

Agenda/Administration

- Last homework handed out by the weekend.
- Projects status?
- Trip Report
- Query optimization

How are we going to build one?

- What kind of optimizations can we do?
- What are the issues?
- How would we architect a query optimizer?

Schema for Some Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Reserves:
- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages (4000 tuples)
- Sailors:
- Each tuple is 50 bytes long, 80 tuples per page, 500 pages (4000 tuples).

Query Optimization Process (simplified a bit)

- Parse the SQL query into a logical tree:
- identify distinct blocks (corresponding to nested subqueries or views).
- Query rewrite phase:
- apply algebraic transformations to yield a cheaper plan.
- Merge blocks and move predicates between blocks.
- Optimize each block: join ordering.
- Complete the optimization: select scheduling (pipelining strategy).

Building Blocks

- Algebraic transformations (many and wacky).
- Statistical model: estimating costs and sizes.
- Finding the best join trees:
- Bottom-up (dynamic programming): System-R
- Newer architectures:
- Starburst: rewrite and then tree find
- Volcano: all at once, top-down.

Key Lessons in Optimization

- There are many approaches and many details to consider in query optimization
- Classic search/optimization problem!
- Not completely solved yet!
- Main points to take away are:
- Algebraic rules and their use in transformations of queries.
- Deciding on join ordering: System-R style (Selinger style) optimization.
- Estimating cost of plans and sizes of intermediate results.

Operations (revisited)

- Scan ([index], table, predicate):
- Either index scan or table scan.
- Try to push down sargable predicates.
- Selection (filter)
- Projection (always need to go to the data?)
- Joins: nested loop (indexed), sort-merge, hash, outer join.
- Grouping and aggregation (usually the last).

Algebraic Laws

- Commutative and Associative Laws
-R US $=\mathrm{S}$ UR, R U (S UT) $=(\mathrm{R}$ US) UT
$-R \cap S=S \cap R, R \cap(S \cap T)=(R \cap S) \cap T$
$-R \triangleright \triangleleft S=S \triangleright \triangleleft R, R \triangleright \triangleleft(S \triangleright \triangleleft T)=(R \triangleright \triangleleft S) \triangleright \triangleleft T$
- Distributive Laws
$-R \triangleright \triangleleft(S U T)=(R \triangleright \triangleleft S) U(R \triangleright \triangleleft T)$

Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)
$-\sigma_{F=3}\left(R_{D=E} S\right)=$
$-\sigma_{\mathrm{A}=5 \mathrm{ANDG} \mathrm{A}=9}\left(\mathrm{R}_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=$?

Query Rewrites: Sub-queries

SELECT Emp.Name

FROM Emp
WHERE Emp.Age < 30
AND Emp.Dept\# IN
(SELECT Dept.Dept\#
FROM Dept
WHERE Dept.Loc = "Seattle"
AND Emp.Emp\#=Dept.Mgr)

The Un-Nested Query

SELECT Emp.Name
FROM Emp, Dept
WHERE Emp.Age < 30
AND Emp.Dept\#=Dept.Dept\#
AND Dept.Loc = "Seattle"
AND Emp.Emp\#=Dept.Mgr

Converting Nested Queries

Let's compute the complement first:

Select distinct x.name, x.maker
From product x
Where x.color= "blue"
AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker
AND y.color="blue")

From product x
Where x. color= "blue"
(Select y.price
Where x . maker $=\mathrm{y}$. maker AND y.color="blue")

Converting Nested Queries

(Select x.name, x.maker
(Select x.name, x.maker
From product x
From product x
Where x. color $=$ "blue")
Where x. color $=$ "blue")
EXCEPT
EXCEPT
(Select x.name, x.maker
(Select x.name, x.maker
From product x, product y
From product x, product y
Where x.color= "blue" AND x.maker = y.maker
Where x.color= "blue" AND x.maker = y.maker
AND y.color="blue" AND x.price < y.price)
AND y.color="blue" AND x.price < y.price)

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x. color= "blue"
AND x.price >= ALL (Select y.price
From product y
Where x.maker $=y$. maker AND y.color="blue")

How do we convert this one to logical plan?

