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Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science.  Whenever any

result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the

machine in the shortest time?  - Charles Babbage

Analytic Engine (schematic)
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How do we measure efficiency?

 platform independent, implementation-detail independent   ignore

constant factors, use big O notation when we talk about running time.

 instance independent    worst-case analysis (sometimes average

case analysis)

 of predictive value with respect to increasing input size, tells us how

algorithm scales   want to measure rate of growth of T(n) as function

of n, the input size.

Asymptotic, worst – case analysis

Seek polynomial time algorithms
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Worst-Case Analysis

Worst case running time.  Obtain bound on largest possible running time

of algorithm on input of a given size N.

Generally captures efficiency in practice.

Draconian view, but hard to find effective alternative.

Average case running time.  Obtain bound on running time of algorithm

on random input as a function of input size N.

Hard (or impossible) to accurately model real instances by random

distributions.

Algorithm tuned for a certain distribution may perform poorly on

other inputs.
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Polynomial-Time

Brute force.  For many non-trivial problems, there is a natural brute

force search algorithm that checks every possible solution.

Typically takes 2N time or worse for inputs of size N.

Unacceptable in practice.

Desirable scaling property.  When the input size doubles, the algorithm

should only slow down by some constant factor C.

Def.  An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.
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Worst-Case Polynomial-Time

Def.  An algorithm is efficient if its running time is polynomial.

Justification:  It really works in practice!

Although 6.02  1023  N20 is technically poly-time, it would be

useless in practice.

In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.

Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.

Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.

Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.
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Why It Matters
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Moore’s Law

The prediction that transistor density and hence the speed of

computers will double every 18 months or so.

Based on observation of 1960-- 1965

Has pretty much held for last 40 years

Does this provide disincentive to develop efficient (polynomial time)

algorithms?
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Moore’s Law

Does Moore’s Law provide disincentive to develop efficient (polynomial

time) algorithms?

NO!!

Running time of alg       Max input size       2x speedup        210x speedup

                                        in time T

Exponential algorithms make polynomially slow progress, while

polynomial algorithms advance exponentially fast!
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0  0

such that for all n  n0 we have T(n)  c · f(n).

Lower bounds.  T(n) is (f(n)) if there exist constants c > 0 and n0  0

such that for all n  n0 we have T(n)  c · f(n).

Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

Ex:   T(n) = 32n2 + 17n + 32.

T(n) is O(n2), O(n3), (n2), (n), and (n2) .

T(n) is not O(n), (n3), (n), or (n3).
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Grand challenge: Classify Problems According to Computational Requirements

Q.  Which problems will we be able to solve in practice?

A working definition.  [Cobham 1964, Edmonds 1965, Rabin 1966]

Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover
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Classify Problems

Desiderata.  Classify problems according to those that can be solved in

polynomial-time and those that cannot.

For any nice function T(n)

There are problems that require more than T(n) time to solve.

Frustrating news.  Huge number of fundamental problems have defied

classification for decades.

NP-completeness:  Show that these fundamental problems are

"computationally equivalent" and appear to be different manifestations

of one really hard problem.
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Polynomial-Time Reduction

Desiderata'.  Suppose we could solve X in polynomial-time. What else

could we solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary

instances of problem X can be solved using:

Polynomial number of standard computational steps, plus

Polynomial number of calls to oracle that solves problem Y.

Notation.  X  P Y.

Remarks.
We pay for time to write down instances sent to black box  

instances of Y must be of polynomial size.

Note:  Cook reducibility.

in contrast to Karp reductions
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X  P Y and Y can be solved in polynomial-time,

then X can also be solved in polynomial time.

Establish intractability.  If X  P Y and X cannot be solved in

polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction

Reduction By Simple Equivalence

Basic reduction strategies.

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.
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Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S  V such that |S|  k, and for each edge at most
one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.

Ex.  Is there an independent set of size  7?  No.

independent set
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S  V such that |S|  k, and for each edge, at least
one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.

Ex.  Is there a vertex cover of size  3?  No.

vertex cover
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.

Pf.  We show S is an independent set iff V  S is a vertex cover.

vertex cover

independent set
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.

Pf.  We show S is an independent set iff V  S is a vertex cover.

Let S be any independent set.

Consider an arbitrary edge (u, v).

S independent  u  S or v  S    u  V  S or v  V  S.

Thus, V  S covers (u, v).

Let V  S be any vertex cover.

Consider two nodes u  S and v  S.

Observe that (u, v)  E since V  S is a vertex cover.

Thus, no two nodes in S are joined by an edge   S independent set. 

Reduction from Special Case to General Case

Basic reduction strategies.

