
1

Relational Schema Design (end)
Relational Algebra

SQL (maybe)
April 18th, 2002

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if and only if:

Whenever there is a nontrivial dependency
for R , it is the case that { }
a super-key for R.

A , A , … A
1 2 n

BA , A , … A
1 2 n

In English (though a bit vague):

Whenever a set of attributes of R is determining another attribute,
should determine all the attributes of R.

Example
Name SSN Phone Number

Fred 123-321-99 (201) 555-1234

Fred 123-321-99 (206) 572-4312
Joe 909-438-44 (908) 464-0028
Joe 909-438-44 (212) 555-4000

What are the dependencies?
SSN Name

What are the keys?

Is it in BCNF?

Decompose it into BCNF

SSN Name

123-321-99 Fred

909-438-44 Joe

SSN Phone Number

123-321-99 (201) 555-1234

123-321-99 (206) 572-4312
909-438-44 (908) 464-0028
909-438-44 (212) 555-4000

SSN Name

BCNF Decomposition

Find a dependency that violates the BCNF condition:

A , A , … A
1 2 n

B , B , … B1 2 m

A’sOthers B’s

R1 R2

Heuristics: choose B , B , … B “as large as possible”1 2 m

Decompose:

Find a
2-attribute
relation that is
not in BCNF.

Continue until
there are no
BCNF violations
left.

Correct Decompositions
A decomposition is lossless if we can recover:

R(A,B,C)

{ R1(A,B) , R2(A,C) }

R’(A,B,C) = R(A,B,C)

R’ is in general larger than R. Must ensure R’ = R

Decompose

Recover

2

Decomposition Based on BCNF
is Necessarily Lossless

R(A, B, C), A → C

BCNF: R1(A,B), R2(A,C)

Some tuple (a,b,c) in R (a,b’,c’) also in R
decomposes into (a,b) in R1 (a,b’) also in R1

and (a,c) in R2 (a,c’) also in R2

Recover tuples in R: (a,b,c), (a,b,c’), (a,b’,c), (a,b’,c’) also in R ?

Can (a,b,c’) be a bogus tuple? What about (a,b’,c’) ?

3NF: A Problem with BCNF
Unit Company Product

Unit Company

Unit Product

FD’s: Unit → Company; Company, Product → Unit
So, there is a BCNF violation, and we decompose.

Unit → Company

No FDs

So What’s the Problem?

Unit Company Product

Unit Company Unit Product

Galaga99 UW Galaga99 databases
Bingo UW Bingo databases

No problem so far. All local FD’s are satisfied.
Let’s put all the data back into a single table again:

Galaga99 UW databases
Bingo UW databases

Violates the dependency: company, product -> unit!

Solution: 3rd Normal Form
(3NF)

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if :

Whenever there is a nontrivial dependency A1, A2, ..., An → B
for R , then {A1, A2, ..., An } a super-key for R,
or B is part of a key.

A relation R is in 3rd normal form if :

Whenever there is a nontrivial dependency A1, A2, ..., An → B
for R , then {A1, A2, ..., An } a super-key for R,
or B is part of a key.

Multi-valued Dependencies

SSN Phone Number Course

123-321-99 (206) 572-4312 CSE-444
123-321-99 (206) 572-4312 CSE-341
123-321-99 (206) 432-8954 CSE-444
123-321-99 (206) 432-8954 CSE-341

The multi-valued dependencies are:

SSN Phone Number
SSN Course

Definition of Multi-valued
Dependecy

Given R(A1,…,An,B1,…,Bm,C1,…,Cp)

the MVD A1,…,An B1,…,Bm holds if:

for any values of A1,…,An
the “set of values” of B1,…,Bm
is “independent” of those of C1,…Cp

Given R(A1,…,An,B1,…,Bm,C1,…,Cp)

the MVD A1,…,An B1,…,Bm holds if:

for any values of A1,…,An
the “set of values” of B1,…,Bm
is “independent” of those of C1,…Cp

3

Definition of MVDs Continued

Equivalently: the decomposition into

R1(A1,…,An,B1,…,Bm), R2(A1,…,An,C1,…,Cp)

is lossless

Note: an MVD A1,…,An B1,…,Bm

Implicitly talks about “the other” attributes C1,…Cp

Rules for MVDs

If A1,…An B1,…,Bm

then A1,…,An B1,…,Bm

Other rules in the book

4th Normal Form (4NF)

R is in 4NF if whenever:

A1,…,An B1,…,Bm

is a nontrivial MVD,
then A1,…,An is a superkey

R is in 4NF if whenever:

A1,…,An B1,…,Bm

is a nontrivial MVD,
then A1,…,An is a superkey

Same as BCNF with FDs replaced by MVDs

Confused by Normal Forms ?

