
1

Introduction to Database Systems
CSEP544

Lecture #1

January 5, 2007

2

About Me

Dan Suciu:
• Bell Labs, AT&T Labs, UW in 2000

Research:
• Past: XML and semi-structured data:

– Query language: XML-QL (later XQuery)
– Compressor: XMill
– Theory: XPath containment, XML typechecking

• Present: Probabilistic databases: MystiQ

3

Staff
• Instructor: Dan Suciu

– Allen, Room 662, suciu@cs.washington.edu
Office hours: Tuesdays, 5:30 (appointment strongly
recommended)

– Next week: away, chairing ICDT’2007

• TAs:
– Bao Nguyen Nguyen

4

Communications
• Web page:

http://www.cs.washington.edu/p544/��
– Lectures will be available here
– Homeworks will be posted here (HW1 is posted)
– The project description will be here

• Mailing list:
– Announcements, group discussions
– Please subscribe

5

Textbook(s)

Main textbook, available at the bookstore:

• Database Management Systems
Ramakrishnan and Gehrke

Also recommended:
• Database Systems: The Complete Book,

Garcia-Molina, Ullman, Widom

Gives colloquium
talk on Feb.8, 3:30pm

6

Other Texts

Available at the Engineering Library (noton
reserve):

• XQuery from the Experts, Katz, Ed.
• Foundations of Databases,

Abiteboul, Hull, Vianu
• Data on the Web,

Abiteboul, Buneman, Suciu

7

Outline of Today’s Lecture

1. Overview of DBMS, Course outline

2. Assignment 1, Homework 1, Project phase 1

3. SQL

8

Database

What is a database ?

Give examples of databases

9

Database

What is a database ?

• A collection of files storing related data

Give examples of databases

• Accounts database; payroll database; UW’s
students database; Amazon’s products
database; airline reservation database

10

Database Management System

What is a DBMS ?

Give examples of DBMS

11

Database Management System

What is a DBMS ?

• A big C program written by someone else that
allows us to manage efficiently a large database
and allows it to persist over long periods of time

Give examples of DBMS

• DB2 (IBM), SQL Server (MS), Oracle, Sybase

• MySQL, Postgres, …

12

Market Shares

From 2004 www.computerworld.com

• IMB: 35% market with $2.5BN in sales

• Oracle: 33% market with $2.3BN in sales

• Microsoft: 19% market with $1.3BN in sales

13

An Example

The Internet Movie Database
http://www.imdb.com

• Entities:
Actors (800k), Movies (400k), Directors, …

• Relationships:
who played where, who directed what, …

14

Tables

Directors: Movie_Directors:

Movies:

. . .

CoppolaFrancis Ford15901

lNamefNameid

. . .

1972The Godfather130128

YearTitlemid

. . .

13012815901

midid

15

What the Database Systems Does

1. Create/store large datasets

2. Search/query/update

3. Change the structure

4. Concurrent access to many user

5. Recover from crashes

6. Security

16

Possible Organizations

• Files

• Spreadsheets

• DBMS

17

1. Create/store Large Datasets

• Files

• Spreadsheets

• DBMS

Yes, but…

Not really…

Yes

18

2. Search/Query/Update

• Files

• Spreadsheets

• DBMS

Simple queries (grep);
Updates are difficult

Simple queries;
Simple updates

All

Updates: generally OK

19

3. Change the Structure

Add Address to each Actor

• Files

• Spreadsheets

• DBMS

Very hard

Yes

Yes

20

4. Concurrent Access

Multiple users access/update the data
concurrently

• What can go wrong ?

• How do we protect against that in OS ?

• This is insufficient in databases; why ?

Lost updates; inconsistent reads,…

locks

A logical action consists
of multiple updates

21

5. Recover from crashes

• Transfer $100 from account #4662 to #7199:

X = Read(Account, #4662);
X.amount = X.amount - 100;
Write(Account, #4662, X);

Y = Read(Account, #7199);
Y.amount = Y.amount + 100;
Write(Account, #7199, Y);

X = Read(Account, #4662);
X.amount = X.amount - 100;
Write(Account, #4662, X);

Y = Read(Account, #7199);
Y.amount = Y.amount + 100;
Write(Account, #7199, Y);

CRASH !

What is the problem ?

22

6. Security

• Files

• Spreadsheets

• DBMS

File-level
access control

Same [?]

Table/attribute-
level access control

23

Enters a DMBS

Data files

Database server
(someone else’s

C program) Applications

connection

(ODBC, JDBC)

“Two tier system” or “client-server”

24

Data Independence

Directors: Movie_Directors:

Movies:

. . .

