
1

1

Introduction to Database Systems
CSEP 544

Lecture #1

M arch 29, 2004

Alon Halevy

2

Staff
• Instructor: Alon Halevy

– Allen Center, Room 576, alon@ cs.washington.edu
– Office hours: Just before class (or by email)

• TA: Stefan (Stebbi) Sigurdsson
– stebbi@ cs.washington.edu

– Office hours: TBA

3

Communications
• W eb page:

http://www.cs.washington.edu/education/courses
/csep544/04sp/

• M ailing list: follow the directions at
http://mailman.cs.washington.edu/csenetid/aut
h/mailman/listinfo/csep544

4

Textbook(s)

M ain textbook, available at the bookstore:

• Database Systems: The Complete Book, Hector
Garcia-M olina, Jeffrey Ullman, Jennifer W idom

Almost identical, and also available at the bookstore:
• A First Course in Database Systems, Jeff Ullman
and Jennifer W idom

• Database Implementation, Hector Garcia-M olina,
Jeff Ullman and Jennifer W idom

• Comments on the textbook

5

Other Texts

• Database M anagement Systems,Ramakrishnan
– very comprehensive

• Fundamentals of Database Systems, Elmasri, Navathe
– very widely used

• Foundations of Databases, Abiteboul, Hull, Vianu
– M ostly theory of databases

• Data on the W eb,Abiteboul, Buneman, Suciu
– XM L and other new/advanced stuff

6

Other Required Readings

There will be reading assignments from the W eb:

• SQ L for W eb Nerds, by Philip Greenspun,
http://philip.greenspun.com/sql/

• Others, especially for XM L

For SQL, a good source of information is the
M SDN library (on your W indows machine)

2

7

Course Structure

• Prerequisites: Data structures course

• W ork & Grading:
– Homework 30% : 3 of them, some light
programming.

– Project: 35% -coming up next.

– Final: 35% (Discuss date)

8

The Project

• Important component of the course.

• 2 Phases.

• I’ll tell you about phase 2 later.

• Phase 1:
– You build a database application on your own.

– The domain of the application is inventory of some
sort.

– The application will have a simple web interface.

– Done by the end of week 4.

9

Today

• M otivation: why do we want databases.

• Overview of database systems
– Reading assignment from SQ L for W eb
Nerds, by Philip Greenspun, Introduction
http://philip.greenspun.com/sql/

• Course Outline.

• Basic elements of SQL

10

W hat Is a Relational Database
M anagement System ?

Database M anagement System = DBM S

Relational DBM S = RDBM S

• A program that makes it easy for you to
manipulate large amounts of data.

• Frees you from thinking about details.
Enables you to focus on your challenges.

11

W here are RDBM S used ?

• Backend for traditional “database”
applications
– Students and courses at a university
– Bank accounting

– Airline reservations

– M ovie listings

• Backend for large W ebsites
• Backend for W eb services

12

Example of a Traditional
Database Application

Suppose we are building a system

to store the information about:

• students

• courses

• professors

• who takes what, who teaches what

3

13

Data M anagement

• Data management is more than databases.

• Imagine:
– Complete Traffic Information Availability

– M yNeededBits Anytime, Anywhere

– <your favorite visionary application here>

• The techniques we learn are the principles
of managing data anywhere.

14

Can we do it without a DBM S ?

Sure we can! Start by storing the data in files:

students.txt courses.txt professors.txt

Now write C or Java programs to implement
specific tasks

15

Doing it without a DBM S...

• Enroll “M ary Johnson” in “CSE444”:

Read ‘students.txt’
Read ‘courses.txt’
Find&update the record “M ary Johnson”
Find&update the record “CSE444”
W rite “students.txt”
W rite “courses.txt”

W rite a C program to do the following:

16

Problems without a DBM S...

• System crashes:

– W hat is the problem ?

• Large data sets (say 50GB)
– W hat is the problem ?

• Simultaneous access by many users
– Need locks: we know them from OS, but now data on disk;
and is there any fun to re-implement them ?

Read ‘students.txt’
Read ‘courses.txt’
Find& update the record “M ary Johnson”
Find& update the record “CSE444”
W rite “students.txt”
W rite “courses.txt”

CRASH !

