
1

Lecture #7

Query Optimization

May 16th, 2002

Agenda/Administration

• Last homework handed out by the weekend.

• Projects status?

• Trip Report

• Query optimization

Query Optimization

Imperative query execution plan:Declarative SQL query

Ideally: Want to find best plan. Practically: Avoid worst plans!

Goal:

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

Inputs:
• the query
• statistics about the data
(indexes, cardinalities,
selectivity factors)
• available memory

How are we going to build one?

• What kind of optimizations can we do?

• What are the issues?

• How would we architect a query optimizer?

Discussion

How Would You Do It?

Schema for Some Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages (4000 tuples)

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500

pages (4000 tuples).

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

2

Motivating Example

• Cost: 500+500*1000 I/Os

• By no means the worst plan!

• Misses several opportunities:
selections could have been `pushed’
earlier, no use is made of any
available indexes, etc.

• Goal of optimization: To find more efficient

plans that compute the same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Alternative Plans 1

• Main difference: push selects.
• With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1
(10 pages, if we have 100 boats, uniform distribution).
– Scan Sailors (500) + write temp T2 (250 pages, if we have 10

ratings).
– Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250), total=1800
– Total: 3560 page I/Os.

• If we used BNL join, join cost = 10+4*250, total cost = 2770.
• If we `push’ projections, T1 has only sid, T2 only sid and sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total <
2000.

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Alternative Plans 2
With Indexes

• With clustered index on bid of
Reserves, we get 100,000/100 = 1000
tuples on 1000/100 = 10 pages.

• INL with pipelining (outer is not
materialized).

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

v Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly) Building Blocks

• Algebraic transformations (many and
wacky).

• Statistical model: estimating costs and sizes.
• Finding the best join trees:

– Bottom-up (dynamic programming): System-R

• Newer architectures:
– Starburst: rewrite and then tree find
– Volcano: all at once, top-down.

Query Optimization Process
(simplified a bit)

• Parse the SQL query into a logical tree:
– identify distinct blocks (corresponding to nested sub-

queries or views).

• Query rewrite phase:
– apply algebraic transformations to yield a cheaper plan.

– Merge blocks and move predicates between blocks.

• Optimize each block: join ordering.

• Complete the optimization: select scheduling
(pipelining strategy).

Key Lessons in Optimization

• There are many approaches and many
details to consider in query optimization
– Classic search/optimization problem!
– Not completely solved yet!

• Main points to take away are:
– Algebraic rules and their use in transformations

of queries.
– Deciding on join ordering: System-R style

(Selinger style) optimization.
– Estimating cost of plans and sizes of

intermediate results.

3

Operations (revisited)

• Scan ([index], table, predicate):
– Either index scan or table scan.
– Try to push down sargable predicates.

• Selection (filter)
• Projection (always need to go to the data?)
• Joins: nested loop (indexed), sort-merge,

hash, outer join.
• Grouping and aggregation (usually the last).

Algebraic Laws

• Commutative and Associative Laws
– R U S = S U R, R U (S U T) = (R U S) U T

– R ∩ S = S ∩ R, R ∩ (S ∩ T) = (R ∩ S) ∩ T

– R S = S R, R (S T) = (R S) T

• Distributive Laws
– R (S U T) = (R S) U (R T)

>< >< >< >< >< ><

>< >< ><

Algebraic Laws

• Laws involving selection:
– σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)

– σ C OR C’(R) = σ C(R) U σ C’(R)

– σ C (R S) = σ C (R) S
• When C involves only attributes of R

– σ C (R – S) = σ C (R) – S

– σ C (R U S) = σ C (R) U σ C (S)

– σ C (R ∩ S) = σ C (R) ∩ S

>< ><

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)
– σ F=3 (R S) = ?

– σ A=5 AND G=9 (R S) = ?

><
D=E

><
D=E

Algebraic Laws

• Laws involving projections
– ΠM(R S) =ΠN(ΠP(R) ΠQ(S))

• Where N, P, Q are appropriate subsets of attributes
of M

– ΠM(ΠN(R)) =ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
– ΠA,B,G(R S) =Π ? (Π?(R) Π?(S))

>< ><

>< ><D=E
D=E

Query Rewrites: Sub-queries

SELECT Emp.Name

FROM Emp

WHERE Emp.Age < 30

AND Emp.Dept# IN

(SELECT Dept.Dept#

FROM Dept

WHERE Dept.Loc = “Seattle”

AND Emp.Emp#=Dept.Mgr)

4

The Un-Nested Query

SELECT Emp.Name

FROM Emp, Dept

WHERE Emp.Age < 30

AND Emp.Dept#=Dept.Dept#

AND Dept.Loc = “Seattle”

AND Emp.Emp#=Dept.Mgr

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”

AND x.price >= ALL (Select y.price
From product y
Where x.maker = y.maker

AND y.color=“blue”)

Select distinct x.name, x.maker
From product x
Where x.color= “blue”

AND x.price >= ALL (Select y.price
From product y
Where x.maker = y.maker

AND y.color=“blue”)

How do we convert this one to logical plan ?