CoppolaFrancis Ford15901

lNamefNameid

. . .

1972The Godfather130128

YearTitlemid

. . .

13012815901

midid

Logical view

Directors_file

Directors_fname_index_file

Moviews_title_index_file

Movies_file Physical view

25

What the Database Systems Does

1. Create/store large datasets

2. Search/query/update

3. Change the structure

4. Concurrent access to many user

5. Recover from crashes

6. Security

SQL DML

SQL DDL

Transactions
ACID

Grant, Revoke, Roles

26

Course Outline - TENTATIVE !!

1. January 5: SQL
2. January 16: SQL in C#; Database Design: E/R, NF
3. January 23: Views, Constraints, Security
4. January 30: XML/XPath/XQuery
5. Feburary 6: Transactions
6. Feburary 13: Database storage, indexes
7. Feburary 20: Physical operators, optimization
8. Feburary 27: Statistics, Database tuning
9. March 6: Advanced topics

27

Grading

• Homework: 35%

• Project: 35%

• Final: 30%

28

Reading Assignment

• Reading assignment for Tuesday, Jan 16
– Introduction from SQL for Web Nerds,

by Philip Greenspun, http://philip.greenspun.com/sql/

• This is a one-time assignment, no grading, BUT
very instructive and lots of fun reading

29

Homework 1
• Homework 1:

– SQL Queries
– Due Tuesday, January 16
– It is posted already!

• Homework 2:
– Conceptual design: E/R diagrams, Normal Forms
– Due Tuesday, January 30

• Homework 3:
– XML/Xquery
– Due Tuesday, February 13

• Homework 4:
– Transactions: concurrency control and recovery
– Due Tuesday, February 27

30

The Project:
Boutique Online Store

• Phase 1:
– Design a Database Schema, Build Related Data Logic
– Due January 23

• Phase 2:
– Import data, Web Inventory Data Logic
– Due February 6

• Phase 3:
– Checkout Logic
– Due February 20

• Phase 4:
– Database Tuning
– Due March 6

31

Project

SQL Server, C#, ASP.NET

• Supported

• Will provide starter code in C#, ASP.NET

• The import data is in SQL/XML on SQL Server

Alternative technologies: MySQL, postgres, PHPs

• Not supported (you are on your own)

• Worry about the SQL/XML part…

32

Accessing SQL Server

SQL Server Management Studio
• Server Type = Database Engine
• Server Name = IPROJSRV
• Authentication = SQL Server Authentication

– Login = your UW email address (not the CSE email)
– Password = 12345

Change your password !!

Then play with IMDB

33

Today’s Lecture: SQL

• Chapters 5.1 - 5.5

• If we don’t finish today please read the
slides at home: you need this material for
the Homework due next time.

34

SQL Introduction
Standard language for querying and manipulating data

Structured Query Language

Many standards out there:
• ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3), ….
• Vendors support various subsets: watch for fun discussions in class !

35

SQL

• Data Definition Language (DDL)
– Create/alter/delete tables and their attributes

– Following lectures...

• Data Manipulation Language (DML)
– Query one or more tables – discussed next !

– Insert/delete/modify tuples in tables

36

Tables in SQL

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

Product

Attribute namesTable name

Tuples or rows

37

Tables Explained

• The schema of a table is the table name and
its attributes:

Product(PName, Price, Category, Manfacturer)

• A key is an attribute whose values are unique;
we underline a key

Product(PName, Price, Category, Manfacturer)

38

Data Types in SQL

• Atomic types:
– Characters: CHAR(20), VARCHAR(50)
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …

• Every attribute must have an atomic type
– Hence tables are flat
– Why ?

39

Tables Explained

• A tuple = a record
– Restriction: all attributes are of atomic type

• A table = a set of tuples
– Like a list…

– …but it is unorderd:
no first(), no next(), no last().

