
1

Lecture #7

Query Optimization

May 16th, 2002

Agenda/Administration

• Exam date set: June 10th, 6:30pm. Place
TBA.

• Volunteers for presenting projects during
last class.

• Project demos. Schedules coming soon.

Query Optimization

• Major issues:
– Transformations (we saw a few, more coming)

• Un-nesting of subqueries; magic-set
transformations.

– Join ordering

– Maintaining statistics

– General architectural issues to deal with large
search space.

Schema for Some Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages (4000 tuples)

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500

pages (4000 tuples).

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Rewrites: Group By and Join
• Schema:

– Product (pid, unitprice,…)

– Sales(tid, date, store, pid, units)

• Trees:

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW)

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW)

Rewrites:Operation Introduction
• Schema: (pid determines cid)

– Category (pid, cid, details)

– Sales(tid, date, store, pid, amount)

• Trees:

Join

groupBy(cid)
Sum(amount)

Scan(Sales)
Filter(store IN

{CA,WA})

Category
Filter (…)

Join

groupBy(cid)
Sum(amount)

Scan(Sales)
Filter(store IN

{CA,WA})

Category
Filter (…)

groupBy(pid)
Sum(amount)



2

Query Rewriting: Predicate
Pushdown

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

The earlier we process selections, less tuples we need to manipulate
higher up in the tree.
Disadvantages?

Query Rewrites: Predicate
Pushdown (through grouping)

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid
GroupBy bid
Having Max(age) > 40

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid and

S.age > 40
GroupBy bid

• For each boat, find the maximal age of sailors who’ve reserved it.
•Advantage: the size of the join will be smaller.
• Requires transformation rules specific to the grouping/aggregation

operators.
• Will it work work if we replace Max by Min?

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age, age < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move
predicates up the
tree.

Query Rewrite:
Predicate Movearound

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid, and

S.age < 20.

Select sid, date
From V1, V2
Where V1.rating = V2.rating and

V1.age = V2.age, and age < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move
predicates up the
tree.

Then, move them
down.

Query Rewrite Summary

• The optimizer can use any semantically correct
rule to transform one query to another.

• Rules try to:
– move constraints between blocks (because each will be

optimized separately)
– Unnest blocks

• Especially important in decision support
applications where queries are very complex.

• In a few minutes of thought, you’ll come up with
your own rewrite. Some query, somewhere, will
benefit from it.

• Theorems?



3

Cost Estimation

• For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

– Must estimate size of result for each operation in tree!
• Use information about the input relations.
• For selections and joins, assume independence of predicates.

• We’ll discuss the System R cost estimation
approach.
– Very inexact, but works ok in practice.
– More sophisticated techniques known now.

Cost Estimation

• What statistics should we save?

• How should we estimate the size of a query
of the form?

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Statistics and Catalogs
• Need information about the relations and indexes

involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.

– # distinct key values (NKeys) and NPages for each index.

– Index height, low/high key values (Low/High) for each tree
index.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values
in some field) are sometimes stored.

Cost Model for Our Analysis

As a good approximation, we ignore CPU
costs:
– B: The number of data pages

– P: Number of tuples per page

– D: (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of
pre-fetching blocks of pages; thus, even I/O cost
is only approximated.

*

Size Estimation and Reduction
Factors

• Consider a query block:

• Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.
– Implicit assumption that terms are independent!

– Term col=value has RF 1/NKeys(I), given index I on col

– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))

– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Histograms

• Key to obtaining good cost and size
estimates.

• Come in several flavors:
– Equi-depth
– Equi-width

• Which is better?
• Compressed histograms: special treatment

of frequent values.



4

Histograms

Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the
distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee Ranks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

Salary

Histograms

• Assume:
– V(Employee, Salary) = 200
– V(Ranks, Salary) = 250

• Then T(Employee Ranks) =
= Σi=1,6 Ti Ti’ / 250
= (200x8 + 800x20 + 5000x40 +

12000x80 + 6500x100 + 500x2)/250
= ….

Salary

Plans for Single-Relation Queries
(Prep for Join ordering)

• Task: create a query execution plan for a single
Select-project-group-by block.

• Key idea: consider each possible access path to
the relevant tuples of the relation. Choose the
cheapest one.

• The different operations are essentially carried out
together (e.g., if an index is used for a selection,
projection is done for each retrieved tuple, and the
resulting tuples are pipelined into the aggregate
computation).

Example
• If we have an Index on rating:

– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.

– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10)
* (50+500) pages are retrieved (= 55).

– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) =
(1/10) * (50+40000) pages are retrieved.

• If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered index,

the cost is 50+500.

