

A genda

- Nulls and outerjoins
- Creating and updating schem as
- V iew s: updating and reusing them
- Constraints
- Program m ing with $S Q L$
- Relationalalgebra

O uterJoins

- Leftouter join:
- Include the left tuple even if there'sno m atch
- R ightouter join:
- Include the right tuple even if there's no m atch
- Fullouter join:
- Include the both left and right tuples even if there's no match

M odifying the D atabase

Three kinds of m odifications

- Insertions
- Deletions
- Updates

Som etim es they are all called "updates"

Insertion: an Exam ple

$\mathbb{I N S E R T}$	$\mathbb{N T O} \quad$ Product(nam e)	
SELECT	DIST $\mathbb{N C T}$ prodN ame	
FROM	Purchase	
WHERE	prodName NOT \mathbb{N}	(SELECT name FROM

name	Ilistrice	category
gimo	100	Gadgets
camera	-	-

The query replaces the V A LU ES keyw ord. H ere we insertm any tuples into PRO D U CT

Insertions

G eneral form :

$$
\mathbb{N S E R T} \mathbb{I N T O} \mathrm{R}(\mathrm{~A} 1, . . ., \mathrm{An}) \text { VALUES }(\mathrm{v} 1, . ., \mathrm{vn})
$$

Exam ple: Inserta new purchase to the database:
INSERT IN TO Purchase (buyer, seller, product, store)
VALU ES ('Joe', 'Fred', 'w akeup-clock-espresso-m achine', 'The Sharper Im age')
M issing attributefi NULL.
M ay drop attribute nam es if give them in order. 8

D ata D efinition in $S Q L$

So farw e have see the D ata M anipulation Language, $D M L$ N ext: D ata D efinition Language (DD L)

D ata types:
D efines the types.
D ata definition: defining the schem a.

- Create tables
- D elete tables
- M odify table schem a

Indexes: to im prove perform ance

D ata Types in SQL

- Characters:
- CHAR (20) - fixed length
- VARCHAR (40) -variable length
- Numbers:
- $\mathbb{N} T$, REAL plus variations
- Tim es and dates:
- DATE,DATETIME (SQL Serveronly)
- To reuse dom ains:

CREATE DOMA IN address AS VARCHAR (55)

Deleting orM odifying a Table Deleting:

Exam ple: DRO P Person; Exercise w ith care !!
A ltering: (adding or rem oving an attribute).

W hat happens w hen you m ake changes to the schem a?

Indexes

REA LLY im portant to speed up query processing time.
Suppose w e have a relation
Person (nam e, age, city)

SELECT *

FROM Person
W HERE name $=$ "Sm th"

Sequential scan of the file Person m ay take long

Creating Indexes

Syntax:

CREATE $\mathbb{I N D E X ~ n a m ~ e I n d e x ~ O N ~ P e r s o n ~ (n a m e) ~}$

Creating Indexes

Indexes can be usefiulin range queries too:
CREATE $\mathbb{N} D E X$ ageIndex ON Person (age)
$B+$ trees help in:
SELECT *
FROM Person
W HERE age > 25 AND age <28

W hy not create indexes on everything?

A genda

Nulls and outerjoins
Creating and updating schem as

- V iew s: updating and reusing them
- Constraints
- Program ming with $S Q L$
- Relationalalgebra

D efining V iew s

V iew s are relations, except that they are notphysically stored.
Forpresenting different inform ation to differentusers
Em ployee (ssn, nam e, departm ent, project, salary)
CREATEVIEW Developers AS SELECT nam e, project FROM Employee W HERE departm ent = "D evelopm ent"

Payroll has access to Em ployee, others only to D evelopers ${ }^{26}$

U sing a V iew

W e can lateruse the view :

SELECT	name, store
FROM	Seattle-view , Product
W HERE	Seattle-view product = Productnam e AND
	Product.category = "shoes"

W e have a new virtual table:
Seattle-view (buyer, seller, product, store)

Types of V iew s

- V irtualview s:
- U sed in databases
- Com puted only on-dem and - slow er atruntim e
- A lw ays up to date
- M aterialized view s
- U sed in data w arehouses
- Precom puted offline - faster atruntim e
- M ay have stale data

A nsw ering Q ueries U sing V iew s

- W hat if w e w ant to use a setof view s to answ er a query.
- W hy?
- The obvious reason...
- Answ ering queries overw eb data sources.
- Very coolstuff! (ie., Idid a lotof research on this).