40

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

41

Simple SQL Query

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

SELECT *
FROM Product
WHERE category=‘Gadgets’

SELECT *
FROM Product
WHERE category=‘Gadgets’

Product

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

“selection”

42

Simple SQL Query

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

Hitachi$203.99MultiTouch

Canon$149.99SingleTouch

ManufacturerPricePName

“selection” and
“projection”

43

Notation

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input Schema

Output Schema

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

44

Details

• Case insensitive:
– Same: SELECT Select select
– Same: Product product
– Different: ‘Seattle’ ‘seattle’

• Constants:
– ‘abc’ - yes
– “abc” - no

45

The LIKE operator

• s LIKE p: pattern matching on strings

• p may contain two special symbols:
– % = any sequence of characters

– _ = any single character

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

46

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

SELECT category
FROM Product

Household

Photography

Gadgets

Gadgets

Category

Household

Photography

Gadgets

Category

47

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

48

SELECT Category
FROM Product
ORDER BY PName

SELECT Category
FROM Product
ORDER BY PName

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

?
SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCTcategory
FROM Product
ORDER BYcategory

SELECT DISTINCT category
FROM Product
ORDER BY PName

SELECT DISTINCTcategory
FROM Product
ORDER BYPName

?

?

49

Keys and Foreign Keys

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

Product

Company

Japan15Hitachi

Japan65Canon

USA25GizmoWorks

CountryStockPriceCName

Key

Foreign
key

50

Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

Join
between Product
and Company

51

Joins

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

Product Company

Japan15Hitachi

Japan65Canon

USA25GizmoWorks

CountryStockPriceCname

$149.99SingleTouch

PricePName

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

52

More Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products
both in the ‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE

SELECT cname

FROM

WHERE

53

A Subtlety about Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture some product in the
‘Gadgets’ category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

54

A Subtlety about Joins

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPriceName

Product Company

Japan15Hitachi

Japan65Canon

USA25GizmoWorks

CountryStockPriceCname

??

??

Country

What is
the problem ?

What’s the
solution ?

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

55

Tuple Variables

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

SELECT DISTINCTpname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCTPerson.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

SELECT DISTINCTx.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

56

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

SELECTa1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer ∪ {(a1,…,ak)}
return Answer

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer ∪ {(a1,…,ak)}
return Answer

57

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

SELECT DISTINCTR.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes R ∩ (S ∪ T) mostof the time

When does it not compute R ∩ (S ∪ T) ?

What does it compute ?

58

Subqueries Returning Relations

SELECT Company.city
FROM Company
WHERE Company.name IN

(SELECT Product.maker
FROM Purchase , Product
WHERE Product.pname=Purchase.product

AND Purchase .buyer = ‘Joe Blow‘);

SELECT Company.city
FROM Company
WHERE Company.name IN

(SELECTProduct.maker
FROM Purchase , Product
WHEREProduct.pname=Purchase.product

AND Purchase .buyer = ‘Joe Blow‘);

Return cities where one can find companies that manufacture
products bought by Joe Blow

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

59

Subqueries Returning Relations

SELECT Company.city
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.pname = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT Company.city
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.pname = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

Is it equivalent to this ?

60

Removing Duplicates

Now
they are
equivalent

SELECT DISTINCT Company.city
FROM Company
WHERE Company.name IN

(SELECT Product.maker
FROM Purchase , Product
WHERE Product.pname=Purchase.product

AND Purchase .buyer = ‘Joe Blow‘);

SELECTDISTINCT Company.city
FROM Company
WHERE Company.name IN

(SELECTProduct.maker
FROM Purchase , Product
WHEREProduct.pname=Purchase.product

AND Purchase .buyer = ‘Joe Blow‘);

SELECT DISTINCT Company.city
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.pname = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECTDISTINCT Company.city
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.pname = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

61

Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Product
WHERE maker=‘Gizmo-Works’)

SELECT name
FROM Product
WHERE price > ALL (SELECTprice

FROM Product
WHERE maker=‘Gizmo-Works’)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
s > ANY R
EXISTS R

62

Question for Database Fans
and their Friends

• Can we express this query as a single SELECT-
FROM-WHERE query, without subqueries ?

63

Monotone Queries

Let Q be a query over tables R, S, T, …; denote its answer
with Q(R, S, T, …).

Definition Q is called monotoneif :
∀ R ⊆ R’, S ⊆ S’, … ⇒ Q(R, S, …) ⊆ Q(R’,S’,…)

Theorem Every select-from-where query is monotone

Observation The ALL query on previous slide is not
monotone

64

Correlated Queries

SELECT DISTINCT title
FROM Movie AS x
WHERE year <> ANY

(SELECT year
FROM Movie
WHERE title = x.title);

SELECT DISTINCTtitle
FROM Movie AS x
WHERE year <> ANY

(SELECT year
FROM Movie
WHERE title = x.title);

Movie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

65

Complex Correlated Query

Product (pname, price, category, maker, year)
• Find products (and their manufacturers) that are more expensive

than all products made by the same manufacturer before 1972

Very powerful ! Also much harder to optimize.

