SQL

April 25t 2002

Agenda

* Grouping and aggregation
* Sub-queries

 Updating the database

* Views

* Moreon views

Union, Intersection, Difference

(SELECT name
FROM Person
WHERE City="Seaitl€e")

UNION
(SELECT name

FROM Person, Purchase
WHERE buyer=name AND store=“The Bon")

Similarly, you can use INTERSECT and EXCEPT.
Y ou must have the same attribute names (otherwise: rename).

Aggregation

SELECT Sum(price)
FROM Product
WHERE maker="Toyota’

SQL supports severa aggregation operations:

SUM, MIN, MAX, AVG, COUNT

Aggregation: Count

SELECT Count(*)
FROM Product
WHERE year > 1995

Except COUNT, al aggregations apply to asingle atribute

Aggregation: Count

COUNT appliesto duplicates, unless otherwise stated:

SELECT Count(name, category) same as Count(*)
FROM Product
WHERE year > 1995

Better:
SELECT Count(DISTINCT name, category)

FROM Product
WHERE year > 1995

Simple Aggregation

Purchase(product, date, price, quantity)
Example 1: find total salesfor the entire database

SELECT Sum(price* quantity)
FROM Purchase

Example 1': find total salesof bagels
SELECT Sum(price* quantity)

FROM Purchase
WHERE product = ‘bagel’

Simple Aggregations

Grouping and Aggregation

Usually, we want aggregations on certain parts of the relation.

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product

SELECT product, Sum(price* quantity) AS Tota Sales

FROM Purchase
WHERE date > “9/1"
GROUPBY ' product

Product | Date Price Quantity
Bagel 1021 | 085 15
Banana | 10/22 | 052 7
Banana | 10/19 | 052 17
Bagel 10020 | 085 20
Grouping and Aggregation

1. Compute the relation (1.e., the FROM and WHERE).
2. Group by the attributesin the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

First compute the relation (date > “9/1”) then

Then, aggregate
Product Total Sales
Bagel $29.75
Banana $12.48

group by product:
Product | Date Price Quantity
Banana | 10/19 0.52 17
Banana | 10/22 0.52 7
Bagel 10/20 0.85 20
Bagel 10/21 0.85 15

SELECT product, Sum(price* quantity) AS Tota Sales
FROM Purchase

WHERE date > “9/1"

GROUPBY product

Another Example

Product SumSales MaxQuantity
Banana $12.48 17
Bagel $29.75 20

For every product, what isthe total sales and max quantity sold?
SELECT product, Sum(price* quantity) AS SumSaes
Max(quantity) AS M axQuantity
FROM Purchase
GROUP BY product

HAVING Clause

Same query, except that we consider only products that had
at least 100 buyers.

SELECT product, Sum(price* quantity)
FROM Purchase

WHERE dae>“9/1"

GROUP BY product

HAVING Sum(quantity) > 30

HAVING clause contains conditions on aggregates.

General form of Grouping and
Aggregation
SELECT S
FROM Ry,...R,
WHERE C1
GROUP BY &,...,&
HAVING C2

S= may contain attributes a,,...,a, and/or any aggregates but NO OTHER
ATTRIBUTES

C1=isany condition on the attributesin R,...,R;
C2 = isany condition on aggregate expressions

General form of Grouping and
Aggregation

SELECT S
FROM Ry...R
WHERE C1
GROUPBY a,...,
HAVING C2

Evaluation steps:

1. Compute the FROM-WHERE part, obtain a table with all attributes
inRy,...,R,

2. Group by the attributes a, ..., &,

3. Compute the aggregatesin C2 and keep only groups satisfying C2

4. Compute aggregatesin Sand return the result

Aggregation

Author(login,name)
Document(url, title)
Wrote(login,url)

M entions(url ,word)

* Find dl authors who wrote at least 10
documents:

Select author.name

From author, wrote

Where author.login=wrote.login
Groupby author.name

Having count(wrote.url) > 10

« Find dl authors who have a vocabulary over
10000:

Select author.name

From author, wrote, mentions

Where author.login=wraote.login and wrote.url=mentions.url
Groupby author.name

Having count(distinct mentions.word) > 10000

Exercises

Product (pname, price, category, maker)
Purchase (buyer, seller, store, product)
Company (cname, stock price, country)
Person(per-name, phone number, city)

Ex #1: Find people who bought telephony products.

Ex #2: Find names of people who bought American products

Ex #3: Find names of people who bought American products and did
not buy French products

Ex #4: How much money did Fred spend on purchases?

Ex #5: What isthe number and sum of the product saes by country

of origin?

