

A genda

- Project: questions?
- How to model data (E/R modeling)
- How to design a good schem a (norm alization).

Building an Application with a DBM S

- Requirem ents m colling (conceptual, pictures)
 Decide w hat entities should be part of the application and how they should be linked.
- Schem a design and implem entation
 - Decide on a set of tables, attributes.
 - $\operatorname{D}\operatorname{efine}$ the tables in the database system .
 - Populate database (insert tuples).
- Write application program susing the DBM S
- way easier now that the data management is taken care of.

D atabase D esign

- W hy doweneed it?
 - A gree on structure of the database before deciding on a particular in plementation.
- Consider issues such as:
- W hat entities to m odel
- How entities are related
- W hat constraints exist in the dom ain
- How to achieve good designs

		Exan	nples	
	EmpD	Name	Phone	Position
	E0045	Sm ith	1234	C lerk
	E1847	John	9876	Salesrep
	E1111	Sm ith	9876	Salesrep
	E9999	M ary	1234	Lawyer
• Em pi	$\mathbb{D} \longrightarrow \mathbb{I}$	Name, P Phone	Phone, P	osition
		FIIOLE		
• but I	hone –	<→ Posi	lon	

- A m inim alkey is a set of attributes which is a key and forwhich no subset is a key
- Note: book calls them superkey and key

Mainidea:

- Startwith some relational schema
- Find out its FD 's
 - Important also to look at inferred FD 's.
- U se them to design a better relational schem a

Closure of a set of A ttributes

G iven a set of attributes {A1,..., An} and a set of dependencies S. Problem : find all attributes B such that: any relation which satisfies S also satisfies: A1,..., An \rightarrow B

The closure of {A1,... ,An}, denoted {A1,... ,An}^+, is the set of all such attributes B

The closure tells us everything we can infer from A1,..., An.

Recall	Relat .set attribute	ional S s (persons w	chem a ith several p	Desig	n
	Name	SSN	PhoneN um ber	City	
	Fred	123-45-6789	206-555-1234	Seattle	
	Fred	123-45-6789	206-555-6543	Seattle	
	Joe	987-65-4321	908-555-2121	W estfield	
	Joe	987-65-4321	908-555-1234	W estfield	
SSN An	Name,C omalies:	ity, butno	tSSN Ph	oneN um ber	

ncy rep

• U pdate anom alies = Fred m oves to "B ellvue"

• D eletion anom alies = Fred drops all phone num bers:

what is his city?

Third Norm alform (3NF) = this becture

Boyce Codd Norm alForm (BCNF) = this lecture

0 thers...

Fiel 123:45:6789 206:555:1234 Seattle Field 123:45:6789 206:555:6543 Seattle
Field 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 W estfield

SoW hat's the Problem ?								
Unit	Company		Unit		Product	_		
G alaga99 B ingo	יט עע	N N	G alaga99 B ingo		databases databases	_		
Nopublem so far. All local FD 's are satisfied. Let's put all the data back into a single table again:								
Unit		Company			Product			
Galaga99 UW Bingo UW				databases latabases	_			
V iolates the dependency: com pany, product -> unit!								

Solution: 3rd Norm al Form (3NF)

A simple condition for removing anomalies from relations:

A relation R is in 3rd norm al form if :

W heneverthere is a nontrivial dependency $A_1,A_2,...,A_n$ fi B for R , then $\{A_1,A_2,...,A_n\}$ a super-key for R , or B is part of a key.