• Doing a file scan: we retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8 Determining Join Ordering

• R1 R2 …. Rn

• Join tree:

• A join tree represents a plan. An optimizer needs
to inspect many (all ?) join trees

R3 R1 R2 R4



5

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

Problem

• Given: a query R1 R2 … Rn

• Assume we have a function cost() that gives
us the cost of every join tree

• Find the best join tree for the query

• How?

Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the
best plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}

– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}

– …

– Step n: for {R1, …, Rn}

• A subset of {R1, …, Rn} is also called a subquery

Dynamic Programming

• For each subquery Q⊆ {R1, …, Rn}
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)



6

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)

Dynamic Programming

• Step i: For each Q⊆ {R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)

– For every pair of subqueries Q’, Q’’
s.t. Q = Q’ U Q’’
compute cost(Plan(Q’) Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

Dynamic Programming

• Return Plan({R1, …, Rn})

Dynamic Programming
• Summary: computes optimal plans for subqueries:

– Step 1: {R1}, {R2}, …, {Rn}
– Step 2: {R1, R2}, {R1, R3}, …, {Rn-1, Rn}
– …
– Step n: {R1, …, Rn}

• We used naïve size/cost estimations
• In practice:

– more realistic size/cost estimations (next)
– heuristics for Reducing the Search Space

• Restrict to left linear trees
• Restrict to trees “without cartesian product”

– need more than just one plan for each subquery:
• “interesting orders”

• Why did it work?

Query Optimization

• We’re done.

• Questions? Comments?

What is Data Integration

• Providing
– Uniform (same query interface to all sources)

– Access to (queries; eventually updates too)

– Multiple (we want many, but 2 is hard too)

– Autonomous (DBA doesn’t report to you)

– Heterogeneous (data models are different)

– Structured (or at least semi-structured)

– Data Sources (not only databases).



7

ReviewsShippingOrdersInventoryBooks

mybooks.com Mediated Schema

West

...

FedEx

WAN

alt.books.
reviews

InternetInternet Internet

UPS

East Orders Customer
Reviews

NYTimes

...

Morgan-
Kaufman

Prentice-
Hall

The Problem: Data Integration

Uniform query capability across autonomous,
heterogeneous data sources on LAN, WAN, or
Internet

Motivation(s)

• Enterprise data integration; web-site construction.

• WWW:
– Comparison shopping

– Portals integrating data from multiple sources

– B2B, electronic marketplaces

• Science and culture:
– Medical genetics: integrating genomic data

– Astrophysics: monitoring events in the sky.

– Environment: Puget Sound Regional Synthesis Model

– Culture: uniform access to all cultural databases
produced by countries in Europe.

And if that wasn’t enough…

• Explosion of intranet and
extranet information

• 80% of corporate information
is unmanaged

• By 2004 30X more enterprise
data than 1999

• The average company:
– maintains 49 distinct

enterprise applications
– spends 35% of total IT

budget on integration-
related efforts

1995 1997 1999 2001 2003 2005

Enterprise Information

Source: Gartner, 1999

Discussion

• Why is it hard?

• How will we solve it?

Current Solutions

• Mostly ad-hoc programming: create a
special solution for every case; pay
consultants a lot of money.

• Data warehousing: load all the data
periodically into a warehouse.
– 6-18 months lead time
– Separates operational DBMS from decision

support DBMS. (not only a solution to data
integration).

– Performance is good; data may not be fresh.
– Need to clean, scrub you data.

Data Warehouse Architecture

Data
source

Data
source

Data
source

Relational database (warehouse)

User queries

Data extraction
programs

Data cleaning/
scrubbing

OLAP / Decision support/
Data cubes/ data mining



8

The Virtual Integration
Architecture

• Leave the data in the sources.
• When a query comes in:

– Determine the relevant sources to the query
– Break down the query into sub-queries for the

sources.
– Get the answers from the sources, and combine

them appropriately.

• Data is fresh.
• Challenge: performance.

Virtual Integration Architecture

Data
source

wrapper

Data
source

wrapper

Data
source

wrapper

Sources can be: relational, hierarchical (IMS), structure files, web sites.

Mediator:

User queries
Mediated schema

Data source
catalog

Reformulation engine

optimizer

Execution engine
Which data

model?

Research Projects

• Garlic (IBM),

• Information Manifold (AT&T)

• Tsimmis, InfoMaster (Stanford)

• The Internet Softbot/Razor/Tukwila (UW)

• Hermes (Maryland)

• DISCO (INRIA, France)

• SIMS/Ariadne (USC/ISI)

Dimensions to Consider

• How many sources are we accessing?

• How autonomous are they?

• Meta-data about sources?

• Is the data structured?

• Queries or also updates?

• Requirements: accuracy, completeness,
performance, handling inconsistencies.

