Introduction to D atabase System s CSEP 544

Lecture #1 M arch 29,2004 A lon Halevy

Staff

- Instructor: A lon H alevy
 - Allen Center, Room 576, alon@cswashington.edu
 - Office hours: Just before class (or by em ail)
- TA : Stefan (Stebbi) Sigurdsson
 - stebbi@cs.washington.edu
 - Office hours: TBA

Communications

• Webpage:

http://www.cswashington.edu/education/courses /csep544/04sp/

• Mailing list: follow the directions at http://mailman.cs.washington.edu/csenetid/aut h/mailman/listinfo/csep544

- Database Implementation, HectorGarcia-Molina, Jeff Ullman and JenniferWidom
- Comments on the textbook

0 ther Texts

- Database Management Systems, Ramaknishnan - very comprehensive
- Fundamentals of Database Systems, Elmasri, Navathe very witely used
- Foundations of D atabases, A biteboul, Hull, V ianu
 M ostly theory of databases
- Data on the Web, Abiteboul, Buneman, Suciu - XML and other new /advanced stuff

O ther R equired R eadings There will be reading assignments from the Web:

- SQ L for W eb N erds, by Philip G reenspun, http://philip greenspun.com /sql/
- O thers, especially for XM L

For SQL, a good source of information is the MSDN library (on yourW indowsmachine)

Course Structure

- Prerequisites: D ata structures course
- Work & Grading:
 - Hom ework 30% : 3 of them , som e light program m ing.
 - Project: 35% com ing up next.
 - Final: 35% (Discuss date)

The Project

- Important component of the course.
- 2 Phases.
- I'lltellyou about phase 2 later.
- Phase 1:
- Y ou build a database application on your ow n.
- The dom ain of the application is inventory of som e sort.
- The application will have a simple web interface.
- D one by the end of week 4.

Today

- M otivation: why do we want databases.
- Overview of database system s
 - Reading assignment from SQL for Web Nerds, by Philip Greenspun, Introduction http://philip.greenspun.com/sql/
- Course Outline.
- Basic elements of SQL

W hat Is a Relational D atabase M anagement System ?

DatabaseManagementSystem = DBMS RelationalDBMS = RDBMS

- A program that makes it easy for you to manipulate large amounts of data.
- Frees you from thinking about details. Enables you to focus on your challenges.

Where are RDBMS used?

- Backend for traditional "database" applications
 - Students and courses at a university
 - Bank accounting
 - A irline reservations
 - M ovie listings
- Backend for large W ebsites
- Backend for Web services

11

Example of a Traditional D atabase A pplication

Suppose we are building a system

- to store the inform ation about:
- students
- courses
- professors
- who takes what, who teaches what

- D ata m anagem ent is m ore than databases.
- Imagine:
 - Complete Traffic Information Availability
 - M yN ædedBitsAnytime,Anywhere
 - < your favorite visionary application here>
- The techniques we learn are the principles of m anaging data anyw here.

- Write application program susing the DBM S
- way easier now that the data management is taken care of. $$_{\rm 21}$$

New Trends in Databases

- Object-relational databases
- Mainmemory database systems
- XMLXMLXML!
 - Relational databases with XM L support
 - M iddlew are between XM L and relational databases
 - Native XM L database system s
- Lots of research here at UW on XM L and databases
- Data integration
- Peer to peer, stream data m anagem ent still research

The Study of DBM S

- Several aspects:
 - M odeling and design of databases
 - D atabase program m ing: querying and update operations

28

- Database im plem entation
- DBM S study cuts across m any fields of Computer Science: OS, languages, A I, Logic, m ultim edia, theory...

Course Outline (m ay vary slightly)

PartI

- SQL (Chapter 7) and its advanced features.
- Database design (Chapters 2, 3, 7)
- XML, XPath, XQuery
- Data storage, indexes (Chapters 11-13)
- Query execution and optim ization (Chapter 15, 16)
- Data integration, meta-data management

Table name A ttribute nam es /he Relational Model (Co Product PN am e Price C ategory M anufacturer Gizmo \$19.99 G adgets G izm oW orks Pow ergizm o \$29.99 G adgets G izm oW orks SingleTouch \$149.99 Photography C anon M ultiTouch \$203.99 Household H itachi Tuplesorrows 30

29

SQL Introduction

Standard language for querying and manipulating data

Structured Query Language

- M any standards out there:
- •ANSISQL
- •SQL92 (aka.SQL2)
- •SQL99 (aka.SQL3)
- V endors support various subsets of these
- •W hat we discuss is common to all of them

31

33

- 1. A tom ic types, a k a. data types
- 2. Tables built from atom ic types

Unlike XM L, no nested tables, only flat tables are allow ed! We will see laterhow to decompose complex structures into m ultiple flat tables

