
1

SQL

April 25th, 2002

Agenda

• Grouping and aggregation

• Sub-queries

• Updating the database

• Views

• More on views

Union, Intersection, Difference
(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
You must have the same attribute names (otherwise: rename).

Aggregation

SELECT Sum(price)
FROM Product
WHERE maker=“Toyota”

SELECT Sum(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

SUM, MIN, MAX, AVG, COUNT

Aggregation: Count

SELECT Count(*)
FROM Product
WHERE year > 1995

SELECT Count(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations apply to a single attribute

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(name, category) same as Count(*)
FROM Product
WHERE year > 1995

Better:

SELECT Count(DISTINCT name, category)
FROM Product
WHERE year > 1995

2

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price * quantity)
FROM Purchase

Example 1’: find total sales of bagels

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

Simple Aggregations

Product Date Price Quantity

Bagel 10/21 0.85 15

Banana 10/22 0.52 7

Banana 10/19 0.52 17

Bagel 10/20 0.85 20

Grouping and Aggregation
Usually, we want aggregations on certain parts of the relation.

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

Grouping and Aggregation

1. Compute the relation (I.e., the FROM and WHERE).
2. Group by the attributes in the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

First compute the relation (date > “9/1”) then
group by product:

Product Date Price Quantity

Banana 10/19 0.52 17

Banana 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

Then, aggregate

Product TotalSales

Bagel $29.75

Banana $12.48

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

3

Another Example

SELECT product, Sum(price * quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

For every product, what is the total sales and max quantity sold?

Product SumSales MaxQuantity

Banana $12.48 17

Bagel $29.75 20

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > “9/1”
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

Evaluation steps:
1. Compute the FROM-WHERE part, obtain a table with all attributes

in R1,…,Rn

2. Group by the attributes a1,…,ak

3. Compute the aggregates in C2 and keep only groups satisfying C2
4. Compute aggregates in S and return the result

Aggregation

Author(login,name)

Document(url, title)

Wrote(login,url)

Mentions(url,word)

• Find all authors who wrote at least 10
documents:

Select author.name
From author, wrote
Where author.login=wrote.login
Groupby author.name
Having count(wrote.url) > 10

Select author.name
From author, wrote
Where author.login=wrote.login
Groupby author.name
Having count(wrote.url) > 10

4

• Find all authors who have a vocabulary over
10000:

Select author.name
From author, wrote, mentions
Where author.login=wrote.login and wrote.url=mentions.url
Groupby author.name
Having count(distinct mentions.word) > 10000

Select author.name
From author, wrote, mentions
Where author.login=wrote.login and wrote.url=mentions.url
Groupby author.name
Having count(distinct mentions.word) > 10000

Exercises

Product (pname, price, category, maker)
Purchase (buyer, seller, store, product)
Company (cname, stock price, country)
Person(per-name, phone number, city)

Ex #1: Find people who bought telephony products.
Ex #2: Find names of people who bought American products
Ex #3: Find names of people who bought American products and did

not buy French products
Ex #4: How much money did Fred spend on purchases?
Ex #5: What is the number and sum of the product sales by country
of origin?

Subqueries

A subquery producing a single tuple:

SELECT Purchase.product
FROM Purchase
WHERE buyer =

(SELECT name
FROM Person
WHERE ssn = “123456789”);

In this case, the subquery returns one value.

If it returns more, it’s a run-time error.

Can we express this query without a subquery?

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND Product.name IN
(SELECT product

FROM Purchase
WHERE buyer = “Joe Blow”);

Here the subquery returns a set of values

Find companies who manufacture products bought by Joe Blow.

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name=maker

AND Product.name = product
AND buyer = “Joe Blow”

Equivalent to:

Is this query equivalent to the previous one ?

Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=“Gizmo-Works”)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
s > ANY R
EXISTS R

5

Question for Database Fans and
their Friends

• Can we express this query as a single SELECT-
FROM-WHERE query, without subqueries ?

• Hint: show that all SFW queries are monotone
(figure out what this means). A query with ALL
is not monotone

Conditions on Tuples

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)

FROM Purchase
WHERE buyer = “Joe Smith”);

Correlated Queries

SELECT title
FROM Movie AS x
WHERE year < ANY

(SELECT year
FROM Movie
WHERE title = x.title);

Movie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

Complex Correlated Query

Product (pname, price, category, maker, year)

• Find products (and their manufacturers) that are more
expensive than all products made by the same
manufacturer before 1972

SELECT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

Powerful, but much harder to optimize !

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)

FROM Purchase
WHERE buyer = “Joe Blow”);

Conserving Duplicates

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

The UNION, INTERSECTION and EXCEPT operators
operate as sets, not bags.

