
1

Database Management Systems
CSE 594

Lecture #1

April 4th, 2002

Staff
• Instructor: Alon Halevy

– Sieg, Room 310, alon@cs.washington.edu
– Office hours: Thursday before class
– or by appointment, email.

• TA: Maya Rodrig
– Sieg 226a, rodrig@cs.washington.edu
– Office hours: TBA

Communications
• Web page:

http://www.cs.washington.edu/594/

• Mailing list: send email to
majordomo@cs
saying (in body of email):
subscribe cse594

Goals of the Course
• Purpose:

– Principles of building database applications

– Foundations of database management systems.

– Issues in building database systems.

– Have fun: databases are not just bunches of
tuples.

– Not an introduction to the nitty gritty of any
specific commerical system.

Grading

• Paper homeworks: 30%
– Very little regurgitation.
– Meant to be challenging (I.e., fun).

• Programming project: 30%
– Work in pairs.
– Build a database application

• Final Exam: 30% (June 14th).
• Intangibles (e.g., participation): 10%

Textbook

• Database Systems: The Complete
Book, by Garcia-Molina, Ullman and
Widom, 2002

• Comments on the textbook.

2

Other Texts

• Database Management Systems,
Ramakrishnan
– very comprehensive

• Fundamentals of Database Systems,
Elmasri and Navathe
– very widely used

• Foundations of Databases,
Abiteboul, Hull and Vianu
– Mostly theory of databases

• Data on the Web,
Abiteboul,Buneman,Suciu
– XML and other new/advanced stuff

Available on reserve, at the library

Prerequisites Real Prerequisites

• Operating systems

• Data structures and
algorithms

• Distributed systems

• Complexity theory

• Mathematical Logic

• Knowledge
Representation

• User interface design

• Programming
languages

• Artificial Intelligence
(Search)

• Greek, Hebrew,
French

Why use a DBMS?
Suppose we are building a system to store the information

pertaining to the university.
Several questions arise:

• how do we store the data? (file organization, etc.)
• how do we query the data? (write programs…)
• make sure that updates don’t mess things up?
• Provide different views on the data? (registrar versus

students)
• how do we deal with crashes?

Way too complicated! Go buy a database system!

Functionality of a DBMS

• Persistent storage management
• Transaction management
• Resiliency: recovery from crashes.
• Separation between logical and physical views

of the data.
– High level query and data manipulation language.
– Efficient query processing

• Interface with programming languages

3

Bird’s Eye View of

• How to build a database application

• The different components of a database
system.

Building an Application with a
Database System

• Requirements modeling (conceptual, pictures)
– Decide what entities should be part of the application and how they

should be linked.

• Schema design and implementation
– Decide on a set of tables, attributes.

– Define the tables in the database system.

– Populate database (insert tuples).

• Write application programs using the DBMS
– way easier now that the data management is taken care of.

address name field

Professor

Advises

Takes

Teaches

Course
Student

name category

quarter

name

ssn

Conceptual
Modeling

cid

Schema Design and
Implementation

• Tables:

• Separates the logical view from the physical
view of the data.

SSN Name Category
123-45-6789 Charles undergrad
234-56-7890 Dan grad

� �

SSN CID
123-45-6789 CSE444
123-45-6789 CSE444
234-56-7890 CSE142

�

Students: Takes:

CID Name Quarter
CSE444 Databases fall
CSE541 Operating systems winter

Courses:

Querying a Database

• Find all courses that “Mary” takes

• S(tructured) Q(uery) L(anguage)

• Query processor figures out how to answer the
query efficiently.

select C.name
from Students S, Takes T, Courses C
where S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

select C.name
from Students S, Takes T, Courses C
where S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

Query optimizer

Execution engine

Index/record mgr.

Buffer manager

Storage manager

storage

User/
Application

Query
update

Query execution
plan

Record, index
requests

Page
commands

Read/write
pages

4

Storage Management

• Becomes a hard problem because of the
interaction with the other levels of the DBMS:
– What are we storing?

– Efficient indexing, single and multi-dimensional

– Exploit “semantic” knowledge

• Issue: interaction with the operating system.
Should we rely on the OS?

Query Optimization

Imperative query execution plan:

select C.name
from Students S, Takes T, Courses C
where S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

select C.name
from Students S, Takes T, Courses C
where S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

Declarative SQL query

Plan: tree of Relational Algebra operators,
choice of algorithms at each operator

Ideally: Want to find best plan. Practically: Avoid worst plans!

Goal:

Students Takes

sid=sid

sname

name=“Mary”

cid=cid

Courses

TP and Recovery

• For efficient use of resources, we want concurrent
access to data.