3NF

BCNF

4NF

If a database doesn’t violate 4NF (BCNF) then it
doesn’t violate BCNF (3NF) !

Querying the Database

Querying the Database

• Find all the employees who earn more than
$50,000 and pay taxes in New Jersey.

• We don’t want to write a program for each
query.

• We design high-level query languages:
– SQL (used everywhere)

– Datalog (used by database theoreticians, their
students, friends and family)

– Relational algebra: a basic set of operations on
relations that provide the basic principles.

4

Relational Algebra at a Glance
• Operators: relations as input, new relation as output
• Five basic RA operators:

– Basic Set Operators
• union, difference (no intersection, no complement)

– Selection: σ
– Projection: π
– Cartesian Product: X

• Derived operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)

• When our relations have attribute names:
– Renaming: ρ

Set Operations

• Binary operations

• Union, difference, intersection
– Intersection can be expressed in other ways

Set Operations: Union

• Union: all tuples in R1 or R2

• Notation: R1 U R2

• R1, R2 must have the same schema

• R1 U R2 has the same schema as R1, R2

• Example:
– ActiveEmployees U RetiredEmployees

Set Operations: Difference

• Difference: all tuples in R1 and not in R2

• Notation: R1 – R2

• R1, R2 must have the same schema

• R1 - R2 has the same schema as R1, R2

• Example
– AllEmployees - RetiredEmployees

Set Operations: Intersection

• Intersection: all tuples both in R1 and in R2

• Notation: R1 R2

• R1, R2 must have the same schema

• R1 R2 has the same schema as R1, R2

• Example
– UnionizedEmployees RetiredEmployees

I

I

I

Selection

• Returns all tuples which satisfy a condition

• Notation: σc(R)

• c is a condition: =, <, >, and, or, not

• Output schema: same as input schema

• Find all employees with salary more than
$40,000:
– σSalary > 40000 (Employee)

5

Selection Example

Employee
SSN Name DepartmentID Salary
999999999 John 1 30,000
777777777 Tony 1 32,000
888888888 Alice 2 45,000

SSN Name DepartmentID Salary
888888888 Alice 2 45,000

Find all employees with salary more than $40,000.
σ Salary > 40000 (Employee)

Projection
• Unary operation: returns certain columns
• Eliminates duplicate tuples !
• Notation: Π A1,…,An (R)
• Input schema R(B1,…,Bm)
• Condition: {A1, …, An} {B1, …, Bm}
• Output schema S(A1,…,An)
• Example: project social-security number and

names:
– Π SSN, Name (Employee)

⊆

Projection Example

Employee
SSN Name DepartmentID Salary
999999999 John 1 30,000
777777777 Tony 1 32,000
888888888 Alice 2 45,000

SSN Name
999999999 John
777777777 Tony
888888888 Alice

ΠΠΠΠ SSN, Name (Employee)

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Notation: R1 x R2

• Input schemas R1(A1,…,An), R2(B1,…,Bm)

• Condition: {A1,…,An} {B1,…Bm} = Φ
• Output schema is S(A1, …, An, B1, …, Bm)

• Notation: R1 x R2

• Example: Employee x Dependents
• Very rare in practice; but joins are very common

I

Cartesian Product Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
EmployeeSSN Dname
999999999 Emily
777777777 Joe

Employee x Dependents
Name SSN EmployeeSSN Dname
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Renaming

• Does not change the relational instance

• Changes the relational schema only

• Notation: ρ B1,…,Bn (R)

• Input schema: R(A1, …, An)

• Output schema: S(B1, …, Bn)

• Example:

ρLastName, SocSecNo (Employee)

6

Renaming Example

Employee
Name SSN
John 999999999
Tony 777777777

LastName SocSecNo
John 999999999
Tony 777777777

ρLastName, SocSecNo (Employee)

Derived Operations

• Intersection is derived:
– R1 R2 = R1 – (R1 – R2) why ?