Converting Nested Queries

This one becomes a SFW query:
Select distinct x.name, x.maker
From product x , product y
Where x.color= "blue" AND x.maker = y.maker AND y.color="blue" AND x.price < y.price

This returns exactly the products we DON'T want, so...

Semi-Joins, Magic Sets

- You can't always un-nest sub-queries (it's tricky).
- But you can often use a semi-join to reduce the computation cost of the inner query.
- A magic set is a superset of the possible bindings in the result of the sub-query.
- Also called "sideways information passing".
- Great idea; reinvented every few years on a regular basis.

Rewrites: Magic Sets
Create View DepAvgSal AS
(Select E.did, Avg(E.sal) as avgsal
From Emp E
Group By E.did)
Select E.eid, E.sal
From Emp E, Dept D, DepAvgSal V
Where E.did=D.did AND D.did $=$ V.did
And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

Supporting Views

1. Create View PartialResult as
(Select E.eid, E.sal, E.did
From Emp E, Dept D
Where E.did=D.did
And E.age < 30 and D.budget > 100K)
2. Create View Filter AS

Select DISTINCT P.did FROM PartialResult P.
2. Create View LimitedAvgSal as
(Select F.did Avg(E.Sal) as avgSal
From Emp E, Filter F
Where E.did=F.did
Group By F.did)

And Finally...

Transformed query:

Select P.eid, P.sal
From PartialResult P, LimitedAvgSal V Where P.did=V.did

And P.sal > V.avgsal

Query Rewrite: Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Query Rewrites: Predicate Pushdown (through grouping)

Select bid, Max(age)
From Reserves R, Sailors S Select bid, Max(age)
Where R.sid=S.sid
From Reserves R, Sailors S
Where R.sid=S.sid and
GroupBy bid
Having $\operatorname{Max}($ age $)>40$

$$
\text { S.age > } 40
$$

- For each boat, find the maximal age of sailors who've reserved it. -Advantage: the size of the join will be smaller.
- Requires transformation rules specific to the grouping/aggregation operators.
- Will it work work if we replace Max by Min?

Query Rewrite Summary

- The optimizer can use any semantically correct rule to transform one query to another.
- Rules try to:
- move constraints between blocks (because each will be optimized separately)
- Unnest blocks
- Especially important in decision support applications where queries are very complex.
- In a few minutes of thought, you'll come up with your own rewrite. Some query, somewhere, will benefit from it.
- Theorems?

Cost Estimation

- For each plan considered, must estimate cost:
- Must estimate cost of each operation in plan tree.
- Depends on input cardinalities.
- Must estimate size of result for each operation in tree!
- Use information about the input relations.
- For selections and joins, assume independence of predicates.
- We'll discuss the System R cost estimation approach.
- Very inexact, but works ok in practice.
- More sophisticated techniques known now.

Statistics and Catalogs

- Need information about the relations and indexes involved. Catalogs typically contain at least:
- \# tuples (NTuples) and \# pages (NPages) for each relation.
- \# distinct key values (NKeys) and NPages for each index.
- Index height, low/high key values (Low/High) for each tree index.
- Catalogs updated periodically.
- Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored.

Cost Model for Our Analysis

* As a good approximation, we ignore CPU costs:
- B: The number of data pages
- P: Number of tuples per page
- D: (Average) time to read or write disk page
- Measuring number of page I/O's ignores gains of pre-fetching blocks of pages; thus, even I/O cost is only approximated.