• Closed world assumption vs. open world?

Outline

• Wrappers

• Semantic integration and source
descriptions:
– Modeling source completeness

– Modeling source capabilities

• Query optimization

• Query execution (mostly Zack)

Wrapper Programs

• Task: to communicate with the data sources
and do format translations.

• They are built w.r.t. a specific source.

• They can sit either at the source or at the
mediator.

• Often hard to build (very little science).

• Can be “intelligent”: perform source-
specific optimizations.



9

Example
<b> Introduction to DB </b>
<i> Phil Bernstein </i>
<i> Eric Newcomer </i>
Addison Wesley, 1999

<book>
<title> Introduction to DB </title>
<author> Phil Bernstein </author>
<author> Eric Newcomer </author>
<publisher> Addison Wesley </publisher>
<year> 1999 </year>
</book>

Transform:

into:

Data Source Catalog
• Contains all meta-information about the

sources:
– Logical source contents (books, new cars).
– Source capabilities (can answer SQL queries)
– Source completeness (has all books).
– Physical properties of source and network.
– Statistics about the data (like in an RDBMS)
– Source reliability
– Mirror sources
– Update frequency.

Content Descriptions

• User queries refer to the mediated schema.

• Data is stored in the sources in a local
schema.

• Content descriptions provide the semantic
mappings between the different schemas.

• Data integration system uses the
descriptions to translate user queries into
queries on the sources.

Desiderata from Source
Descriptions

• Expressive power: distinguish between
sources with closely related data. Hence, be
able to prune access to irrelevant sources.

• Easy addition: make it easy to add new data
sources.

• Reformulation: be able to reformulate a user
query into a query on the sources efficiently
and effectively.

Reformulation Problem

• Given:
– A query Q posed over the mediated schema

– Descriptions of the data sources

• Find:
– A query Q’ over the data source relations, such

that:
• Q’ provides only correct answers to Q, and

• Q’ provides all possible answers from to Q given
the sources.

Approaches to Specifying Source
Descriptions

• Global-as-view: express the mediated
schema relations as a set of views over the
data source relations

• Local-as-view: express the source relations
as views over the mediated schema.

• Can be combined with no additional cost.



10

Global-as-View
Mediated schema:

Movie(title, dir, year, genre),
Schedule(cinema, title, time).

Create View Movie AS
select * from S1 [S1(title,dir,year,genre)]
union
select * from S2 [S2(title, dir,year,genre)]
union [S3(title,dir), S4(title,year,genre)]
select S3.title, S3.dir, S4.year, S4.genre
from S3, S4
where S3.title=S4.title

Global-as-View: Example 2
Mediated schema:

Movie(title, dir, year, genre),
Schedule(cinema, title, time).

Create View Movie AS [S1(title,dir,year)]
select title, dir, year, NULL
from S1
union [S2(title, dir,genre)]
select title, dir, NULL, genre
from S2

Global-as-View: Example 3
Mediated schema:

Movie(title, dir, year, genre),
Schedule(cinema, title, time).

Source S4: S4(cinema, genre)
Create View Movie AS

select NULL, NULL, NULL, genre
from S4

Create View Schedule AS
select cinema, NULL, NULL
from S4.

But what if we want to find which cinemas are playing
comedies?

Global-as-View Summary

• Query reformulation boils down to view
unfolding.

• Very easy conceptually.
• Can build hierarchies of mediated schemas.
• You sometimes loose information. Not

always natural.
• Adding sources is hard. Need to consider all

other sources that are available.

Local-as-View: example 1
Mediated schema:

Movie(title, dir, year, genre),
Schedule(cinema, title, time).

Create Source S1 AS
select * from Movie

Create Source S3 AS [S3(title, dir)]
select title, dir from Movie

Create Source S5 AS
select title, dir, year
from Movie
where year > 1960 AND genre=“Comedy”

Local-as-View: Example 2
Mediated schema:

Movie(title, dir, year, genre),
Schedule(cinema, title, time).

Source S4: S4(cinema, genre)
Create Source S4

select cinema, genre
from Movie m, Schedule s
where m.title=s.title

.
Now if we want to find which cinemas are playing

comedies, there is hope!



11

Local-as-View Summary

• Very flexible. You have the power of the
entire query language to define the contents
of the source.

• Hence, can easily distinguish between
contents of closely related sources.

• Adding sources is easy: they’re independent
of each other.

• Query reformulation: answering queries
using views!

The General Problem

• Given a set of views V1,…,Vn, and a query
Q, can we answer Q using only the answers to
V1,…,Vn?

• Many, many papers on this problem.

• The best performing algorithm: The MiniCon
Algorithm, (Pottinger & Levy, 2000).