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price < SOME (Select y.price

From product y
Where x.maker = y.maker

AND y.color=“blue”)

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price < SOME (Select y.price

From product y
Where x.maker = y.maker

AND y.color=“blue”)

Let’s compute the complement first:

Converting Nested Queries

Select distinct x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price

Select distinct x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price

This one becomes a SFW query:

This returns exactly the products we DON’T
want, so…

Converting Nested Queries

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker
AND y.color=“blue” AND x.price < y.price)

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker
AND y.color=“blue” AND x.price < y.price)

Semi-Joins, Magic Sets

• You can’t always un-nest sub-queries (it’s tricky).

• But you can often use a semi-join to reduce the
computation cost of the inner query.

• A magic set is a superset of the possible bindings
in the result of the sub-query.

• Also called “sideways information passing”.

• Great idea; reinvented every few years on a
regular basis.

5

Rewrites: Magic Sets
Create View DepAvgSal AS

(Select E.did, Avg(E.sal) as avgsal
From Emp E
Group By E.did)

Select E.eid, E.sal
From Emp E, Dept D, DepAvgSal V
Where E.did=D.did AND D.did=V.did

And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

Rewrites: SIPs
Select E.eid, E.sal
From Emp E, Dept D, DepAvgSal V
Where E.did=D.did AND D.did=V.did

And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

• DepAvgsal needs to be evaluated only for
departments where V.did IN
Select E.did
From Emp E, Dept D
Where E.did=D.did

And E.age < 30 and D.budget > 100K

Supporting Views
1. Create View PartialResult as

(Select E.eid, E.sal, E.did
From Emp E, Dept D
Where E.did=D.did

And E.age < 30 and D.budget > 100K)
2. Create View Filter AS

Select DISTINCT P.did FROM PartialResult P.
2. Create View LimitedAvgSal as

(Select F.did Avg(E.Sal) as avgSal
From Emp E, Filter F
Where E.did=F.did
Group By F.did)

And Finally…

Transformed query:

Select P.eid, P.sal

From PartialResult P, LimitedAvgSal V

Where P.did=V.did

And P.sal > V.avgsal

Rewrites: Group By and Join
• Schema:

– Product (pid, unitprice,…)

– Sales(tid, date, store, pid, units)

• Trees:

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW)

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW)

Rewrites:Operation Introduction
• Schema: (pid determines cid)

– Category (pid, cid, details)

– Sales(tid, date, store, pid, amount)

• Trees:

Join

groupBy(cid)
Sum(amount)

Scan(Sales)
Filter(store IN

{CA,WA})

Category
Filter (…)

Join

groupBy(cid)
Sum(amount)

Scan(Sales)
Filter(store IN

{CA,WA})

Category
Filter (…)

groupBy(pid)
Sum(amount)

6

Query Rewriting: Predicate
Pushdown

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

The earlier we process selections, less tuples we need to manipulate
higher up in the tree.
Disadvantages?

Query Rewrites: Predicate
Pushdown (through grouping)

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid
GroupBy bid
Having Max(age) > 40

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid and

S.age > 40
GroupBy bid

• For each boat, find the maximal age of sailors who’ve reserved it.
•Advantage: the size of the join will be smaller.
• Requires transformation rules specific to the grouping/aggregation

operators.
• Will it work work if we replace Max by Min?

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age, age < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move
predicates up the
tree.

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid, and

S.age < 20.

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age, and age < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move
predicates up the
tree.

Then, move them
down.

Query Rewrite Summary

• The optimizer can use any semantically correct
rule to transform one query to another.

• Rules try to:
– move constraints between blocks (because each will be

optimized separately)
– Unnest blocks

• Especially important in decision support
applications where queries are very complex.

• In a few minutes of thought, you’ll come up with
your own rewrite. Some query, somewhere, will
benefit from it.

• Theorems?

7

Cost Estimation

• For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

– Must estimate size of result for each operation in tree!
• Use information about the input relations.
• For selections and joins, assume independence of predicates.

• We’ll discuss the System R cost estimation
approach.
– Very inexact, but works ok in practice.
– More sophisticated techniques known now.

Statistics and Catalogs
• Need information about the relations and indexes

involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each tree

index.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values
in some field) are sometimes stored.

Cost Model for Our Analysis

As a good approximation, we ignore CPU
costs:
– B: The number of data pages

– P: Number of tuples per page

– D: (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of
pre-fetching blocks of pages; thus, even I/O cost
is only approximated.

*

Simple Nested Loops Join

• For each tuple in the outer relation R, we scan the entire
inner relation S.
– Cost: M + (PR * M) * N.

• Page-oriented Nested Loops join: For each page of R, get
each page of S, and write out matching pairs of tuples <r,
s>, where r is in R-page and S is in S-page.
– Cost: M + M*N.