N on-U pdatable V iew s

```
CREATE V IEW Seattle-view AS
    SELECT seller, product, store
    FROM Person, Purchase
    W HERE Person.city = "Seattle" AND
        Person nam e = Purchase buyer
```

How can we add the follow ing tuple to the view?
("Joe", "ShoeM odel12345", "N ine W est")
W e need to add "Jee" to Person first, butw e don'thave all its attributes

Reusing a M aterialized V iew

- Suppose Ihave only the result of SeattleV iew : SELECT buyer, seller, product, store
FROM Person, Purchase
W HERE Person.city $=$ 'Seattle' AND
Person per-nam e $=$ Purchase buyer
- and Iw ant to answ er the query

SELECT buyer, seller
FROM Person, Purchase
WHERE Person.city = 'Seattle' AND
Person per-nam e = Purchase buyerAND Purchase product= 'gizm o^{\prime}.
Then, I can rew rite the query using the view .

Q uery Rew riting U sing V iew s

Rew ritten query:
SELECT buyer, seller
FROM SeattleV iew
W HERE product= 'gizmo'

O riginalquery:
SELECT buyer, seller
FROM Person, Purchase
W HERE Person.city = 'Seattle' AND
Person per-nam e = Purchase buyerAND Purchase product= 'gizm o'.

A nother Exam ple

- Istill have only the resultof SeattleV iew : SELECT buyer, seller, product, store FROM Person, Purchase
W HERE Person.city = 'Seattle' AND
Person per-nam e $=$ Purchase buyer
- butIw ant to answ er the query

SELECT buyer, seller
FROM Person, Purchase
W HERE Person.city = 'Seattle' AND
Person per-nam e = Purchase buyerAND
Person Phone LIKE '206543\%'.

A nd N ow?

- Istill have only the result of SeattleV iew :

SELECT buyer, seller, product, store
FROM Person, Purchase, Product
WHERE Person.city $=$ 'Seattle' AND
Person per-nam e $=$ Purchase buyerA ND
Purchase product= Productnam e

- but Iw antto answ er the query

SELECT buyer, seller
FROM Person, Purchase
W HERE Person.city = 'Seattle' AND
Person per-nam e $=$ Purchase buyer.

Finally...

- Istill have only the resultof:

SELECT seller, buyer, Count(*)
FROM Purchase
W HERE Purchasestore = 'The Bon'
G roup By seller, buyer

- but Iw ant to answ er the query

SELECT seller, Count(*)
FROM Purchase
W HERE Person store $=$ 'The Bon'
G roup By seller

And N ow?

- Istillhave only the resultof:

SELECT seller, buyer, Sum (Price) FROM Purchase W HERE Purchase store $=$ 'The Bon' G roup By seller, buyer

- butIw ant to answ er the query SELECT seller, Sum (Price) FROM Purchase
W HERE Person store $=$ 'The Bon' G roup By seller

A nd what if it's the otherw ay around?