• Great survey on the topic: (Halevy, 2000).

Local Completeness Information

• If sources are incomplete, we need to look
at each one of them.

• Often, sources are locally complete.
• Movie(title, director, year) complete for

years after 1960, or for American directors.
• Question: given a set of local completeness

statements, is a query Q’ a complete answer
to Q?

Example

• Movie(title, director, year) (complete after
1960).

• Show(title, theater, city, hour)

• Query: find movies (and directors) playing
in Seattle:

Select m.title, m.director

From Movie m, Show s

Where m.title=s.title AND city=“Seattle”

• Complete or not?

Example #2

• Movie(title, director, year), Oscar(title, year)

• Query: find directors whose movies won
Oscars after 1965:

select m.director

from Movie m, Oscar o

where m.title=o.title AND m.year=o.year
AND o.year > 1965.

• Complete or not?

Query Optimization

• Very related to query reformulation!

• Goal of the optimizer: find a physical plan
with minimal cost.

• Key components in optimization:
– Search space of plans

– Search strategy

– Cost model



12

Optimization in Distributed
DBMS

• A distributed database (2-minute tutorial):
– Data is distributed over multiple nodes, but is

uniform.

– Query execution can be distributed to sites.

– Communication costs are significant.

• Consequences for optimization:
– Optimizer needs to decide locality

– Need to exploit independent parallelism.

– Need operators that reduce communication
costs (semi-joins).

DDBMS vs. Data Integration

• In a DDBMS, data is distributed over a set
of uniform sites with precise rules.

• In a data integration context:
– Data sources may provide only limited access

patterns to the data.
– Data sources may have additional query

capabilities.
– Cost of answering queries at sources unknown.
– Statistics about data unknown.
– Transfer rates unpredictable.

Modeling Source Capabilities

• Negative capabilities:
– A web site may require certain inputs (in an

HTML form).
– Need to consider only valid query execution

plans.

• Positive capabilities:
– A source may be an ODBC compliant system.
– Need to decide placement of operations

according to capabilities.

• Problem: how to describe and exploit
source capabilities.

Example #1: Access Patterns

Mediated schema relation: Cites(paper1, paper2)

Create Source S1 as
select *
from Cites
given paper1

Create Source S2 as
select paper1
from Cites

Query: select paper1 from Cites where paper2=“Hal00”

Example #1: Continued

Create Source S1 as
select *
from Cites
given paper1

Create Source S2 as
select paper1
from Cites

Select p1
From S1, S2
Where S2.paper1=S1.paper1 AND S1.paper2=“Hal00”

Example #2: Access Patterns
Create Source S1 as

select *
from Cites
given paper1

Create Source S2 as
select paperID
from UW-Papers

Create Source S3 as
select paperID
from AwardPapers
given paperID

Query: select * from AwardPapers



13

Example #2: Solutions
• Can’t go directly to S3 because it requires a

binding.

• Can go to S1, get UW papers, and check if they’re
in S3.

• Can go to S1, get UW papers, feed them into S2,
and feed the results into S3.

• Can go to S1, feed results into S2, feed results into
S2 again, and then feed results into S3.

• Strictly speaking, we can’t a priori decide when to
stop.

• Need recursive query processing.

Handling Positive Capabilities

• Characterizing positive capabilities:
– Schema independent (e.g., can always perform joins,

selections).
– Schema dependent: can join R and S, but not T.
– Given a query, tells you whether it can be handled.

• Key issue: how do you search for plans?
• Garlic approach (IBM): Given a query, STAR

rules determine which subqueries are executable
by the sources. Then proceed bottom-up as in
System-R.

Matching Object Across Sources

• How do I know that A. Halevy in source 1 is the
same as Alon Halevy in source 2?

• If there are uniform keys across sources, no
problem.

• If not:
– Domain specific solutions (e.g., maybe look at the

address, ssn).

– Use Information retrieval techniques (Cohen, 98).
Judge similarity as you would between documents.

– Use concordance tables. These are time-consuming to
build, but you can then sell them for lots of money.

Optimization and Execution

• Problem:
– Few and unreliable statistics about the data.
– Unexpected (possibly bursty) network transfer

rates.
– Generally, unpredictable environment.

• General solution: (research area)
– Adaptive query processing.
– Interleave optimization and execution. As you

get to know more about your data, you can
improve your plan.

Optimizer

(Re-)
Optimizer

MemAlloc-
Fragmenter

Execution
Engine

Temp Store

Event
Handler

Query
Operators

Reformulator

Catalog

source mappings

query
logical
plan

exec
plan answer

data

exec
results

Tukwila Data Integration System

Novel components:
– Event handler
– Optimization-execution loop