17

Enters a DM BS

Data files

Database server
(someone else’s
C program) Applications

connection

(ODBC, JDBC)

“Two tier database system”

18

Functionality of a DBM S

The programmer sees SQL, which has two components:

• Data Definition Language -DDL

• Data M anipulation Language -DM L
– query language

Behind the scenes the DBM S has:

• Query optimizer

• Query engine
• Storage management

• Transaction M anagement (concurrency, recovery)

4

19

How the Programmer Sees the
DBM S

• Start with DDL to create tables:

• Continue with DM L to populate tables:

CREATE TABLE Students (
Name CHAR(30)
SSN CHAR(9) PRIM ARY KEY NOT NULL,
Category CHAR(20)

) . . .

INSERT INTO Students
VALUES(‘Charles’, ‘123456789’, ‘undergraduate’)
. . . .

20

How the Programmer Sees the
DBM S

• Tables:

• Still implemented as files, but behind the scenes can
be quite complex

SSN Name Category
123-45-6789 Charles undergrad
234-56-7890 Dan grad

� �

SSN CID
123-45-6789 CSE444
123-45-6789 CSE444
234-56-7890 CSE142

�

Students: Takes:

CID Name Quarter
CSE444 Databases fall
CSE541 Operating systems winter

Courses:

“data independence” = separate logicalview
from physical implementation

21

Building an Application with a
DBM S

• Requirements modeling (conceptual, pictures)
– Decide what entities should be part of the application and
how they should be linked.

• Schema design and implementation
– Decide on a set of tables, attributes.

– Define the tables in the database system.

– Populate database (insert tuples).

• W rite application programs using the DBM S
– way easier now that the data management is taken care of.

22

Transactions

• Enroll “M ary Johnson” in “CSE444”:
BEGIN TRANSACTION;

INSERT INTO Takes
SELECT Students.SSN, Courses.CID
FROM Students, Courses
W HERE Students.name = ‘M ary Johnson’ and

Courses.name = ‘CSE444’

--M ore updates here....

IF everything-went-OK
THEN COM M IT;

ELSE ROLLBACK

If system crashes, the transaction is still either committed or aborted

23

Transactions

• A transaction= sequence of statements that
either all succeed, or all fail

• Transactions have the ACID properties:
A = atomicity

C = consistency

I = independence

D = durability

24

Queries

• Find all courses that “M ary” takes

• W hat happens behind the scene ?
– Query processor figures out how to answer the
query efficiently.

SELECT C.name
FROM Students S, Takes T, Courses C
W HERE S.name=“M ary” and

S.ssn = T.ssn and T.cid = C.cid

5

25

Queries, behind the scene

Imperative query execution plan:

SELECT C.name
FROM Students S, Takes T, Courses C
W HERE S.name=“M ary” and

S.ssn = T.ssn and T.cid = C.cid

Declarative SQL query

Students Takes

sid=sid

snam e

nam e=“M ary”

cid=cid

Courses

The optim izer chooses the best execution plan for a query 26

Database Systems

• The big commercial database vendors:
– Oracle
– IBM (with DB2) bought Informix recently

– M icrosoft (SQL Server)

– Sybase

• Som e free database systems (Unix) :
– Postgres

– M ysql

– Predator

• In CSEP544 we use SQL Server. You may use
something else, but you are on your own.

27

New Trends in Databases

• Object-relational databases

• M ain memory database systems
• XM L XM L XM L !

– Relational databases with XM L support

– M iddleware between XM L and relational databases

– Native XM L database systems
– Lots of research here at UW on XM L and databases

• Data integration

• Peer to peer, stream data management –still research

28

The Study of DBM S

• Several aspects:
– M odeling and design of databases

– Database programming: querying and update
operations

– Database implementation

• DBM S study cuts across many fields of
Computer Science: OS, languages, AI,
Logic, multimedia, theory...

29

Course Outline
(may vary slightly)

Part I

• SQL (Chapter 7) and its advanced features.

• Database design (Chapters 2, 3, 7)

• XM L, XPath, XQuery

• Data storage, indexes (Chapters 11-13)

• Query execution and optimization (Chapter 15,16)

• Data integration, meta-data management

30

The Relational M odel (Codd)

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePName

Product

Attribute namesTable name

Tuples or rows

6

31

SQL Introduction
Standard language for querying and manipulating data

Structured Query Language

M any standards out there:
•ANSI SQL
•SQL92 (a.k.a. SQL2)
•SQL99 (a.k.a. SQL3)
•Vendors support various subsets of these
•W hat we discuss is common to all of them

32

SQL

• Data Definition Language (DDL)
– Create/alter/delete tables and their attributes
– Following lectures...

• Data M anipulation Language (DM L)
– Query one or more tables –discussed next !