• Systems sometimes crash.
• A “real” database guarantees ACIDACID:

– Atomicity: all or nothing of a transaction.
– Consistency: always leave the DB consistent.
– Isolation: every transaction runs as if it’s the only one in

the system.
– Durability: if committed, we really mean it.

• Do we really want ACID?

ReviewsShippingOrdersInventoryBooks

mybooks.com Mediated Schema

West

...

FedEx

WAN

alt.books.
reviews

InternetInternet Internet

UPS

East Orders Customer
Reviews

NYTimes

...

Morgan-
Kaufman

Prentice-
Hall

Data Integration

Uniform query capability across autonomous,
heterogeneous data sources on LAN, WAN, or
Internet

XML: Semi-structured Data

– Emerging
format for
data
exchange on
the web and
between
applications.

<db>
<book>

<title>Complete Guide to DB2</title>
<author>Chamberlin</author>

</book>
<book>

<title>Transaction Processing</title>
<author>Bernstein</author>
<author>Newcomer</author>

</book>
<publisher>
<name>Morgan Kaufman</name>
<state>CA</state>

</publisher>
</db>

eXtensible Markup Language:

Traditional and Novel
Data Management

• Traditional Data Management:
– relational data for enterprise applications

– storage

– query processing/optimization

– transaction processing

• Novel Data Management:
– Integration of data from multiple databases, warehousing.

– Data management for decision support, data mining.

– Exchange of data on the web: XML.

5

The Study of DBMS

• Several aspects:
– Modeling and design of databases

– Database programming: querying and update
operations

– Database implementation

• DBMS study cuts across many fields of
Computer Science: OS, languages, AI,
Logic, multimedia, theory...

Database Industry

• Relational databases are a great success of
theoretical ideas.

• $20B industry.
• Main players: Oracle, IBM, MS, Sybase,

Informix
• Trends:

– warehousing and decision support
– data integration
– XML, XML, XML.

Course (Rough) Outline
• The basics: (quickly)

– Conceptual design
– The relational model
– SQL
– Views, integrity constraints

• XML
• Physical representation:

– Index structures.

Course Outline (cont)

• Query execution:
– Algorithms for joins, selections, projections.

• Query Optimization

• Data Integration

• semi-structured data

• Transaction processing and recovery (not
much, really)

Projects

• Goal: identify and solve a problem in database
systems.

• (almost) anything goes.
• Groups of 2-3
• Groups assembled end of week 2;
• Proposals, end of week 3.
• Specs – end of week 5
• End-to-end skeleton – end of week 7.
• Start Early.
• Be creative
• Demos on last week

Database Design

6

Building an Application with a
DBMS

• Requirements modeling (conceptual, pictures)
– Decide what entities should be part of the application and

how they should be linked.

• Schema design and implementation
– Decide on a set of tables, attributes.

– Define the tables in the database system.

– Populate database (insert tuples).

• Write application programs using the DBMS
– way easier now that the data management is taken care of.

Outline

• ODL - Object Definition Language (2.1)

• E/R - Entity relationship diagrams (2.2)

• Design Principles (2.3)

Database Design

• Why do we need it?
– Agree on structure of the database before

deciding on a particular implementation.

• Consider issues such as:
– What entities to model
– How entities are related
– What constraints exist in the domain
– How to achieve good designs

Database Design Formalisms
1. Object Definition Language (ODL):

– Closer in spirit to object-oriented models

2. Entity/Relationship model (E/R):
– More relational in nature.

• Both can be translated (semi-automatically) to
relational schemas

• ODL to OO-schema: direct transformation (C++
or Smalltalk based system).

1. Object Definition Language

• ODL is part of ODMG

• superset of Corba’s IDL

• Resembles C++ (and Smalltalk).

ODL Principles

• Basic design paradigm in ODL:
– Model objects and their properties.

• For abstraction purposes:
– Group objects into classes.

• What qualifies as a good class?
– Objects should have common properties.

7

ODL Class Declarations

Class declaration:

Methods: arbitrary function, of little concern for us here

Interface <name> {
attributes: <type> <name>;
relationships <range type> <name>;
methods <type> <name>(param)

}

Interface <name> {
attributes: <type> <name>;
relationships <range type> <name>;
methods <type> <name>(param)

}

ODL Example

Product

Person

Company

category

name

price

name
stockprice

name

address ssn

ODL Declarations

Interface Product {
attribute string name;
attribute float price;
attribute enum Categories

{electronics, communications, sports …} category
}

Interface Company {
attribute string name;
attribute float stockprice;
}

Interface Person {
attribute integer ssn;
attribute string name;
attribute struct Address {string street, string city} address; }