– There is another way to express it (later)

• Most importantly: joins, in many variants

I

Natural Join
• Notation: R1 R2

• Input Schema: R1(A1, …, An), R2(B1, …, Bm)

• Output Schema: S(C1,…,Cp)
– Where {C1, …, Cp} = {A1, …, An} U {B1, …, Bm}

• Meaning: combine all pairs of tuples in R1 and R2
that agree on the attributes:
– {A1,…,An} {B1,…, Bm} (called the join attributes)

• Equivalent to a cross product followed by selection

• Example Employee Dependents

I

Natural Join Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
SSN Dname
999999999 Emily
777777777 Joe

Name SSN Dname
John 999999999 Emily
Tony 777777777 Joe

Employee Dependents =
ΠName, SSN, Dname(σ SSN=SSN2(Employee x ρSSN2, Dname(Dependents))

Natural Join

• R= S=

• R S=

VZ

ZY

ZX

YX

BA

VZ

WV

UZ

CB

WVZ

VZY

UZY

VZX

UZX

CBA

Natural Join

• Given the schemas R(A, B, C, D), S(A, C, E),
what is the schema of R S ?

• Given R(A, B, C), S(D, E), what is R S ?

• Given R(A, B), S(A, B), what is R S ?

7

Theta Join

• A join that involves a predicate

• Notation: R1 θ R2 where θ is a condition

• Input schemas: R1(A1,…,An), R2(B1,…,Bm)

• Output schema: S(A1,…,An,B1,…,Bm)

• It’s a derived operator:

R1 θ R2 = σ θ (R1 x R2)

Equi-join

• Most frequently used in practice:

R1 Α=Β R2

• Natural join is a particular case of equi-join

• A lot of research on how to do it efficiently

Semi-join

• R S = Π A1,…,An (R S)

• Where the schemas are:
– Input: R(A1,…An), S(B1,…,Bm)

– Output: T(A1,…,An)

Semi-join

Applications in distributed databases:

• Product(pid, cid, pname, ...) at site 1

• Company(cid, cname, ...) at site 2

• Query: σprice>1000(Product) cid=cid Company

• Compute as follows:
T1 = σprice>1000(Product) site 1
T2 = Pcid(T1) site 1
send T2 to site 2 (T2 smaller than T1)
T3 = T2 Company site 2 (semijoin)
send T3 to site 1 (T3 smaller than Company)
Answer = T3 T1 site 1 (semijoin)

Relational Algebra

• Five basic operators, many derived

• Combine operators in order to construct
queries: relational algebra expressions,
usually shown as trees

Complex Queries

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, stock price, country)
Person(ssn, name, phone number, city)

Note:
•in Purchase: buyer-ssn, seller-ssn are foreign keys in Person, pid is foreign key in
Product;
•in Product maker-cid is a foreign key in Company

Find phone numbers of people who bought gizmos from Fred.

Find telephony products that somebody bought

8

Exercises

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, stock price, country)
Person(ssn, name, phone number, city)

Ex #1: Find people who bought telephony products.
Ex #2: Find names of people who bought American products
Ex #3: Find names of people who bought American products and did

not buy French products
Ex #4: Find names of people who bought American products and they

live in Seattle.
Ex #5: Find people who bought stuff from Joe or bought products

from a company whose stock prices is more than $50.

Operations on Bags
(and why we care)

• Union: {a,b,b,c} U {a,b,b,b,e,f,f} = {a,a,b,b,b,b,b,c,e,f,f}
– add the number of occurrences

• Difference: {a,b,b,b,c,c} – {b,c,c,c,d} = {a,b,b,d}
– subtract the number of occurrences

• Intersection: {a,b,b,b,c,c} {b,b,c,c,c,c,d} = {b,b,c,c}
– minimum of the two numbers of occurrences

• Selection: preserve the number of occurrences

• Projection: preserve the number of occurrences (no
duplicate elimination)

• Cartesian product, join: no duplicate elimination

Reading assignment: 5.3

Summary of Relational Algebra

• Why bother ? Can write any RA expression
directly in C++/Java, seems easy.