The G eneral Problem

- G iven a setof view $\operatorname{sV} 1, .$. ,Vn, and a query Q, can w e answ erQ using only the answ ers to V1,.. Vn ?
- W hy do we care?
- W e can answ erqueries m ore efficiently.
- W e can query data sources on the W W W in a principled m anner.
- M any, m any papers on this problem .
- The bestperform ing algorithm :The M inic on A lgorithm, (Pottinger\& (Ha)Levy, 2000).40

Querying the W W W

- A ssum e a virtual schem a of the W W W , e.g.,
- Course (num ber, university, title, prof, quarter)
- Every data source on the w eb contains the answ er to a view over the virtual.schem a:
UW database:SELECT number, title, prof
FROM Course
W HERE univ= 'UW 'AND quanter= $2 / 02$ '
Stanford database: SELEC T num ber, title, prof, quarter FROM Course
W HERE univ= 'Stanford'
U serquery: find allprofessors w ho teach "database system $\mathrm{s}^{\prime \prime}$

A genda

Nulls and outer-joins
C reating and updating schem as
V iew s: updating and reusing them

- Constraints
- Programm ing with SQL
- Relationalalgebra

Constraints in $\mathrm{SQ} L$

- A constraint= a property thatw e'd like our database to hold
- The system willenforce the constraintby taking som e actions:
- forbid an update
- orperform com pensating updates

Constraints in SQL

Constraints in SQL:

- Keys, foreign keys

- A tribute-levelconstraints
- Tuple-levelconstraints
- G lobalconstraints: assertions \quad M ost

The m ore com plex the constraint, the harder it is to check and to enforce

Keys w ith M ultiple A tributes

CREATE TABLE Product (
nam eCHAR (30),
category V ARCHAR (20), price $\mathbb{I N} T$,
PRIM ARY KEY (nam e, category))
CREATE TABLE Product (nam eCHAR (30), category VARCHAR (20)
PRIMARY KEY (name))

O therK eys

```
CREATE TABLE Product(
    productID CHAR (10),
    nam eCHAR (30),
    category VARCHAR (20),
    price \mathbb{NT,}
    PR\mathbb{M ARY KEY (productDD),}
    UN IQ UE (nam e, category))
```

 There is atm ostone PR IM ARY KEY;
 there can be \(m\) any UN IQ UE
 There is atm ostone PR $\mathbb{I M}$ ARY KEY; there can be many UN IQ U E

W hathappens during updates?

Types of updates:

- In Purchase: insert/update
- In Product: delete/update

W hathappens during updates ?

- SQL has three policies form aintaining referential integrity:
- Rejectviolating m odifications (default)
- C ascade: after a delete/update do a delete/update
- Set-null set foreign-key field to NU LL

READ $\mathbb{N G}$ ASSIGNEMNT:71.5,71.6

G eneral A ssertions
CREATE A SSERTION m YA ssertCHECK
NOT EX ISTS (
SELECT Productnam e
FROM Product, Purchase
W HERE Productnam e = Purchase prodN am e
GROUP BY Productnam e
HAV ING count(*) > 200)

FinalCom m ents on Constraints

- Can give them nam es, and alter later
- Read in the book.
- W e need to understand exactly when they are checked
- W e need to understand exactly whatactions are taken if they fail
\quad Triggers
Enable the database program m erto specify:
- when to check a constraint,
- whatexactly to do.
A trigger has 3 parts:
-An event (e.g., update to an attribute)
-A condition (e.g., a query to check)
- A n action (deletion, update, insention)
W hen the eventhappens, the system w ill check the constraint, and
if satisfied, w illperform the action.
NO TE : triggers m ay cause cascading effects.
D atabase vendors did notw ait forstandardsw ith triggers!

Elem ents of Triggers (in SQ L3)
-Tim ing of action execution: before, afteror instead of triggering event

- The action can refer to both the old and new state of the database.
- U pdate events m ay specify a particularcolum n or setof colum ns.
-A condition is specified w ith a W HEN clause.
-The action can be perform ed either for
- once forevery tuple, or
- once forall the tuples that are changed by the database operation.