Index Nested Loops Join

foreach tuple r in R do

$$
\begin{aligned}
& \text { foreach tuple } \mathrm{s} \text { in } \mathrm{S} \text { where } \mathrm{r}_{\mathrm{i}}==\mathrm{s} j_{\mathrm{j}} \text { do } \\
& \text { add }\langle\mathrm{r}, \mathrm{~s}\rangle \text { to result }
\end{aligned}
$$

- If there is an index on the join column of one relation (say S), can make it the inner.
- Cost: $\mathrm{M}+\left(\left(\mathrm{M} * \mathrm{P}_{\mathrm{R}}\right) *\right.$ cost of finding matching S tuples $)$
- For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding S tuples depends on clustering.
- Clustered index: 1 I/O (typical), unclustered: up to 1 I/O per matching S tuple.

Simple Nested Loops Join

For each tuple r in R do
for each tuple s in S do
if $\mathrm{r}_{\mathrm{i}}==\mathrm{sj}$ then add $\langle\mathrm{r}, \mathrm{s}\rangle$ to result

- For each tuple in the outer relation R, we scan the entire inner relation S .
- Cost: $\mathrm{M}+\left(\mathrm{P}_{\mathrm{R}} * \mathrm{M}\right) * \mathrm{~N}$.
- Page-oriented Nested Loops join: For each page of R, get each page of S, and write out matching pairs of tuples $<r$, $s>$, where r is in R-page and S is in S-page.
- Cost: $\mathrm{M}+\mathrm{M}^{*} \mathrm{~N}$.

Block Nested Loops Join

- Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold "block'" of outer R.
- For each matching tuple r in R-block, s in S-page, add <r, s> to result. Then read next R-block, scan S, etc.

Sort-Merge Join $(\mathrm{R} \underset{\mathrm{i}=\mathrm{j}}{\bowtie} \mathrm{S})$

- Sort R and S on the join column, then scan them to do a "merge" on the join column.
- Advance scan of R until current R-tuple >= current S tuple, then advance scan of S until current S-tuple $>=$ current R tuple; do this until current R tuple $=$ current S tuple.
- At this point, all R tuples with same value and all S tuples with same value match; output $\langle\mathrm{r}$, s\rangle for all pairs of such tuples.
- Then resume scanning R and S .

Size Estimation and Reduction

Factors
SELECT attribute list FROM relation list WHERE term ${ }_{1}$ AND ... AND term ${ }_{\mathrm{k}}$

- Consider a query block:

Maximum \# tuples in result is the product of the cardinalities of relations in the FROM clause.

- Reduction factor $(R F)$ associated with each term reflects the impact of the term in reducing result size. Result cardinality $=$ Max \# tuples * product of all RF's.
- Implicit assumption that terms are independent!
- Term col=value has RF 1/NKeys(I), given index I on col
- Term coll=col2 has RF 1/MAX(NKeys(II), NKeys(I2))
- Term col>value has RF (High(I)-value)/(High(I)-Low(I))

Cost of Sort-Merge Join

- R is scanned once; each S group is scanned once per matching R tuple.
- Cost: $\mathrm{M} \log \mathrm{M}+\mathrm{N} \log \mathrm{N}+(\mathrm{M}+\mathrm{N})$
- The cost of scanning, $\mathrm{M}+\mathrm{N}$, could be $\mathrm{M}^{*} \mathrm{~N}$ (unlikely!)

Histograms

- Key to obtaining good cost and size estimates.
- Come in several flavors:
- Equi-depth
- Equi-width
- Which is better?
- Compressed histograms: special treatment of frequent values.

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Ranks(rankName, salary)

- Estimate the size of Employee $\bowtie_{\text {salary }}$ Ranks

Employee	0.20 k	20 k .40 k	40 k .60 k	60 k .80 k	80 k .100 k	$>100 \mathrm{k}$
	200	800	5000	12000	6500	500

Ranks	0.20 k	20 k..40k	40 k .60 k	60 k .80 k	80 k .100 k	$>100 \mathrm{k}$
	8	20	40	80	100	2

Plans for Single-Relation Queries (Prep for Join ordering)

Task: create a query execution plan for a single Select-project-group-by block.

- Key idea: consider each possible access path to the relevant tuples of the relation. Choose the cheapest one.
- The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate computation).