Subqueries

A subquery producing asingle tuple:

SELECT Purchase.product
FROM Purchase
WHERE buyer =
(SELECT name
FROM Person
WHERE ssn="“123456789");

In this case, the subquery returns one va ue.

If it returns more, it's arun-time error.

Can we express this query without a subquery?

Subgueries Returning Relations

Find companies who manufacture products bought by Joe Blow.

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker
AND Product.name IN
(SELECT product
FROM Purchase
WHERE buyer = “Joe Blow”);

Here the subquery returns a set of vaues

Subqueries Returning Relations

Equivaent to:

SELECT Company.name

FROM Company, Product, Purchase

WHERE Company.name=maker
AND Product.name = product
AND buyer = “Joe Blow”

Isthis query equivdent to the previous one ?

Subgueries Returning Relations

Youcandsouse: s>ALLR
s>ANY R
EXISTSR

Product (pname, price, category, maker)
Find products that are more expensive than al those produced
By “Gizmo-Works’

SELECT name
FROM Product
WHERE price> ALL (SELECT price
FROM Purchase
WHERE maker="Gizmo-Works")

Question for Database Fans and
their Friends

» Can we express this query asasingle SELECT-
FROM-WHERE query, without subqueries ?

* Hint: show that all SFW queries are monotone
(figure out what this means). A query with ALL
is not monotone

Conditions on Tuples

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker
AND (Product.name,price) IN
(SELECT product, price)
FROM Purchase
WHERE buyer = “Joe Smith");

Correlated Queries

Movie (title, year, director, length)
Find movies whose title appears more than once.

SELECT title

FROM Movie ASx

WHERE year < ANY
(SELECT year
FROM Movie
WHERE title= x.title);

Note (1) scope of variables (2) this can still be expressed as single SFW

Complex Correlated Query

Product (pname, price, category, maker, year)

* Find products (and their manufacturers) that are more
expensive than all products made by the same
manufacturer before 1972

SELECT pname, maker
FROM Product ASx
WHERE price> ALL (SELECT price
FROM Product ASy
WHERE x.maker = y.maker AND y.year < 1972);

Powerful, but much harder to optimize !

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name=maker
AND (Product.name,price) IN
(SELECT product, price)
FROM Purchase
WHERE buyer = “Joe Blow”);

Conserving Duplicates

The UNION, INTERSECTION and EXCEPT operators
operate as sets, not bags.

(SELECT name
FROM Person
WHERE City="Seadtl€e")

UNION ALL
(SELECT name

FROM Person, Purchase
WHERE buyer=name AND store="“The Bon”)

Modifying the Database

Three kinds of modifications
* Insertions
» Deletions
» Updates

Sometimes they are dl called “updates’

Insertions

Generd form:

INSERT INTO R(AL....,An) VALUES (v1,...,vn) |

Example: Insert anew purchase to the database:

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-cl ock-espresso-machine’,
‘The Sharper Image’)

Missing attribute — NULL.
May drop attribute names if give themin order.

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01"

The query replaces the VALUES keyword.
Here we insert many tuplesinto PRODUCT

Insertion: an Example

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

Purchase
Product
prodName | buyerName price
name listPrice category comera John 200
gizmo 100 gadgets gizmo Smith 80
camera Smith 225

Task: insert in Product al prodNames from Purchase

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category

gazmo 100 Gardgets

camera

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category
gizmo 100 Gadgets
camera 200

camera?? | 2257 - < Depends on the implementation

Deletions

Example:

DELETE FROM PURCHASE

WHERE seller=‘Joe’ AND
product = ‘Brooklyn Bridge’'

Factoid about SQL: thereis no way to delete only asingle
occurrence of atuple that appears twice

inarelation.

Updates

Example:

UPDATE PRODUCT
SET price=price/2
WHERE Product.name IN
(SELECT product
FROM Purchase
WHERE Date ='Oct, 25, 1999');

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Datatypes:
Definesthe types.

Datadefinition: defining the schema
» Createtables

» Deletetables
* Modify table schema

Indexes: toimprove performance

Data Typesin SQL

* Character strings (fixed of varying length)
« Bit strings (fixed or varying length)

* Integer (SHORTINT)

* Floating point

* Dates and times

Domains (=types) will be usedin table declarations.

Toreuse domains:
CREATE DOMAIN address AS VARCHAR(55)

Creating Tables

Example:

CREATE TABLE Person(

name VARCHAR(30),
socid-security-number INTEGER,

age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

Deleting or Modifying a Table

Deleting:
carse

Altering: (adding or removing an attribute).

ALTERTABLE Person
ADD phone CHAR(16);

Example:

ALTER TABLE Person
DROP age;

What happens when you make changes to the schema?