EXam Ple: R OW LevelTrigger
CREATE TRIGGER NoLowerPrices
AFTER UPDATE OF price ON Product
REFERENCING
OLD AS OldTuple
NEW AS NewTuple
WHEN (OIdTuple.price > NewTuple.price)
UPDATE Product
SET price = OldTuple.price
WHERE name = NewTuple.name
FOR EACH ROW

Statem entLevelTrigger

CREATE TRIGGER average-price-preserve
INSTEAD OF UPDATE OF price ON Product
REFERENCING
OLD_TABLE AS OldStuff
NEW_TABLE AS NewStuff
WHEN (1000 <
(SELECT AVG (price)
FROM ((Product EXCEPT OldStuff) UNION NewStuff))
DELETE FROM Product
WHERE (name, price, company) IN OldStuff;
INSERT INTO Product
(SELECT * FROM NewStuff)

B ad Things C an Happen

CREATETRIGGER Bad-trigger
AFTER UPDATE OF price \mathbb{N} Product REFERENCING OLD AS OldTuple NEW AS New Tuple

W HEN \mathbb{N} ew Tuple price > 50)
UPDATE Product
SET price $=\mathrm{N}$ ew Tuple price $* 2$
W HERE name $=\mathrm{N}$ ew Tuple name
FOR EACH ROW

Em bedded SQ L

- directSQL (= ad-hoc SQL) is rarely used
- in practice: $S Q L$ is em bedded in som e application code
- SQ L code is identified by special syntax

Nulls and outerjoins
Creating and updating schem as
V iew s: updating and reusing them
C reating and updating schem as
V iew s: updating and reusing them Constraints

- Program m ing with $\mathrm{SQ} L$
- Relationalalgebra

A genda

Em bedded $S Q L$
- direct $S Q L$ ($=$ ad-hoc $S Q L$) is rarely used
- in practice: $S Q L$ is em bedded in som e
application code
- SQ L code is identified by special syntax
${ }^{63}$

The Im pedance M ism atch Problem

W hy notuse only one language?

- Forgetting SQ L : "w e can quickly dispense with this idea" [textbook,pg.351].
- SQ L cannotdo everything that the host language can do.

Solution: use cursors

Program sw ith Em bedded SQ L

Interface: SQL /H ostLanguage

V alues get passed through shared variables.

Colons precede shared variables w hen they occurw thin the SQL statem ents.

EXEC SQL: precedes every SQL statem ent in the hostlanguage.
The variable SQ LSTA TE provides enorm essages and status reports (e.g., "00000" says that the operation com pleted w ith no problem).

Single R ow Select:Statem ents

```
int getPrice (char*nam e) {
EXEC SQL BEGIN DECLARE SECTIDN;
    charn [20];
    intp;
    char SQLSTATE [6];
EXEC SQL END DECLARE SECTIDN;
strcpy (n, nam e); /* copy nam e to local variable */
EXEC SQL SELECT price INTO p
            FROM Product
            W HERE Productname = n;
retum p;
```


Example

Cursors

1. Declare the cursor
2. O pen the cursor
3. Fetch tuples one by one
4. C lose the cursor

Cursors

```
void product2XM L 0 {
EXEC SQL BEG IN DECLARE SECTIDN;
            charn [20], c[30];
            intp,q;
            char SQISTATE[6]
EXEC SQL END DECLARE SECTIDN;
EXEC SQL DECLARE CrSCURSOR FOR
            SELECT pname,price,quantily,m aker
            FROM Product;
EXEC SQL OPEN CRS;
```

- W hatisno_M ORE_TUPLES ?