Histograms

Employee(ssn, name, salary, phone)

- Maintain a histogram on salary:

Salary:	$0 . .20 \mathrm{k}$	20 k. .40 k	40 k .60 k	60 k .80 k	80 k .100 k	$>100 \mathrm{k}$
Tuples	200	800	5000	12000	6500	500

- $\mathrm{T}($ Employee $)=25000$, but now we know the distribution

Histograms

- Assume:
$-\mathrm{V}($ Employee, Salary $)=200$
$-\mathrm{V}($ Ranks, Salary $)=250$
- Then $\mathrm{T}\left(\right.$ Employee $\bowtie_{\text {Salary }}$ Ranks) $=$ $=\Sigma_{\mathrm{i}=1,6} \mathrm{~T}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}^{\prime} / 250$

$$
\begin{aligned}
= & (200 \times 8+800 \times 20+5000 \times 40+ \\
& 12000 \times 80+6500 \times 100+500 \times 2) / 250 \\
= & \ldots
\end{aligned}
$$

\qquad Example SELECT S.sid FROM Sailors S WHERE S.rating $=8$ $-(1 / \mathrm{NKeys}(\mathrm{I})) * \operatorname{NTuples}(\mathrm{R})=(1 / 10) * 40000$ tuples retrieved. - Clustered index: $(1 / \mathrm{NKeys}(\mathrm{I})) *(\operatorname{NPages}(\mathrm{I})+\operatorname{NPages}(\mathrm{R}))=(1 / 10)$ * $(50+500)$ pages are retrieved $(=55)$. - Unclustered index: $(1 / \mathrm{NKeys}(\mathrm{I})) *(\operatorname{NPages}(\mathrm{I})+\mathrm{NTuples}(\mathrm{R}))=$ $(1 / 10) *(50+40000)$ pages are retrieved. If we have an index on sid: - Would have to retrieve all tuples/pages. With a clustered index, the cost is $50+500$. Doing a file scan: we retrieve all file pages (500).						

Determining Join Ordering

- R1 \bowtie R2 $\bowtie \ldots \bowtie$ Rn
- Join tree:

- A join tree represents a plan. An optimizer needs to inspect many (all ?) join trees

Types of Join Trees

- Bushy:

Problem

- Given: a query $\mathrm{R} 1 \bowtie \mathrm{R} 2 \bowtie \ldots \bowtie \mathrm{Rn}$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

Types of Join Trees

- Left deep:

Types of Join Trees

- Right deep:

Dynamic Programming

- Idea: for each subset of $\{R 1, \ldots, R n\}$, compute the best plan for that subset
- In increasing order of set cardinality:
- Step 1: for $\{R 1\},\{R 2\}, \ldots,\{R n\}$
- Step 2: for $\{\mathrm{R} 1, \mathrm{R} 2\},\{\mathrm{R} 1, \mathrm{R} 3\}, \ldots,\{\mathrm{Rn}-1, \mathrm{Rn}\}$
- Step n: for $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$
- A subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ is also called a subquery

Dynamic Programming

- For each subquery $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ compute the following:
- Size(Q)
- A best plan for $\mathrm{Q}: ~ P l a n(\mathrm{Q})$
- The cost of that plan: $\operatorname{Cost}(\mathrm{Q})$

Dynamic Programming

- Step 1: For each $\{$ Ri $\}$ do:
$-\operatorname{Size}(\{\mathrm{Ri}\})=\mathrm{B}(\mathrm{Ri})$
$-\operatorname{Plan}(\{\operatorname{Ri}\})=\operatorname{Ri}$
$-\operatorname{Cost}(\{\mathrm{Ri}\})=($ cost of scanning Ri$)$

Dynamic Programming

- Return Plan(\{R1, ..., Rn\})

Completing the Physical Query Plan

- Choose algorithm to implement each operator
- Need to account for more than cost:
- How much memory do we have ?
- Are the input operand(s) sorted ?
- Decide for each intermediate result:
- To materialize
- To pipeline