– Insert/delete/modify tuples in tables

• Transact-SQL
– Idea: package a sequence of SQL statements server

– W on’t discuss in class

33

Data in SQL

1. Atomic types, a.k.a. data types

2. Tables built from atomic types

Unlike XM L, no nested tables, only flat tables are allowed!
– W e will see later how to decompose complex structures into

multiple flat tables

34

Data Types in SQL

• Characters:
– CHAR(20) --fixed length
– VARCHAR(40)--variable length

• Numbers:
– BIGINT, INT, SM ALLINT, TINYINT
– REAL, FLOAT --differ in precision
– M ONEY

• Times and dates:
– DATE
– DATETIM E --SQL Server

• Others... All are simple

35

Tables Explained

• A tuple = a record
– Restriction: all attributes are of atomic type

• A table = a set of tuples
– Like a list…

– … but it is unordered: no first(), no next(), no last().

36

Tables Explained

• The schemaof a table is the table name and
its attributes:

Product(PName, Price, Category, M anfacturer)

• A keyis an attribute whose values are unique;
we underline a key

Product(PName, Price, Category, M anfacturer)

7

37

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT attributes
FROM relations (possibly multiple)
W HERE conditions (selections)

38

Simple SQL Query

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePName

SELECT *
FROM Product
W HERE category=‘Gadgets’

Product

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePName

“selection”

39

Simple SQL Query

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePName

SELECT PName, Price, M anufacturer
FROM Product
W HERE Price > 100

Product

Hitachi$203.99M ultiTouch

Canon$149.99SingleTouch

M anufacturerPricePName

“selection” and
“projection”

40

A Notation for SQL Queries

SELECT PName, Price, M anufacturer
FROM Product
W HERE Price > 100

Product(PName, Price, Category, M anfacturer)

Answer(PName, Price, M anfacturer)

Input Schema

Output Schema

41

Selections

W hat goes in the W HERE clause:

• x = y, x < y, x <= y, etc
– For numbers, they have the usual meanings

– For CHAR and VARCHAR: lexicographic ordering

• Expected conversion between CHAR and VARCHAR

– For dates and times, what you expect...

• Pattern matching on strings...

42

The LIKE operator

• s LIKE p: pattern matching on strings

• p may contain two special symbols:
– % = any sequence of characters

– _ = any single character

Product(PName, Price, Category, M anufacturer)
Find all products whose name mentions ‘gizmo’:

SELECT *
FROM Products
W HERE PName LIKE ‘% gizmo% ’

8

43

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Household

Photography

Gadgets

Gadgets

Category

Household

Photography

Gadgets

Category

44

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
W HERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ordering is ascending, unless you specify the DESC keyword.

Ties are broken by the second attribute on the ORDER BY list, etc.

45

Ordering the Results

SELECT category
FROM Product
ORDER BY pname

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePName

?
46

Ordering the Results

SELECT DISTINCT category
FROM Product
ORDER BY category

Compare to:

Photography

Household

Gadgets

Category

SELECT DISTINCT category
FROM Product
ORDER BY pname ?

47

Joins in SQL

• Connect two or m ore tables:

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

GizmoW orksGadgets$29.99Powergizmo

GizmoW orksGadgets$19.99Gizmo

M anufacturerCategoryPricePNameProduct

Company

Japan15Hitachi

Japan65Canon

USA25GizmoW orks

CountryStockPriceCname

W hat is
the connection

between
them ? 48

Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT pname, price
FROM Product, Company
W HERE manufacturer=cname AND country=‘Japan’

AND price <= 200

Join
between Product
and Company

9

49

Joins in SQL

HitachiHousehold$203.99M ultiTouch

CanonPhotography$149.99SingleTouch

Gizm oW orksGadgets$29.99Powergizm o

Gizm oW orksGadgets$19.99Gizm o

M anufacturerCategoryPricePName

Product Company

Japan15Hitachi

Japan65Canon

USA25Gizm oW orks

CountryStockPriceCname

$149.99SingleTouch

PricePName

SELECT pname, price
FROM Product, Company
W HERE manufacturer=cname AND country=‘Japan’

AND price <= 200

50

Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture some product in the
‘Gadgets’ category.

SELECT country
FROM Product, Company
W HERE manufacturer=cname AND category=‘Gadgets’

51

Joins
Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Person(persname, phoneNumber, city)

Find names of people living in Seattle that bought some
product in the ‘Gadgets’ category, and the names of the
stores they bought such product from

SELECT DISTINCT persname, store
FROM Person, Purchase, Product
W HERE persname=buyer AND product = pname AND

city=‘Seattle’ AND category=‘Gadgets’ 52

W hen are two tables related?