Interface Product {
attribute string name;
attribute float price;
attribute enum Categories

{electronics, communications, sports …} category
}

Interface Company {
attribute string name;
attribute float stockprice;
}

Interface Person {
attribute integer ssn;
attribute string name;
attribute struct Address {string street, string city} address; }

So far just simplified C++ with slightly different syntax

ODL Example Extended

Product

Person

Company

category

name

price

name
stockprice

name

address ssn

buys

worksFor

madeBy

ODL Declarations, Extended

Interface Product {
attribute string name;
attribute float price;
attribute enum Categories

{electronics, communications, sports …} category;
relationship <Company> madeBy;
}

Interface Person {
attribute integer ssn;
attribute string name;
attribute Struct Address {string street, string city} address;
relationship set <Product> buys;
relationship set <Company> worksFor;}

Interface Product {
attribute string name;
attribute float price;
attribute enum Categories

{electronics, communications, sports …} category;
relationship <Company> madeBy;
}

Interface Person {
attribute integer ssn;
attribute string name;
attribute Struct Address {string street, string city} address;
relationship set <Product> buys;
relationship set <Company> worksFor;}

relationship corresponds somewhat to pointers in C++

ODL Example, Extended Again

Product

Person

Company

category

name

price

name
stockprice

name

address ssn

buys

worksFor

madeBy

employs

makes

8

ODL Declarations, Extended
Again

Interface Company {
attribute string name;
attribute float stockprice;

relationship set <Product> makes
inverse Product::madeBy;

relationship set <Person> employs
inverse Person::worksFor;

}

Interface Company {
attribute string name;
attribute float stockprice;

relationship set <Product> makes
inverse Product::madeBy;

relationship set <Person> employs
inverse Person::worksFor;

}

Types in ODL
Basic types:

Atomic types (e.g., string, integer, …)
Interface types (e.g., Person, Product, Company)

Constructors:
collection types:

Set: {1, 5, 6}
Bag: {1, 1, 5, 6, 6 }
List: [1, 5, 6, 1, 6]
Array: integer[17]

structured types:
Struct {string street, string city, integer zipcode}

Collection Types
• Sets:

– order, number of occurrences don’t matter
– {4,7,9} = {7,9,7,4} = {9,4,7}

• Bags:
– number of occurrences matter, order not:
– {7,9,7,4}={7,7,9,4}, is different from {4,7,9}

• Lists:
– order, number of occurrences matter:
– [4,7,9] different from [9,4,7]

Allowable Types in ODL
For attributes: atomic/struct, or collection of atomic/struct

OK: string, set<integer>

Not OK: Product, set<set<integer>>

For relationships: interface, or collection of interface.

OK: Product, set<Product>, list<Person>

Not OK: struct {pname Product, cname Company}
set<bag<Product>>
integer

2. Entity / Relationship Diagrams

Objects entities
Classes entity sets

Attributes are like in ODL.

Relationships: like in ODL except

- first class citizens (not associated with classes)

- not necessarily binary

Product

address

buys

address name ssn

Person

buys

makes

employs

Company
Product

name category

stockprice

name

price

9

What is a Relation ?

• A mathematical definition:
– if A, B are sets, then a relation R is a subset of

A x B

• A={1,2,3}, B={a,b,c,d},
R = {(1,a), (1,c), (3,b)}

- makes is a subset of Product x Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

Multiplicity of E/R Relations

• one-one:

• many-one

• many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

Multi-way Relationships
How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

Can still model as a mathematical set (how ?)

Q: what do these arrow mean ?

A: store, person, invoice determines movie and
store, invoice, movie determines person

Rental

VideoStore

Person

Movie

Invoice

Arrows in Multiway
Relationships

Q: what do these arrow mean ?

A: store, invoice determines movie and store,
invoice determines person

Rental

VideoStore

Person

Movie

Invoice

Arrows in Multiway
Relationships

Q: how do I say: “invoice determines store” ?

A: no good way; best approximation:

Q: Why is this incomplete ?

Rental

VideoStore

Person

Movie

Invoice

Arrows in Multiway
Relationships

10

Roles in Relationships

Purchase

What if we need an entity set twice in one relationship?

Product

Person

Store

salesperson buyer

Attributes on Relationships

Purchase

Product

Person

Store

date

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

3. Design Principles

PurchaseProduct Person

What’s wrong?

President PersonCountry

Moral: be faithful!

Design Principles:
What’s Wrong?

Purchase

Product

Store

date

personNamepersonAddr

Moral: pick the right
kind of entities.

Design Principles:
What’s Wrong?

Purchase

Product

Person

Store

dateDates

Moral: don’t
complicate life more
than it already is.