Default Values

Specifying default vaues:

CREATE TABLE Person(
name VARCHAR(30),
socia-security-number INTEGER,
age SHORTINT DEFAULT 100,

gender CHAR(1) DEFAULT ‘?,
Birthdate DATE

Gty VARCHAR(30) DEFAULT ‘Seatle’,

The default of defaults; NULL

Indexes
REALLY important to speed up query processing time.

Suppose we have arelation

Person (name, age, city)

SELECT *
FROM Person
WHERE name = “Smith”

Sequentid scan of the file Person may take long

Indexes

¢ Create an index on name:

A
d/g i’o\b

N,

| Adam ‘ Betty ‘ Charles ‘ ‘ Smith ‘

¢ B+ trees have fan-out of 100s: max 4 levels!

Creating Indexes

Syntax:

‘CREATE INDEX namelndex ON Person(name) I

Creating Indexes

Indexes can be created on more than one attribute:

CREATE INDEX doubleindex ON

Example: Person (age, city)

SELECT *
Helpsin: FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT *
But notin: FROM Person
WHERE city = “Seattle”

Creating Indexes

Indexes can be useful in range queriestoo:

CREATE INDEX agelndex ON_Person (age) |

B+treeshelpin: | SELECT *
FROM Person
WHERE age > 25 AND age < 28

Why not create indexes on everything?

Defining Views
Views are relations, except that they are not physically stored.
For presenting different information to different users

Employee(ssn, name, department, project, saary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Devel opment”

Payroll has access to Employee, others only to Developers

A Different View

Person(name, city)
Purchase(buyer, seller, product, store)
Product(name, maker, category)

CREATE VIEW Sedtle-view AS

SELECT buyer, seller, product, store

FROM Person, Purchase

WHERE Person.city = “Seattle” AND
Person.name = Purchase.buyer

We have anew virtua table:
Seattle-view(buyer, seller, product, store)

A Different View

We can | ater use the view:

SELECT name, store

FROM Seattle-view, Product

WHERE Seattle-view.product = Product.name AND
Product.category = “shoes’

What Happens When We Query
aView ?

SELECT name, Sedttle-view.store

FROM Seattle-view, Product

WHERE Sesttle-view.product = Product.name AND
Product.category = “shoes’

v

SELECT name, Purchase.store

FROM Person, Purchase, Product

WHERE Person.city = “Sedtle’ AND
Person.name = Purchase.buyer AND
Purchase.product = Product.name AND
Product.category = “shoes’

Types of Views
* Virtual views:
— Used in databases
— Computed only on-demand — slow at runtime
— Always up to date

* Materidized views

— Used in data warehouses (but recently also in
DBMS)

— Precomputed offline — fast at runtime
— May have stale data

Updating Views
How can | insert atuple into atable that doesn’t exist?

Employee(ssn, name, department, project, salary)

CREATE VIEW DevelopersAS
SELECT name, project
FROM Employee
WHERE department = “ Development”

If we make the
following insertion:

INSERT INTO Developers
VALUES(“ Jog”, “ Optimizer”)

It becomes: INSERT INTO Employee
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

Non-Updatable Views

CREATE VIEW Sedtle-view AS

SELECT seller, product, store

FROM Person, Purchase

WHERE Person.city = “Seattle’” AND
Person.name = Purchase.buyer

How can we add the following tuple to the view?

(“Joe”, “Shoe Model 12345", “Nine West”)

What do we put in the Person.name and Purchase.buyer columns?

Answering Queries Using Views

» What if we want to use a set of views to
answer aquery.

« Why?
— The obvious reason...
— Answering queries over web data sources.

* Very cool stuff! (i.e., | did alot of research
on this).

Reusing a Materialized View

e Suppose | have only the result of SeattleView:
SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer
e and | want to answer the query
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer AND
Purchase.product="gizmo’.

Then, | can rewrite the query using the view.

Query Rewriting Using Views

Rewritten query:
SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Origind query:
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND

Person.per-name = Purchase.buyer AND
Purchase.product="gizmo’.

Another Example

« | still have only the result of SeattleView:
SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer
 but | want to answer the query
SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer AND
Person.Phone LIKE ‘206 543 %'.

And Now?

« | still have only the result of SeattleView:
SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer
* but | want to answer the query
SELECT buyer, seller
FROM Person, Purchase, Product
WHERE Person.city = ‘Seattle’ AND
Person.per-name = Purchase.buyer AND
Person.Phone LIKE ‘206 543 %' AND
Purchase.product = Product.name.

10

And Now?

« | still have only the result of:
SELECT seller, buyer, Sum(Price)
FROM Purchase
WHERE Purchase.store = ‘The Bon'
Group By seller, buyer

e but | want to answer the query
SELECT seller, Sum(Price)

FROM Purchase
WHERE Person.store = ‘The Bon’
Group By seller

And what if it' sthe other way around?