6

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

Insertions
General form:

Missing attribute → NULL.
May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

Insertion: an Example

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

gadgets100gizmo

categorylistPricename

225Smithcamera

80Smithgizmo

200Johncamera

pricebuyerNameprodName

Task: insert in Product all prodNames from Purchase

Product

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Purchase

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

--camera

Gadgets100gizmo

categorylistPricename

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

-225 ??camera ??

-200camera

Gadgets100gizmo

categorylistPricename

Depends on the implementation

7

Deletions

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

Example:

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition: defining the schema.

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

Data Types in SQL

• Character strings (fixed of varying length)
• Bit strings (fixed or varying length)
• Integer (SHORTINT)
• Floating point
• Dates and times

Domains (=types) will be used in table declarations.

To reuse domains:
CREATE DOMAIN address AS VARCHAR(55)

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

Example:

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Altering: (adding or removing an attribute).

What happens when you make changes to the schema?

Example:

DROP Person;DROP Person;Example:

8

Default Values

Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

The default of defaults: NULL

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

Sequential scan of the file Person may take long

SELECT *
FROM Person
WHERE name = “Smith”

SELECT *
FROM Person
WHERE name = “Smith”

• Create an index on name:

• B+ trees have fan-out of 100s: max 4 levels !

Indexes

Smith ….….CharlesBettyAdam

Creating Indexes

CREATE INDEX nameIndex ON Person(name)CREATE INDEX nameIndex ON Person(name)

Syntax:

Creating Indexes
Indexes can be created on more than one attribute:

CREATE INDEX doubleindex ON
Person (age, city)

CREATE INDEX doubleindex ON
Person (age, city)

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT *
FROM Person
WHERE city = “Seattle”

SELECT *
FROM Person
WHERE city = “Seattle”

Helps in:

But not in:

Example:

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

Why not create indexes on everything?

CREATE INDEX ageIndex ON Person (age)CREATE INDEX ageIndex ON Person (age)

SELECT *
FROM Person
WHERE age > 25 AND age < 28

SELECT *
FROM Person
WHERE age > 25 AND age < 28

9

Defining Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

A Different View
Person(name, city)
Purchase(buyer, seller, product, store)
Product(name, maker, category)

We have a new virtual table:
Seattle-view(buyer, seller, product, store)

CREATE VIEW Seattle-view AS

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

CREATE VIEW Seattle-view AS

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

A Different View

SELECT name, store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

SELECT name, store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

We can later use the view:

What Happens When We Query
a View ?

SELECT name, Seattle-view.store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

SELECT name, Seattle-view.store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

SELECT name, Purchase.store
FROM Person, Purchase, Product
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer AND
Purchase.product = Product.name AND
Product.category = “shoes”

SELECT name, Purchase.store
FROM Person, Purchase, Product
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer AND
Purchase.product = Product.name AND
Product.category = “shoes”

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Used in data warehouses (but recently also in

DBMS)
– Precomputed offline – fast at runtime
– May have stale data

Updating Views
How can I insert a tuple into a table that doesn’t exist?

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

INSERT INTO Developers
VALUES(“Joe”, “Optimizer”)

INSERT INTO Developers
VALUES(“Joe”, “Optimizer”)

INSERT INTO Employee
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

INSERT INTO Employee
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

If we make the
following insertion:

It becomes:

10

Non-Updatable Views

CREATE VIEW Seattle-view AS

SELECT seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

CREATE VIEW Seattle-view AS

SELECT seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

How can we add the following tuple to the view?

(“Joe”, “Shoe Model 12345”, “Nine West”)

What do we put in the Person.name and Purchase.buyer columns?

Answering Queries Using Views

• What if we want to use a set of views to
answer a query.

• Why?
– The obvious reason…

– Answering queries over web data sources.

• Very cool stuff! (i.e., I did a lot of research
on this).

Reusing a Materialized View
• Suppose I have only the result of SeattleView:

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer

• and I want to answer the query
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer AND
Purchase.product=‘gizmo’.

Then, I can rewrite the query using the view.

Query Rewriting Using Views

Rewritten query:
SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Original query:
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer AND
Purchase.product=‘gizmo’.

Another Example
• I still have only the result of SeattleView:

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer

• but I want to answer the query
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer AND
Person.Phone LIKE ‘206 543 %’.

And Now?
• I still have only the result of SeattleView:

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer

• but I want to answer the query
SELECT buyer, seller
FROM Person, Purchase, Product
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer AND
Person.Phone LIKE ‘206 543 %’ AND
Purchase.product = Product.name.