RelationalA lgebra

- Form alism forcreating new relations from

RelationalA lgebra

- Five operators:
- Union: "
- D ifference:existing ones
- Its place in the big picture:
- Selection:s
- Projection:P
- Cartesian Product: .
- Derived or auxiliary operators:
- Intersection, com plem ent
- Joins (natural,equi-join, theta join, sem i-join)
- Renam ing:r

1. Union and 2.D ifference

- R1" R2
- Exam ple:
- ActiveEm ployees" RetiredEm ployees
- R1-R2
- Exam ple:
- A IEm ployees --RetredEm plbyees

4. Projection

- Elim inates colum ns, then rem oves duplicates
- Notation: $\mathrm{P}_{\mathrm{A} 1 . . . \mathrm{An}_{\mathrm{n}}}(\mathrm{R})$
- Exam ple:project social-security num ber and nam es:
- P sss, Nane (Empbyee)
- Outputschem a: Answer(SSN,Name)

W hatabout Intersection ?

- It is a derived operator
- R1' R2 = R1-(R1-R2)
- A lso expressed as a join (w ill.see later)
- Exam ple
- UnionizedEm ployees ' RetredEm ployees

5. Cartesian Product

- Each tuple in R 1 w ith each tuple in R 2
- Notation:R1•R2
- Exam ple:
- Em ployee • D ependents
- V ery rare in practice; m ainly used to express joins

Em ployee	
Name	SSN
John	999999999
Tony	777777777

D ependents	
EmployeesSN	Dname
999999999	Em ily
777777777	Joe

Em ployee x D ependents

Name	SSN	Em ployeeSSN	Dname
John	999999999	999999999	Em ily
John	999999999	7777777777	Joe
Tony	777777777	999999999	Em ily
Tony	777777777	777777777	Joe

- Joins (natural,equi-join, theta join, sem i-join)
- Renam ing: r

N atural Join

- N otation: R1 1 R2
- M eaning: $\mathrm{R} 1 \bowtie \mathrm{R} 2=\mathrm{P}_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{C}}(\mathrm{R} 1 \cdot \mathrm{R} 2)\right)$
- W here:
- The selection s_{C} checks equality of all com m on attributes
- The projection elim inates the duplicate com m on attributes

N aturalJoin Exam ple Em ployee			
Name		SSN	
John		999999999	
Tony		777777777	
Dependents			
SSN		D name	
999999999		Em ily	
777777777		Joe	
Em ployee \bowtie Dependents =			
Name	SSN	Dname	
John Tony	999999999	Emily	
	777777777	Joe	
${ }^{91}$			

Natural Join

- $\mathrm{R}=$

A	B
X	Y
X	Z
Y	Z
Z	V

$S=$| B | C |
| :---: | :---: |
| z | U |
| V | W |
| z | V |

- $R \bowtie S=$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

92

N atural Join

- G iven the schem asR ($A, B, C, D), S(A, C, E)$, what is the schem a of $R \bowtie S$?
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?
- Given $R(A, B), S(A, B)$, whatis $R \bowtie S$?

Eq-join

- A theta join where q is an equality
- $R 1 \bowtie_{A=B} R 2=s_{A=B}(R 1 \cdot R 2)$
- Exam ple:
- Em ployee $\bowtie_{\text {SSN =SSN }}$ D ependents
- M ostusefuljoin in practice

O perations on Bags

A bag = a setw ith repeated elem ents
A lloperations need to be defined carefully on bags

- $\{a, b, b, c\}\}^{\prime \prime}\{a, b, b, b, e, f, f\}=\{a, a, b, b, b, b, b, c, e, f, f\}$
- $\{a, b, b, b, c, c\}-\{b, c, c, c, d\}=\{a, b, b, d\}$
- $s_{C}(\mathbb{R})$:preserve the num berof occunences
- $P_{A}(\mathbb{R})$:no duplicate elim ination
- Cartesian product, join : no duplicate elim ination

Im portant ! R elationalEngines w ork on bags, notsets !
Finally: RA has Lim itations !

- Cannotcom pute "transitive cbsure"

Nam el	N am e2	Relationship
Fred	M ary	Father
M ary	Joe	Cousin
M ary	Bill	Spouse
Nancy	Lou	Sister

- Find alldirectand indirectrelatives of Fred
- Cannotexpress in RA !!! N eed to write C program