Finally...

« | still have only the result of:
SELECT seller, buyer, Count(*)
FROM Purchase
WHERE Purchase.store = ‘The Bon'
Group By seller, buyer

e but | want to answer the query
SELECT seller, Count(*)

FROM Purchase
WHERE Person.store = ‘The Bon’
Group By seller

The General Problem

» Given aset of viewsV1,...,Vn, and aquery

Q, can we answer Q using only the answersto

V1,...,vn?
e Why do we care?
— We can answer queries more efficiently.

— We can query data sources on the WWW ina
principled manner.

e Many, many papers on this problem.

* The best performing agorithm: The MiniCon

Algorithm, (Pottinger & (Ha)Levy, 2000).

Querying the WWW
» Assume a virtual schema of the WWW,

eJg.,
— Course(number, university, title, prof, quarter)
« Every data source on the web contains the
answer to aview over the virtual schema:
UW database: SELECT number, title, prof
FROM Course
WHERE univ="UW’ AND quarter="2/02'
Stanford database: SELECT number, title, prof, quarter
FROM Course
WHERE univ="Stanford’
User query: find dl professors who teach “database systems’

Null Values and Outerjoins

« If x=Null then 4*(3-X)/7 is still NULL

o If x=Null thenx="Jog” isUNKNOWN
» Three boolean values:

—FALSE =0
—UNKNOWN =05
—TRUE =1

Null Values and Outerjoins

« CLAND C2 = min(C1, C2)
« C1 OR C2 = max(C1,C2)
« NOTC1 =1-C1

SELECT *
FROM Person
WHERE (age < 25) AND
(height > 6 OR weight > 190)

Rulein SQL: include only tuples that yield TRUE

Null Values and Outerjoins

Unexpected behavior:
SELECT *
FROM Person
WHERE age<25 OR age>=25

Some Persons are not included !

Null Values and Outerjoins

Can test for NULL explicitly:
- xISNULL
— XISNOT NULL

SELECT *
FROM Person

WHERE age< 25 OR age>=250R ageSNULL

Now it includes al Persons

Null Values and Outerjoins

Explicit joinsin SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
Product.name = Purchase.prodName

Sameas:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !

Null Values and Outerjoins

Left outer joinsin SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

Product Purchase

Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick

Outer Joins

* Left outer join:

— Include the left tuple even if there's no match
* Right outer join:

— Include the right tuple even if there’s no match
* Full outer join:

— Include the both left and right tuples even if
there’s no match

12

SQL: Constraints and Triggers

* Chapter 6 Ullman and Widom

* Certain properties we'd like our database to
hold

» Modification of the database may break
these properties

« Build handlersinto the database definition

« Key constraints

» Referentia integrity constraints.

Declaring aPrimary Keysin SQL

CREATE TABLE MovieStar (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(2));

OR:

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1)
PRIMARY KEY (name));

Primary Keys with Multiple
Attributes

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
PRIMARY KEY (name, address));

Other Keys

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
phone CHAR(10) UNIQUE,
gender CHAR(1),
petName CHAR(50),
PRIMARY KEY (name),
UNIQUE (gender, petName));

Foreign Key Constraints

CREATE TABLE Actedin (
Name CHAR(30) PRIMARY KEY,
MovieName CHAR(30)
REFERENCES Movies(MovieName),
Year INT);

Foreign Key Constraints

* OR
CREATE TABLE Actedin (
Name CHAR(30) PRIMARY KEY,
MovieName CHAR(30),
Year INT,
FOREIGN KEY MovieName
REFERENCES Movies(MovieName)

* MovieName must be aPRIMARY KEY

13

How do we Maintain them?

» Given achangeto DB, there are severa
possible violations:
— Insert new tuple with bogus foreign key value
— Update atuple to a bogus foreign key value

— Delete atuple in the referenced table with the
referenced foreign key value

— Update atuple in the referenced table that
changes the referenced foreign key value

How to Maintain?

Palicies for handling the change...
— Reject the update (default)
— Cascade (example: cascading deletes)
—Set NULL
* Can set update and delete actions
independently in CREATE TABLE
MovieName CHAR(30)
REFERENCES Movies(MovieName))
ON DELETE SET NULL
ON UPDATE CASCADE

How to Maintain?

Movies(MovieName, year)
(Fatal Attraction, 1987)

ActedIn(ActorName, MovieName)
(Michael Douglas, Fatal Attraction)
insert: (Rick Moranis, Strange Brew)

» Recdl, Actedin has FK MovieName...

14

