method of generating random 

sequences is unrepresentative
E.g., probably better to preserve di-, tri-residue statistics and/or 

other higher-order characteristics, but increasingly hard to 
know exactly what to model & how

Slow
Especially if you want to assess low-probability p-values
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Summary

BLAST is a highly successful search/alignment 
heuristic.  It looks for alignments anchored by short, 
strong, ungapped “seed” alignments
Assessing statistical significance of alignment scores is 
crucial to practical applications

Score matrices derived from “likelihood ratio” test of trusted 
alignments vs random “null” model
For gapless alignments, Extreme Value Distribution (EVD) is 
theoretically justified for overall significance of alignment scores; 
empirically ok in other contexts, too, e.g., for gapped alignments
Permutation tests are a simple (but brute force) alternative
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More on p-values and 
hypothesis testing
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P-values & E-values

p-value:  P(s,n) = probability of a score more extreme than s in a 
random target data base of size n
E-value: E(s,n) = expected number of such matches
They Are Related:

E(s,n) = pn (where p = P(s,1) )
P(s,n) = 1-(1-p)n = 1-(1-1/(1/p))(1/p)(pn) ≈ 1-exp(-pn) = 1-exp(-E(s,n))
E big ⇔ P big

E =   5  ⇔ P ≈ .993
E = 10  ⇔ P ≈ .99995

E small ⇔ P small
E = .01 ⇔ P = E - E2/2 + E3/3! - … » E

Both equally valid; E-value is perhaps more intuitively interpretable

37

E.g. » 1% error when E < .01



Hypothesis Testing:
A Very Simple Example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)
Decide: which
How?  Flip it 5 times.  Suppose outcome D = HHHTH
Null Model/Null Hypothesis M0: p(H)=1/2
Alternative Model/Alt Hypothesis M1: p(H)=2/3
Likelihoods:

P(D | M0) = (1/2) (1/2) (1/2) (1/2) (1/2) =   1/32
P(D | M1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243

Likelihood Ratio:  

I.e., given data is » 2.1x more likely under alt model than null model

€ 

p(D |M 1 )
p(D |M 0 )

= 16 / 243
1/ 32 = 512

243 ≈ 2.1
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Hypothesis Testing, II

Log of likelihood ratio is equivalent, often more 
convenient
add logs instead of multiplying…

“Likelihood Ratio Tests”: reject null if LLR > threshold
LLR > 0 disfavors null, but higher threshold gives stronger 
evidence against 

Neyman-Pearson Theorem: For a given error rate, LRT 
is as good a test as any (subject to some fine print).
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A Likelihood Ratio

Defn: two proteins are homologous if they are alike because of shared 
ancestry; similarity by descent

Suppose among proteins overall, residue x occurs with frequency px

Then in a random alignment of 2 random proteins, you would expect to 
find x aligned to y with prob pxpy

Suppose among homologs, x & y align with prob pxy

Are seqs X & Y homologous? Which is 
more likely, that the alignment reflects
chance or homology?  Use a likelihood
ratio test.

€ 

log
pxi yi
pxi pyii

∑

40



Non-ad hoc Alignment Scores

Take alignments of homologs and look at frequency of 
x-y alignments vs freq of x, y overall

Issues
biased samples 
evolutionary distance

BLOSUM approach
Large collection of trusted alignments

(the BLOCKS DB) 
Subset by similarity 

BLOSUM62 ⇒ ≥ 62% identity
e.g. http://blocks.fhcrc.org/blocks-bin/getblock.pl?IPB002546

€ 

1
λ
log2

px y
px py

41



BLOSUM 62
A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 42

Scores: formula 

above, rounded



ad hoc Alignment Scores?

Make up any scoring matrix you like
Somewhat surprisingly, under pretty general 
assumptions**, it is equivalent to the scores constructed 
as above from some set of probabilities pxy, so you 
might as well understand what they are

NCBI-BLAST: +1/-2 tuned for ~ 95% sequence identity
WU-BLAST:   +5/-4 tuned for ~ 66% identity (“twilight zone”)

** e.g., average scores should be negative, but you probably want 
that anyway, otherwise local alignments turn into global ones, and 
some score must be > 0, else best match is empty
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Summary

BLAST: 
heuristic approximation to Smith-Waterman emphasizing speed 
in return for some loss in sensitivity
Key idea: “seed” search at short, high-scoring, ungapped patches

Scoring: 
statistical comparison to a random “null model”
central limit theorem / normal / Z-scores are a start
“permutation tests” and/or “EVD” are better; p- and E-values
“likelihood ratio tests” give formal justification BLOSUM62 scores; 
broadly, a way to leverage small set of experts + large set of data
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