• You guess they are

• I tell you so

• Foreign keys are a method for schema designers to tell you
so (7.1)
– A foreign key states that a column is a reference to the key of
another table
ex: Product.manufactureris foreign key of Company

– Gives information and enforces constraint

53

Disambiguating Attributes

• Sometimes two relations have the same attr:
Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT pname, address
FROM Person, Company
W HERE worksfor = cname

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
W HERE Person.worksfor = Company.cname

W hich
address ?

54

Tuple Variables

SELECT DISTINCT x.store
FROM Purchase AS x, Purchase AS y
W HERE x.product = y.product AND y.store = ‘BestBuy’

Find all stores that sold at least one product that the store
‘BestBuy’ also sold:

Answer (store)

Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Person(persname, phoneNumber, city)

10

55

Tuple Variables
General rule:
tuple variables introduced automatically by the system:

Product (name, price, category, manufacturer)

Becomes:

Doesn’t work when Product occurs more than once:
In that case the user needs to define variables explicitly.

SELECT name
FROM Product
W HERE price > 100

SELECT Product.name
FROM Product AS Product
W HERE Product.price > 100

56

M eaning (Semantics) of SQL
Queries

SELECT a1, a2, … , ak
FROM R1 AS x1, R2 AS x2, … , Rn AS xn
W HERE Conditions

1. Nested loops:

Answer = {}
forx1 in R1 do

forx2 in R2 do
… ..

forxn in Rn do
ifConditions

then Answer = Answer ̈ {(a1,… ,ak)}
return Answer

57

First Unintuitive SQLism

SELECT R.A
FROM R, S, T
W HERE R.A=S.A OR R.A=T.A

Looking for R (S T)

But what happens if T is empty?

˙ ¨

58

Exercises

Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Company (cname, stock price, country)
Person(per-name, phone number, city)

Ex #1:Find people who bought telephony products.
Ex #2:Find names of people who bought American products
Ex #3:Find names of people who bought American products and they

live in Seattle.
Ex #4: Find people who have both bought and sold something.
Ex #5: Find people who bought stuff from Joe or bought products

from a company whose stock prices is more than $50.

59

Union, Intersection, Difference
(SELECT name
FROM Person
W HERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
W HERE buyer=name AND store=“The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
You must have the same attribute names (otherwise: rename). 60

Conserving Duplicates

(SELECT name
FROM Person
W HERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
W HERE buyer=name AND store=“The Bon”)

11

61

Subqueries

A subquery producing a single value:

In this case, the subquery returns one value.

If it returns more, it’s a run-time error.

SELECT Purchase.product
FROM Purchase
W HERE buyer =

(SELECT name
FROM Person
W HERE ssn = ‘123456789‘);

62

Can say the same thing without a subquery:

This is equivalent to the previous one when the ssn is a key
and ‘123456789’ exists in the database;
otherwise they are different.

SELECT Purchase.product
FROM Purchase, Person
W HERE buyer = name AND ssn = ‘123456789‘

63

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product
W HERE Company.name=Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
W HERE Purchase .buyer = ‘Joe Blow‘);

Find companies who manufacture products bought by Joe Blow.

Here the subquery returns a set of values: no more
runtime errors. 64

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product, Purchase
W HERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

Equivalent to:

Is this query equivalent to the previous one ?

Beware of duplicates !

65

Removing Duplicates
SELECT Company.name
FROM Company, Product, Purchase
W HERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
W HERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

�M ultiple copies

� Single copies

66

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
W HERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product
W HERE Company.name= Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
W HERE Purchase.buyer = ‘Joe Blow’)

Now
they are
equivalent

12

67

Subqueries Returning Relations

SELECT name
FROM Product
W HERE price > ALL (SELECT price

FROM Purchase
W HERE maker=‘Gizmo-W orks’)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-W orks”

You can also use: s > ALL R
s > ANY R
EXISTS R

68

Question for Database Fans
and their Friends

• Can we express this query as a single SELECT-
FROM -W HERE query, without subqueries ?

• Hint: show that all SFW queries are monotone
(figure out what this means). A query with ALL
is not monotone

69

Conditions on Tuples

SELECT DISTINCT Company.name
FROM Company, Product
W HERE Company.name= Product.maker

AND (Product.name,price) IN
(SELECT Purchase.product, Purchase.price)
FROM Purchase
W HERE Purchase.buyer = “Joe Blow”);

M ay not work in SQL server...