11

And Now?
• I still have only the result of:

SELECT seller, buyer, Sum(Price)
FROM Purchase
WHERE Purchase.store = ‘The Bon’
Group By seller, buyer

• but I want to answer the query
SELECT seller, Sum(Price)
FROM Purchase
WHERE Person.store = ‘The Bon’
Group By seller

And what if it’s the other way around?

Finally…
• I still have only the result of:

SELECT seller, buyer, Count(*)
FROM Purchase
WHERE Purchase.store = ‘The Bon’
Group By seller, buyer

• but I want to answer the query
SELECT seller, Count(*)
FROM Purchase
WHERE Person.store = ‘The Bon’
Group By seller

The General Problem

• Given a set of views V1,…,Vn, and a query
Q, can we answer Q using only the answers to
V1,…,Vn?

• Why do we care?
– We can answer queries more efficiently.

– We can query data sources on the WWW in a
principled manner.

• Many, many papers on this problem.

• The best performing algorithm: The MiniCon
Algorithm, (Pottinger & (Ha)Levy, 2000).

Querying the WWW
• Assume a virtual schema of the WWW,

e.g.,
– Course(number, university, title, prof, quarter)

• Every data source on the web contains the
answer to a view over the virtual schema:

UW database: SELECT number, title, prof
FROM Course
WHERE univ=‘UW’ AND quarter=‘2/02’

Stanford database: SELECT number, title, prof, quarter
FROM Course
WHERE univ=‘Stanford’

User query: find all professors who teach “database systems”

Null Values and Outerjoins

• If x=Null then 4*(3-x)/7 is still NULL

• If x=Null then x=“Joe” is UNKNOWN

• Three boolean values:
– FALSE = 0

– UNKNOWN = 0.5

– TRUE = 1

Null Values and Outerjoins

• C1 AND C2 = min(C1, C2)
• C1 OR C2 = max(C1, C2)
• NOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

Rule in SQL: include only tuples that yield TRUE

12

Null Values and Outerjoins

Unexpected behavior:

SELECT *

FROM Person

WHERE age < 25 OR age >= 25

Some Persons are not included !

Null Values and Outerjoins

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

Now it includes all Persons

Null Values and Outerjoins
Explicit joins in SQL:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Same as:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !

Null Values and Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store

FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

-OneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase
Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if

there’s no match

13

SQL: Constraints and Triggers

• Chapter 6 Ullman and Widom
• Certain properties we’d like our database to

hold
• Modification of the database may break

these properties
• Build handlers into the database definition
• Key constraints
• Referential integrity constraints.

Declaring a Primary Keys in SQL

CREATE TABLE MovieStar (

name CHAR(30) PRIMARY KEY,

address VARCHAR(255),

gender CHAR(1));

OR:
CREATE TABLE MovieStar (

name CHAR(30),

address VARCHAR(255),

gender CHAR(1)

PRIMARY KEY (name));

Primary Keys with Multiple
Attributes

CREATE TABLE MovieStar (

name CHAR(30),

address VARCHAR(255),

gender CHAR(1),

PRIMARY KEY (name, address));

Other Keys

CREATE TABLE MovieStar (

name CHAR(30),

address VARCHAR(255),

phone CHAR(10) UNIQUE,

gender CHAR(1),

petName CHAR(50),

PRIMARY KEY (name),

UNIQUE (gender, petName));

Foreign Key Constraints

CREATE TABLE ActedIn (

Name CHAR(30) PRIMARY KEY,

MovieName CHAR(30)

REFERENCES Movies(MovieName),

Year INT);

Foreign Key Constraints

• OR
CREATE TABLE ActedIn (

Name CHAR(30) PRIMARY KEY,

MovieName CHAR(30),

Year INT,

FOREIGN KEY MovieName

REFERENCES Movies(MovieName)

• MovieName must be a PRIMARY KEY

14

How do we Maintain them?

• Given a change to DB, there are several
possible violations:
– Insert new tuple with bogus foreign key value

– Update a tuple to a bogus foreign key value

– Delete a tuple in the referenced table with the
referenced foreign key value

– Update a tuple in the referenced table that
changes the referenced foreign key value

How to Maintain?
• Recall, ActedIn has FK MovieName...

Movies(MovieName, year)

(Fatal Attraction, 1987)

ActedIn(ActorName, MovieName)

(Michael Douglas, Fatal Attraction)

insert: (Rick Moranis, Strange Brew)

How to Maintain?
• Policies for handling the change…

– Reject the update (default)

– Cascade (example: cascading deletes)

– Set NULL

• Can set update and delete actions
independently in CREATE TABLE

MovieName CHAR(30)

REFERENCES Movies(MovieName))

ON DELETE SET NULL

ON UPDATE CASCADE