• Two reasons:
– Each operator admits sophisticated

implementations (think of , σ C)
– Expressions in relational algebra can be

rewritten: optimized

Glimpse Ahead: Efficient
Implementations of Operators

• σ(age >= 30 AND age <= 35)(Employees)
– Method 1: scan the file, test each employee
– Method 2: use an index on age
– Which one is better ? Well, depends…

• Employees Relatives
– Iterate over Employees, then over Relatives
– Iterate over Relatives, then over Employees
– Sort Employees, Relatives, do “merge-join”
– “hash-join”
– etc

Glimpse Ahead: Optimizations

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Person(ssn, name, phone number, city)

• Which is better:
σprice>100(Product) (Purchase σcity=seaPerson)

(σprice>100(Product) Purchase) σcity=seaPerson

• Depends ! This is the optimizer’s job…

Finally: RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!! Need to write C program

SisterLouNancy

SpouseBillMary

CousinJoeMary

FatherMaryFred

RelationshipName2Name1

9

Outline

• Simple Queries in SQL (6.1)

• Queries with more than one relation (6.2)

• Subqueries (6.3)

• Duplicates (6.4)

SQL Introduction
Standard language for querying and manipulating data

Structured Query Language

Many standards out there: SQL92, SQL2, SQL3, SQL99
Vendors support various subsets of these, but all of what we’ll
be talking about.

SQL Introduction

Basic form: (many many more bells and whistles in addition)

Select attributes
From relations (possibly multiple, joined)
Where conditions (selections)

Select attributes
From relations (possibly multiple, joined)
Where conditions (selections)

Selections

Company(sticker, name, country, stockPrice)

Find all US companies whose stock is > 50:

Output schema: R(sticker, name, country, stockPrice)

SELECT *
FROM Company
WHERE country=“USA” AND stockPrice > 50

SELECT *
FROM Company
WHERE country=“USA” AND stockPrice > 50

Selections

What you can use in WHERE:
attribute names of the relation(s) used in the FROM.
comparison operators: =, <>, <, >, <=, >=
apply arithmetic operations: stockprice*2
operations on strings (e.g., “||” for concatenation).
Lexicographic order on strings.
Pattern matching: s LIKE p
Special stuff for comparing dates and times.

The LIKE operator

• s LIKE p: pattern matching on strings

• p may contain two special symbols:
– % = any sequence of characters

– _ = any single character

Company(sticker, name, address, country, stockPrice)
Find all US companies whose address contains “Mountain”:

SELECT *
FROM Company
WHERE country=“USA” AND

address LIKE “%Mountain%”

SELECT *
FROM Company
WHERE country=“USA” AND

address LIKE “%Mountain%”

10

Projections

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50

Select only a subset of the attributes

Input schema: Company(sticker, name, country, stockPrice)
Output schema: R(name, stock price)

Rename the attributes in the resulting table

Input schema: Company(sticker, name, country, stockPrice)
Output schema: R(company, price)

Projections

SELECT name AS company, stockprice AS price
FROM Company
WHERE country=“USA” AND stockPrice > 50

SELECT name AS company, stockprice AS price
FROM Company
WHERE country=“USA” AND stockPrice > 50

Ordering the Results

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50
ORDERBY country, name

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50
ORDERBY country, name

Ordering is ascending, unless you specify the DESC keyword.

Ties are broken by the second attribute on the ORDERBY list, etc.

Joins
Product (pname, price, category, maker)
Purchase (buyer, seller, store, product)
Company (cname, stockPrice, country)
Person(pname, phoneNumber, city)

Find names of people living in Seattle that bought gizmo
products, and the names of the stores they bought from

SELECT pname, store
FROM Person, Purchase
WHERE pname=buyer AND city=“Seattle”

AND product=“gizmo”

SELECT pname, store
FROM Person, Purchase
WHERE pname=buyer AND city=“Seattle”

AND product=“gizmo”

Disambiguating Attributes

Product (name, price, category, maker)
Purchase (buyer, seller, store, product)
Person(name, phoneNumber, city)

Find names of people buying telephony products:

SELECT Person.name
FROM Person, Purchase, Product
WHERE Person.name=Purchase.buyer

AND Product=Product.name
AND Product.category=“telephony”

SELECT Person.name
FROM Person, Purchase, Product
WHERE Person.name=Purchase.buyer

AND Product=Product.name
AND Product.category=“telephony”

Tuple Variables

SELECT product1.maker, product2.maker
FROM Product AS product1, Product AS product2
WHERE product1.category=product2.category

AND product1.maker <> product2.maker

SELECT product1.maker, product2.maker
FROM Product AS product1, Product AS product2
WHERE product1.category=product2.category

AND product1.maker <> product2.maker

Find pairs of companies making products in the same category

Product (name, price, category, maker)

11

Tuple Variables
Tuple variables introduced automatically by the system:

Product (name, price, category, maker)

Becomes:

Doesn’t work when Product occurs more than once:
In that case the user needs to define variables explicitely.