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.
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Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of  k of
these sets whose union is equal to U?

Sample application.

m available pieces of software.

Set U of n capabilities that we would like our system to have.

The ith piece of software provides the set Si  U of capabilities.

Goal:  achieve all n capabilities using fewest pieces of software.

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER  P SET-COVER.
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.

Create SET-COVER instance:

– k = k,  U = E,  Sv = {e  E : e incident to v }

Set-cover of size  k iff vertex cover of size  k.  

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 
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Polynomial-Time Reduction

Basic strategies.

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.

Reductions via "Gadgets"

Basic reduction strategies.

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction via "gadgets."
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Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional

formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  
C

j
= x1 x2 x3

  
x

i
  or  x

i

  
=  C1 C2 C3 C4

x1 x2 x3( ) x1 x2 x3( ) x2 x3( ) x1 x2 x3( )

each corresponds to a different variable
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT  P INDEPENDENT-SET.

Pf.  Given an instance  of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff  is

satisfiable.

Construction.
G contains 3 vertices for each clause, one for each literal.

Connect 3 literals in a clause in a triangle.

Connect literal to each of its negations.

  
x2

  
 =  x1 x2 x3( ) x1 x2 x3( ) x1 x2 x4( )

  
x3

  
x1

  
x1   

x2   
x4

  
x1  

x2

  
x3

k = 3

G
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = | | iff  is satisfiable.

Pf.    Let S be independent set of size k.

S must contain exactly one vertex in each triangle.

Set these literals to true.

Truth assignment is consistent and all clauses are satisfied.

Pf     Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k.  

  
x2   

x3

  
x1

  
x1   

x2   
x4

  
x1  

x2

  
x3

k = 3

G

and any other variables in a consistent way

  
 =  x1 x2 x3( ) x1 x2 x3( ) x1 x2 x4( )
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Review

Basic reduction strategies.

Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.

Special case to general case:  VERTEX-COVER  P SET-COVER.

Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

Transitivity.  If X  P Y and Y  P Z, then X  P Z.

Pf idea.  Compose the two algorithms.

Ex:  3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER.
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Self-Reducibility

Decision problem.  Does there exist a vertex cover of size   k?

Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem  P decision version.

Applies to all (NP-complete) problems we discuss.

Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.

(Binary) search for cardinality k* of min vertex cover.

Find a vertex v such that G  { v } has a vertex cover of size  k* - 1.

– any vertex in any min vertex cover will have this property

Include v in the vertex cover.

Recursively find a min vertex cover in G  { v }.

delete v and all incident edges

Definition of NP
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Decision Problems

Decision problem.

X is a set of strings (a language).

Instance:  string s.

Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string s,

A(s) terminates in at most p(|s|) "steps", where p( ) is some polynomial.

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm.  [Agrawal-Kayal-Saxena, 2002]   p(|s|) = |s|8.

length of s
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Definition of P

P.  Decision problems for which there is a poly-time algorithm.

51, 1651, 17
Grade school

division
Is x a multiple of y?MULTIPLE

34, 5134, 39Euclid (300 BCE)Are x and y relatively prime?RELPRIME

5153AKS (2002)Is x prime?PRIMES

acgggt

ttttta

niether

neither

Dynamic
programming

Is the edit distance between
x and y less than 5?

EDIT-
DISTANCE

Is there a vector x that
satisfies Ax = b?

Description

Gauss-Edmonds
elimination

Algorithm

LSOLVE

Problem NoYes

0 1 1

2 4 2

0 3 15
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NP

Certification algorithm intuition.

Certifier views things from "managerial" viewpoint.

Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,

s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p( ).

"certificate" or "witness"
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Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate

exists iff s is composite.  Moreover |t|  |s|.

Certifier.

Instance.  s = 437,669.

Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {

   if (t  1 or t  s)

      return false

   else if (s is a multiple of t)

      return true

   else

      return false

}
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Certifiers and Certificates:  3-Satisfiability

SAT.  Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.

x1 x2 x3( ) x1 x2 x3( ) x1 x2 x4( )  x1  x3  x4( )

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE.  Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly

once, and that there is an edge between each pair of adjacent nodes in

the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.

EXP.  Decision problems for which there is an exponential-time algorithm.

NP.  Decision problems for which there is a poly-time certifier.

Claim.  P    NP.

Pf.  Consider any problem X in P.

By definition, there exists a poly-time algorithm A(s) that solves X.

Certificate: t = , certifier C(s, t) = A(s).   

Claim.  NP    EXP.

Pf.  Consider any problem X in NP.

By definition, there exists a poly-time certifier C(s, t) for X.

To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

Return yes, if C(s, t) returns yes for any of these.   

