Randomized Complexity

Warmup with some simple puzzles showing the slippery nature of
probability.

= Two children: Each child is equally likely to be a boy or a girl. A family
has 2 children. One of them is a boy. What is the chance that the other
one is a boy?

(If the question said, the older one is a boy, then the answer would be
1/2)

= Monty Hall: Game show with 3 doors. One has a car behind it, the
other two have goats. You pick a random door, say # 1. Host then opens
another door, say #3 and reveals a goat. You are then offered the

ity of switching to door #2. Should you?

One more puzzle

Two envelopes: you have the choice between two envelopes containing
money. One envelope has twice as much as the other. You pick one. Then
you're asked if you want to switch.

Should you?

Some examples where randomness seems useful...

= Cryptography: if an eavesdropper can predict what you're going to do,
you've got a problem.

= Symmetry breaking: break up the “hallway dance” (useful in
distributed computing).

= Monte Carlo simulation

= Testing polynomial equality

= Database checking:

The key idea we just saw

= Random fingerprinting: find a small random "fingerprint” of a large
object. (e.g. value f(z) of a polynomial at a point z, in our first example).

= Example objects: strings, documents, data structures, etc.)
=The fingerprint captures essential information about the larger

object: if 2 large objects are different, their fingerprints are usually
different.

The big open question related o randomness

Do we need it?

Can we “derandomize” any randomized algorithm, Le. convert it into a
deterministic algorithm with roughly the same efficiency?

Randomized Complexity Classes

BPP -- Bounded Error Probabilistic Polynomial Time
Class of languages L for which there is a polynomial time algorithm
M(x.r) such that for all inputs x:
= If xinL, then M(x,r) accepts with probability at least 2/3
= If x not inL, then M(x,r) accepts with probability at most 1/3

Using probabilistic TM -- has a tape containing random bits “r".

= The numbers 1/3 and 2/3 don't matter so much, because we can
“amplify” the probability differences.

Randomized Complexity Classes

BPP -- Two-sided error

RP -- Randomized polynomial time
Class of languages L for which there

M(x,r) such that for all inputs x:

= If xinL, then M(x,r) accepts with probability at least 1/2

= If x not inL, then M(x,r) always rejects.

coRP (reverses the side of the error)

Some Relationships:
PC RP PC coRP PC BPP RP,coRPC BPP
RP C NP coRP C coNP BPP C PSPACE

BPP C NP ?22? We don't know.
We can't even rule out BPP=NEXP! But many think BPP = P!

a polynomial time algorithm