For each tuple r in R do
for each tuple s in S do

if ri == sj then add <r, s> to result

Index Nested Loops Join

• If there is an index on the join column of one relation (say
S), can make it the inner.
– Cost: M + ((M*PR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for
hash index, 2-4 for B+ tree. Cost of then finding S tuples
depends on clustering.
– Clustered index: 1 I/O (typical), unclustered: up to 1 I/O per

matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Block Nested Loops Join
• Use one page as an input buffer for scanning the

inner S, one page as the output buffer, and use all
remaining pages to hold “block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

8

Sort-Merge Join (R S)
• Sort R and S on the join column, then scan them to

do a ``merge’’ on the join column.
– Advance scan of R until current R-tuple >= current S

tuple, then advance scan of S until current S-tuple >=
current R tuple; do this until current R tuple = current S
tuple.

– At this point, all R tuples with same value and all S
tuples with same value match; output <r, s> for all pairs
of such tuples.

– Then resume scanning R and S.

><
i=j

Cost of Sort-Merge Join

• R is scanned once; each S group is scanned
once per matching R tuple.

• Cost: M log M + N log N + (M+N)
– The cost of scanning, M+N, could be M*N

(unlikely!)

Hash-Join
• Partition both relations

using hash fn h: R
tuples in partition i will
only match S tuples in
partition i.

v Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Cost of Hash-Join

• In partitioning phase, read+write both relations;
2(M+N). In matching phase, read both relations;
M+N I/Os.

• Sort-Merge Join vs. Hash Join:
– Given a minimum amount of memory both have a cost

of 3(M+N) I/Os. Hash Join superior on this count if
relation sizes differ greatly. Also, Hash Join shown to
be highly parallelizable.

– Sort-Merge less sensitive to data skew; result is sorted.

Size Estimation and Reduction
Factors

• Consider a query block:

• Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.
– Implicit assumption that terms are independent!

– Term col=value has RF 1/NKeys(I), given index I on col

– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))

– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Histograms

• Key to obtaining good cost and size
estimates.

• Come in several flavors:
– Equi-depth
– Equi-width

• Which is better?
• Compressed histograms: special treatment

of frequent values.

9

Histograms

• Statistics on data maintained by the
RDBMS

• Makes size estimation much more accurate
(hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the
distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee Ranks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

Salary

Histograms

• Assume:
– V(Employee, Salary) = 200
– V(Ranks, Salary) = 250

• Then T(Employee Ranks) =
= Σi=1,6 Ti Ti’ / 250
= (200x8 + 800x20 + 5000x40 +

12000x80 + 6500x100 + 500x2)/250
= ….

Salary

Plans for Single-Relation Queries
(Prep for Join ordering)

• Task: create a query execution plan for a single
Select-project-group-by block.

• Key idea: consider each possible access path to
the relevant tuples of the relation. Choose the
cheapest one.

• The different operations are essentially carried out
together (e.g., if an index is used for a selection,
projection is done for each retrieved tuple, and the
resulting tuples are pipelined into the aggregate
computation).

Example
• If we have an Index on rating:

– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.

– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10)
* (50+500) pages are retrieved (= 55).

– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) =
(1/10) * (50+40000) pages are retrieved.

• If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered index,

the cost is 50+500.

• Doing a file scan: we retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

10

Determining Join Ordering

• R1 R2 …. Rn

• Join tree:

• A join tree represents a plan. An optimizer needs
to inspect many (all ?) join trees

R3 R1 R2 R4

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

Problem

• Given: a query R1 R2 … Rn

• Assume we have a function cost() that gives
us the cost of every join tree

• Find the best join tree for the query

Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the
best plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}

– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}

– …

– Step n: for {R1, …, Rn}

• A subset of {R1, …, Rn} is also called a subquery

11

Dynamic Programming

• For each subquery Q⊆ {R1, …, Rn}
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)

Dynamic Programming

• Step i: For each Q⊆ {R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)

– For every pair of subqueries Q’, Q’’
s.t. Q = Q’ U Q’’
compute cost(Plan(Q’) Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

Dynamic Programming

• Return Plan({R1, …, Rn})

Dynamic Programming

• Summary: computes optimal plans for subqueries:
– Step 1: {R1}, {R2}, …, {Rn}
– Step 2: {R1, R2}, {R1, R3}, …, {Rn-1, Rn}
– …
– Step n: {R1, …, Rn}

• We used naïve size/cost estimations
• In practice:

– more realistic size/cost estimations (next)
– heuristics for Reducing the Search Space

• Restrict to left linear trees
• Restrict to trees “without cartesian product”

– need more than just one plan for each subquery:
• “interesting orders”

Completing the
Physical Query Plan

• Choose algorithm to implement each
operator
– Need to account for more than cost:

• How much memory do we have ?

• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize

– To pipeline