Data Types in SQL

- Characters:
 - CHAR (20) — fixed length
 - VARCHAR (40) vaniable length
 - Numbers: BIG INT, INT, SMALLINT, TINY INT - REAL, FLOAT - differ in precision
- MONEY
- T in es and dates:
- DATE
- DATETIM E
- -SQL Server 0 thers... A llare sim ple

Sim	ple SÇ)LQu	iery	
Product	PN am e	Price	Category	M anufacturer
	G izm o	\$19.99	G adgets	G izm oW ozks
	Pow engizm o	\$29.99	G adgets	G izm oW ozks
	SingleTouch	\$149.99	Photography	Canon
	M ultiFouch	\$203 <i>.</i> 99	Household	H itachi
SELECT * FROM Product WHERE category=Ga	dgets'		\int	
[PN am e	Price	Category	M anufacturer
	Gizmo	\$19.99	G adgets	G izm oW orks
("selection")	Pow ergizm o	\$29.99	G adgets	G izm oW orks
				38

FirstUnintuitive SQL ism

SELECT RA FROM R,S,T WHERE RA=SA OR RA=TA

Looking for R ' (S " T)

ButwhathappensifT is empty?

Exercises
Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Company (mame, stock price, country)
Person (pername, phone number, city)
Ex #1: Find people who bought telephony products.
Ex #2: Find names of people who bought A merican products
Ex #3: Find names of people who bought A merican products and they
like in Seattle.
Ex #4: Find people who have both bought and sold som ething.
Ex #5: Find people who bought stuff from Joe orbought products
from a company whose stock prices ismore than \$50.

Union, Intersection, Difference

57

FROM Person

WHERE City="Seattle")

UNION

(SELECT name FROM Person, Purchase WHERE buyer≐nameAND store="TheBon")

Sim ilarity, you can use IN TERSECT and EXCEPT. You must have the same attribute names (otherwise: rename). 59

Subqueries	
A subquery producing a single value: SELECT Purchase product FROM Purchase W HERE buyer= (SELECT name FROM Person W HERE san = '123456789');	
In this case, the subquery returns one value. If it returns m ore, it's a run-tim e error.	
	61

Subqueries R eturning R elations Find companies who manufacture products bought by Joe B low . SELECT Company name FROM Company, Product W HERE Company name=Productmaker AND Productname IN (SELECT Purchase product FROM Purchase W HERE Purchase buyer= 'Joe B low ');

H ere the subquery returns a set of values: no m ore nuntim e errors.

63

Subqueries R eturning R elations

Equivalent to:

SELECT Company name FROM Company, Product, Purchase WHERE Company name=Productmaker AND Productname = Purchase product AND Purchase buyer= Voe B bw '

64

Is this query equivalent to the previous one ?

Beware of duplicates !

V HERE price > ALL (SELECT price FROM Purchase W HERE maker≃ Gizmo-Works')

Question for D atabase Fans and their Friends • Can we express this query as a single SELECT-FROM -W HERE query, without subqueries ? • H int: show that all SFW queries are m onotone (figure out w hat this m eans). A query with ALL

68

is not m onotone

M ay notwork in SQL server...

Simple Aggregation Purchase (product, date, price, quantity) Example 1: find total sales for the entire database SELECT Sum (price * quantity) FROM Purchase Example 1': find total sales of bagels SELECT Sum (price * quantity) FROM Purchase WHERE product= 'bagel' 75

Simple Aggregations

10.61		
10/21	0.85	15
10/22	0.52	7
10/19	0.52	17
10/20	0.85	20
-	10/22 10/19 10/20	10/22 0.52 10/19 0.52 10/20 0.85

G rouping and Aggregation
J sually, we want aggregations on certain parts of the relation.
Purchase (product, date, price, quantity)
Example 2: find total sales after 10/1 per product.
SELECT product, Sum (price*quantity) AS TotalSales FROM Purchase W HERE date > "10/1" GROUPBY product
Let's see w hat this m eans

77

G rouping and Aggregation

1.Compute the FROM and W HERE clauses.

2.G roup by the attributes in the GROUPBY

3. Selectone tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

First compute the FROM -WHERE clauses (date > "10/1") then GROUPBY product:			
Product	Date	Price	Quantity
Banana	10/19	0.52	17
Banana	10/22	0.52	7
Bagel	10/20	0.85	20
Bagel	10/21	0.85	15
L			79

	AnotherE	xample	
Product	Sum Sales	M axQ uantity	
Banana	\$12 <i>.</i> 48	17	
Bagel	\$29.75	20	
or every proc	luct, w hat is the total	sales and m ax quar	ntity sold?
SELECT	product, Sum (price M ax (quant	* quantity) A S Sum tity) A S M axO uanti	i Sales itv
FROM	Purchase		

