

Building an A pplication w ith a DBM S

- Requirem entsm odeling (conceptual, pictures)
- Decide w hatentities should be partof the application and how they should be linked.
- Schem a design and im plem entation
- D ecide on a setof tables, attributes.
- D efine the tables in the database system.
- Populate database (insert tuples).
- W rite application program susing the D BM S
- w ay easiernow that the data m anagem ent is taken care of.

D atabase D esign

- W hy do w e need it?
- A gree on structure of the database before deciding on a particular im plem entation.
- Consider issues such as:
- W hatentities to model
- How entities are related
- W hatconstraints existin the dom ain
- H ow to achieve good designs

2. Entily / Relationship D iagram s

W hat is a Relation ?

- A m athem aticaldefinition:
- if A, B are sets, then a relation R is a subsetof

- $A=\{1,2,3\}, B=\{a, b, c, d\}{ }_{A}=$ $R=\{(1, a),(1, c),(3, b)\}$

- m akes is a subsetof P roduct $x ~ C ~ o m ~ p a n y: ~$

From E \& D iagram s to RelationalSchem a

- Entity set relation
- Relationship relation

Constraints in E R D iagram s

Finding constraints is partof the modeling process. Com m only used constraints:

Keys: social security num beruniquely identifies a person.
Single-value constraints: a person can have only one father.
Referential integrity constraints: if you w ork for a com pany, it mustexistin the database.

O therconstraints: peoples' ages are betw een 0 and 150.

Single V alue Constraints

FunctionalD ependencies

Definition: $A_{1}, \ldots, A_{m} \quad B_{1}, \ldots, B_{n}$ holds in R if:
$" t, t^{\prime} . R,\left(t A_{1}=t^{\prime} A_{1} \quad \ldots \quad t A_{m}=t^{\prime} A_{m} \Rightarrow t B_{1}=t^{\prime} B_{1} \quad \ldots \quad t B_{m}=t^{\prime} B_{m}\right)$

Im portantPoint!

- Functional dependencies are part of the schem a!
- They constrain the possible legal data instances.
- A tany point in tim e, the actual database m ay satisfy additionalFD 's.

Form aldefinition of key

- A key is a setof attributes A_{1}, \ldots, A_{n} s.t. for any other attribute $B, A_{1}, \ldots, A_{n} \quad B$
- A m inim alkey is a setof attributes which is a key and forw hich no subset is a key
- N ote: book calls them superkey and key

Exam ples of K eys

- Product(nam e, price, category, colbr) nam e, category price category color

Keys are: \quad nam e, category $\}$ and all supersets

- Enrolm ent(student, address, course, room, tim e)
student address
room, tine course
student, course room, time
Keys are: [in class]

Finding the K eys of a Relation

G iven a relation constructed from an E / R diagram, w hat is its key?
Rules:

1. If the relation com es from an entity set,
the key of the relation is the set of attributes w hich is the key of the entily set.

Relational Schem a D esign (orLogicalD esign)

M ain idea:

- Startw ith som e relationalschem a
- Find outits FD 's
- Im portantalso to look at infered FD 's.
- Use them to design a better relational schem a

Inference Rules for $F D$'s (oontinued)	
Transitive C losure R ule	
	$\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}} \longrightarrow \mathrm{B}_{1}, \mathrm{~B}_{2} \ldots, \mathrm{~B}_{\mathrm{m}}$
and	$\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{m}} \longrightarrow \mathrm{C}_{1}, \mathrm{C}_{2} \ldots, \mathrm{C}_{\mathrm{p}}$
	$\begin{aligned} & \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}} \longrightarrow \quad \mathrm{C}_{1}, \mathrm{C}_{2} \ldots, \mathrm{C}_{\mathrm{p}} \\ & \text { Why? } \end{aligned}$

- Enrolm ent(student, m ajor, course, room , tim e) student major
major, course room
course time

W hatelse can we infer? [in class]

C losure A lgorithm

Startw ith $X=\{A 1, \ldots, A n\}$.
RepeatuntilX doesn'tchange do:
if $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{n}} \longrightarrow \mathrm{C}$ is in S , and
$\mathrm{B}_{1}{ }_{1}{ }_{2} \ldots \mathrm{~B}_{\mathrm{n}}$ are allin X , and
C is notin X
then
add C to X .

W hy is the A lgonithm Conect?

- Show the follow ing by induction: - Forevery B in X :
- A1,... An B
- Initially $X=\{A \overrightarrow{1}, \ldots, A n\}-$ holds
- Induction step : B1,... Bm in X
- Implies A1,... ,An B1,... ,Bm
-W e also have $\mathrm{B} 1, \ldots, \mathrm{Bm} \longrightarrow \mathrm{C}$
- By transitivily w e have A1,... ,An C
- This show s that the algorithm is sound; need to show it is complete

Relational Schem a D esign (orLogicalD esign)

M ain idea:

- Startw ith som e relational schem a
- Find outits FD 's
- Use them to design a better relational schem a

A nom alies:

- Redundancy = repeatdata
-U pdate anom alies = Fred m oves to "Bellvue"
- D eletion anom alies = Fred drops allphone num bers: what is his cily?

Relation D ecom position B reak the relation into tw o:		
Name	SSN	Cily
Fred	123-456789	seatte
Joe	987654321	Westried
SSN	Phonev umber	
123-45-6789	206-555-1234	
123-45-6789	206555-6543	
987.654321	908-555-2121	
987-65-4321	908-555-1234	

D ecom positions in G eneral

$R\left(A_{1}, \ldots, A_{n}\right)$
Create tw o relations R1 (B1, ...,Bm) and R2 (C1, ..., Cp)
such that: $\mathrm{B} 1, \ldots, \mathrm{Bm}$ " $\mathrm{C} 1, \ldots, \mathrm{Cp}=\mathrm{A} 1, \ldots, \mathrm{An}$
and:
$R_{1}=$ projection of R on B_{1}, \ldots, B_{m}
$\mathrm{R}_{2}=$ projection of R on $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

IncorrectD ecom position

- Som etim es it is incomect:

Name	Price	C ategory
Gizo	1999	Gadget
OneC lick	2499	Camera
Doubec lidk	2999	Camera

Decom pose on : Name, Category and Price, Category

N orm alform s
First orm alForm = allattributes are atom ic
Second N orm alForm (2NF) $=$ old and obsolete
Third Norm alForm (3 NF) $=$ this lecture
Boyce C odd N orm alForm (BCNF) = this lecture
0 thers...

Norm alForm s

FirstNorm alForm = allattributes are atom ic
Second N orm alForm (2N F) = old and obsolete
Third N orm alForm ($3 \mathrm{~N} F$) = this lecture
Boyce Codd N orm alForm (BCNF) $=$ this lecture
O thers...

Exam ple			
Name	SSN	Phanev umber	Cily
Fred	123-45-6789	206-555-1234	Seatre
Fred	123-45-6789	$206555-543$	Seatre
Joe	987-65-4321	908-555-2121	westrield
Joe	98765-4321	908-555-1234	Westield
W hat are the dependencies?			
SSN Name, City			
W hat are the keys? \{SSN , PhoneN um ber\}			
Is it in BCN F?			

D ecom pose itinto BCN F

SSN	PhoneN um ber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Exam ple D ecom position

Person (nam e, SSN , age, hairColor, phoneN um ber)
SSN name, age
age hairColor

Decom pose in BCN F (in class) :
Step 1: find allkeys

Step 2 : now decom pose