38

The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse
economy)
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The Simpson's:  P = NP?

Copyright © 1990, Matt Groening
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Futurama:  P = NP?

Copyright © 2000, Twentieth Century Fox
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Looking for a Job?

Some writers for the Simpsons and Futurama.

J. Steward Burns.  M.S. in mathematics, Berkeley, 1993.

David X. Cohen.  M.S. in computer science, Berkeley, 1992.

Al Jean.  B.S. in mathematics, Harvard, 1981.

Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990.

Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989.

NP-Completeness
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Polynomial Transformation

Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary

instances of problem X can be solved using:

Polynomial number of standard computational steps, plus

Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial transforms (Karp) to problem Y if given any

input x to X, we can construct an input y such that x is a yes instance

of X iff y is a yes instance of Y.

Note.  Polynomial transformation is polynomial reduction with just one

call to oracle for Y, exactly at the end of the algorithm for X.  Almost

all previous reductions were of this form.

Open question.  Are these two concepts the same?

we require |y| to be of size polynomial in |x|

we abuse notation  p and blur distinction
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NP-Complete

NP-complete.  A problem Y in NP with the property that for every

problem X in NP, X  p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in

poly-time iff P = NP.

Pf.    If P = NP then Y can be solved in poly-time since Y is in NP.

Pf.    Suppose Y can be solved in poly-time.

Let X be any problem in NP.  Since X  p Y, we can solve X in

poly-time. This implies NP    P.

We already know P    NP. Thus P = NP.  

Fundamental question.  Do there exist "natural" NP-complete problems?

45

The "First" NP-Complete Problem

Theorem. SAT is NP-complete.  [Cook 1971, Levin 1973]

46

¬

1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?

47

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 1973]

Pf.  (sketch)

Any algorithm that takes a fixed number of bits n as input and

produces a yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

Consider some problem X in NP.  It has a poly-time certifier C(s, t).

To determine whether s is in X, need to know if there exists a

certificate t of length p(|s|) such that C(s, t) = yes.

View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t)

and convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

Circuit K is satisfiable iff C(s, t) = yes.

48

¬

u-v

1

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)

u-w

0

v-w

1

u

?

v

?

w

?

set of size 2?

both endpoints of some edge have been chosen?

independent set?

Example

Ex.  Construction below creates a circuit K whose inputs can be set so

that K outputs true iff graph G has an independent set of size 2.

u

v w

n

2

 

 
 

G = (V, E), n = 3
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Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

Step 1.  Show that Y is in NP.

Step 2.  Choose an NP-complete problem X.

Step 3.  Prove that X  p Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP

with the property that X  P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W   P   X    P   Y.

By transitivity, W  P  Y.

Hence Y is NP-complete.  
by assumptionby definition of

NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

Let K be any circuit.

Create a 3-SAT variable xi for each circuit element i.

Make circuit compute correct values at each node:

– x2 = ¬ x3        add 2 clauses:

– x1 = x4  x5     add 3 clauses:

– x0 = x1  x2     add 3 clauses:

Hard-coded input values and output value.

– x5 = 0    add 1 clause:

– x0 = 1    add 1 clause:

Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  

¬

0 ? ?

output

x0

x2x1

  
x2 x3  , x2 x3

x1 x4 , x1 x5  ,  x1 x4 x5

x0 x1 , x0 x2 , x0 x1 x2

x3x4x5

  
x5

  
x0

51

Observation.  All problems below are NP-complete and polynomial

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3D-MATCHING 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995]

Prime intellectual export of CS to other disciplines.

6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"

Broad applicability and classification power.

"Captures vast domains of computational, scientific, mathematical

endeavors, and seems to roughly delimit what mathematicians and

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

1926:  Ising introduces simple model for phase transitions.

1944:  Onsager solves 2D case in tour de force.

19xx:  Feynman and other top minds seek 3D solution.

2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.

Biology:  protein folding.

Chemical engineering:  heat exchanger network synthesis.

Civil engineering:  equilibrium of urban traffic flow.

Economics:  computation of arbitrage in financial markets with friction.

Electrical engineering:  VLSI layout.

Environmental engineering:  optimal placement of contaminant sensors.

Financial engineering:  find minimum risk portfolio of given return.

Game theory:  find Nash equilibrium that maximizes social welfare.

Genomics:  phylogeny reconstruction.

Mechanical engineering:  structure of turbulence in sheared flows.

Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

Operations research:  optimal resource allocation.

Physics:  partition function of 3-D Ising model in statistical mechanics.

Politics:  Shapley-Shubik voting power.

Pop culture:  Minesweeper consistency.

Statistics:  optimal experimental design.