SELECT name
FROM Product
WHERE price > 100

SELECT name
FROM Product
WHERE price > 100

SELECT Product.name
FROM Product AS Product
WHERE Product.price > 100

SELECT Product.name
FROM Product AS Product
WHERE Product.price > 100

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

1. Nested loops:

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer U {(a1,…,ak)
return Answer

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer U {(a1,…,ak)
return Answer

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

2. Parallel assignment

Doesn’t impose any order !
Like Datalog

Answer = {}
for all assignments x1 in R1, …, xn in Rn do

if Conditions then Answer = Answer U {(a1,…,ak)}
return Answer

Answer = {}
for all assignments x1 in R1, …, xn in Rn do

if Conditions then Answer = Answer U {(a1,…,ak)}
return Answer

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

3. Translation to Datalog: one rule

Answer(a1,…,ak) ← R1(x11,…,x1p),…,Rn(xn1,…,xnp), ConditionsAnswer(a1,…,ak) ← R1(x11,…,x1p),…,Rn(xn1,…,xnp), Conditions

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

4. Translation to Relational algebra:

Π a1,…,ak (σ Conditions (R1 x R2 x … x Rn))

Select-From-Where queries are precisely Select-Project-Join

First Unintuitive SQLism
SELECT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

Looking for R (S T)

But what happens if T is empty?

∩ ∪

12

Union, Intersection, Difference
(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
You must have the same attribute names (otherwise: rename).

Exercises

Product (pname, price, category, maker)
Purchase (buyer, seller, store, product)
Company (cname, stock price, country)
Person(per-name, phone number, city)

Ex #1: Find people who bought telephony products.
Ex #2: Find names of people who bought American products
Ex #3: Find names of people who bought American products and did

not buy French products
Ex #4: Find names of people who bought American products and they

live in Seattle.
Ex #5: Find people who bought stuff from Joe or bought products

from a company whose stock prices is more than $50.

Subqueries

A subquery producing a single tuple:

SELECT Purchase.product
FROM Purchase
WHERE buyer =

(SELECT name
FROM Person
WHERE ssn = “123456789”);

In this case, the subquery returns one value.

If it returns more, it’s a run-time error.

Can say the same thing without a subquery:

SELECT Purchase.product
FROM Purchase, Person
WHERE buyer = name AND ssn = “123456789”

Is this query equivalent to the previous one ?

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND Product.name IN
(SELECT product

FROM Purchase
WHERE buyer = “Joe Blow”);

Here the subquery returns a set of values

Find companies who manufacture products bought by Joe Blow.

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name=maker

AND Product.name = product
AND buyer = “Joe Blow”

Equivalent to:

Is this query equivalent to the previous one ?

13

Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=“Gizmo-Works”)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
s > ANY R
EXISTS R

Question for Database Fans and
their Friends

• Can we express this query as a single SELECT-
FROM-WHERE query, without subqueries ?

• Hint: show that all SFW queries are monotone
(figure out what this means). A query with ALL
is not monotone

Conditions on Tuples

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)

FROM Purchase
WHERE buyer = “Joe Blow”);

Correlated Queries

SELECT title
FROM Movie AS x
WHERE year < ANY

(SELECT year
FROM Movie
WHERE title = x.title);

Movie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

Complex Correlated Query

Product (pname, price, category, maker, year)

• Find products (and their manufacturers) that are more
expensive than all products made by the same
manufacturer before 1972

SELECT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

Powerful, but much harder to optimize !

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)

FROM Purchase
WHERE buyer = “Joe Blow”);

14

Conserving Duplicates

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

The UNION, INTERSECTION and EXCEPT operators
operate as sets, not bags.