70

Correlated Queries

SELECT DISTINCT title
FROM M ovie AS x
W HERE year <> ANY

(SELECT year
FROM M ovie
W HERE title = x.title);

M ovie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

71

Complex Correlated Query

Product (pname, price, category, maker, year)

• Find products (and their manufacturers) that are more expensive
than all products made by the same manufacturer before 1972

Powerful, but much harder to optimize !

SELECT DISTINCT pname, maker
FROM Product AS x
W HERE price > ALL (SELECT price

FROM Product AS y
W HERE x.maker = y.m aker AND y.year < 1972);

72

Aggregation

SELECT Avg(price)
FROM Product
W HERE maker=“Toyota”

SQL supports several aggregation operations:

SUM , M IN, M AX, AVG, COUNT

13

73

Aggregation: Count

SELECT Count(*)
FROM Product
W HERE year > 1995

Except COUNT, all aggregations apply to a single attribute

74

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category) same as Count(*)
FROM Product
W HERE year > 1995

Better:

SELECT Count(DISTINCT category)
FROM Product
W HERE year > 1995

75

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price * quantity)
FROM Purchase

Example 1’: find total sales of bagels

SELECT Sum(price * quantity)
FROM Purchase
W HERE product = ‘bagel’

76

Simple Aggregations

Product Date Price Quantity

Bagel 10/21 0.85 15

Banana 10/22 0.52 7

Banana 10/19 0.52 17

Bagel 10/20 0.85 20

Purchase

77

Grouping and Aggregation
Usually, we want aggregations on certain parts of the relation.

Purchase(product, date, price, quantity)

Example 2: find total sales after 10/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
W HERE date > “10/1”
GROUPBY product

Let’s see what this means…
78

Grouping and Aggregation

1. Compute the FROM and W HERE clauses.
2. Group by the attributes in the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

14

79

First compute the FROM -W HERE clauses
(date > “10/1”) then GROUP BY product:

Product Date Price Quantity

Banana 10/19 0.52 17

Banana 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

80

Then, aggregate

Product TotalSales

Bagel $29.75

Banana $12.48

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
W HERE date > “10/1”
GROUPBY product

81

GROUP BY v.s. Nested Queries

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
W HERE date > “10/1”
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
W HERE x.product = y.product

AND y.date > ‘10/1’)
AS TotalSales

FROM Purchase x
W HERE x.date > “10/1” 82

Another Example

SELECT product, Sum(price * quantity) AS SumSales
M ax(quantity) AS M axQuantity

FROM Purchase
GROUP BY product

For every product, what is the total sales and max quantity sold?

Product SumSales M axQuantity

Banana $12.48 17

Bagel $29.75 20

83

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
W HERE date > “9/1”
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

84

General form of Grouping and
Aggregation

SELECT S

FROM R1,… ,Rn

W HERE C1

GROUP BY a1,… ,ak
HAVING C2

S = may contain attributes a1,… ,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,… ,Rn

C2 = is any condition on aggregate expressions

W hy ?

15

85

General form of Grouping and
Aggregation

SELECT S
FROM R1,… ,Rn

W HERE C1
GROUP BY a1,… ,ak
HAVING C2

Evaluation steps:
1. Compute the FROM -W HERE part, obtain a table with all attributes

in R1,… ,Rn

2. Group by the attributes a1,… ,ak
3. Compute the aggregates in C2 and keep only groups satisfying C2
4. Compute aggregates in S and return the result

86

Aggregation

Author(login,name)

Document(url, title)

W rote(login,url)

M entions(url,word)

87

• Find all authors who wrote at least 10
documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
W HERE count(SELECT W rote.url

FROM W rote
W HERE Author.login=W rote.login)

> 10

This is
SQL by
a novice

88

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, W rote
W HERE Author.login=W rote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

No need for DISTINCT: automatically from GROUP BY

89

• Find all authors who have a vocabulary over
10000 words:

SELECT Author.name
FROM Author, W rote, M entions
W HERE Author.login=W rote.login AND W rote.url=M entions.url
GROUP BY Author.name
HAVING count(distinct M entions.word) > 10000

Look carefully at the last two queries: you may
be tempted to write them as a nested queries,
but in SQL we write them best with GROUP BY

90

Exercises

Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Company (cname, stock price, country)
Person(per-name, phone number, city)

Ex #1:Find people who bought telephony products.
Ex #2:Find names of people who bought American products
Ex #3:Find names of people who bought American products and they

live in Seattle.
Ex #4: Find people who have both bought and sold something.
Ex #5: Find people who bought stuff from Joe or bought products

from a company whose stock prices is more than $50.