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

66

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

sum, count, min, max, avg

67

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

SELECT Count(category)
FROM Product
WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

68

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

69

Simple Aggregations
Purchase

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 20+30)

70

Grouping and Aggregation
Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.

71

Grouping and Aggregation

1. Compute the FROM and WHEREclauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECTclause: grouped attributes and aggregates.

72

1&2. FROM-WHERE-GROUPBY

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

73

3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

15Banana

50Bagel

TotalSalesProduct

74

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘10/1/2005’)
AS TotalSales

FROM Purchase x
WHERE x.date > ‘10/1/2005’

SELECT DISTINCT x.product, (SELECTSum(y.price*y.quantity)
FROM Purchase y
WHEREx.product = y.product

AND y.date > ‘10/1/2005’)
AS TotalSales

FROM Purchase x
WHERE x.date > ‘10/1/2005’

75

Another Example

SELECT product,
sum(price * quantity) AS SumSales
max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

SELECT product,
sum(price * quantity) AS SumSales
max(quantity) AS MaxQuantity

FROM Purchase
GROUP BYproduct

What does
it mean ?

76

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING Sum(quantity) > 30

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BYproduct
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

77

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BYa1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?

78

General form of Grouping and
Aggregation

Evaluation steps:

1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BYa1,…,ak

HAVING C2

79

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT

2. Quantifiers

3. Aggregation v.s. subqueries

4. Two examples (study at home)

80

1. INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

(SELECTR.A, R.B
FROM R)

INTERSECT
(SELECTS.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECTR.A, R.B
FROM R
WHERE

EXISTS(SELECT*
FROMS
WHERER.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

(SELECTR.A, R.B
FROM R)

EXCEPT
(SELECTS.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECTR.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT*
FROMS
WHERER.A=S.A and R.B=S.B)

If R, S have no
duplicates, then can

write without
subqueries
(HOW ?)

INTERSECT and EXCEPT: not in SQL Server

81

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies that make someproducts with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy ! ☺

82

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies s.t. allof their products have price < 100

Universal: hard ! �

Find all companies that make onlyproducts with price < 100

same as:

83

2. Quantifiers

2. Find all companies s.t. alltheir products have price < 100

1. Find the other companies: i.e. s.t. someproduct ≥ 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECTProduct.company

FROMProduct
WHEREProduc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECTProduct.company

FROMProduct
WHEREProduc.price >= 100

84

3. Group-by v.s. Nested Query

• Find authors who wrote ≥ 10 documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

SELECT DISTINCTAuthor.name
FROM Author
WHERE count(SELECTWrote.url

FROM Wrote
WHEREAuthor.login=Wrote.login)

> 10

SQL by
a novice

Author(login,name)

Wrote(login,url)

85

3. Group-by v.s. Nested Query

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BYAuthor.name
HAVING count(wrote.url) > 10

SQL by
an expert

No need for DISTINCT: automatically from GROUP BY

86

3. Group-by v.s. Nested Query

Find authors with vocabulary ≥ 10000 words:

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

Author(login,name)

Wrote(login,url)

Mentions(url,word)

87

4. Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

Find all stores that sell only products with price > 100

same as:

Find all stores s.t. all their products have price > 100)

88

SELECT Store.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECTStore.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECT Store.name
FROM Store
WHERE Store.sid NOT IN

(SELECT Product.sid
FROM Product
WHERE Product.price <= 100)

SELECTStore.name
FROM Store
WHERE Store.sid NOT IN

(SELECTProduct.sid
FROM Product
WHERE Product.price <= 100)

SELECT Store.name
FROM Store
WHERE

100 < ALL (SELECT Product.price
FROM product
WHERE Store.sid = Product.sid)

SELECTStore.name
FROM Store
WHERE

100 < ALL (SELECTProduct.price
FROM product
WHEREStore.sid = Product.sid)

Almost equivalent…

Why both ?

89

Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

For each store,
find its most expensive product

90

Two Examples

SELECT Store.sname, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.sname

SELECTStore.sname, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.sname

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

SELECTStore.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECTy.price

FROM Product y
WHEREStore.sid = y.sid)

This is easy but doesn’t do what we want:

Better:

But may
return
multiple
product names
per store

91

Two Examples

SELECT Store.sname, max(x.pname)
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

GROUP BY Store.sname

SELECTStore.sname, max(x.pname)
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECTy.price

FROM Product y
WHEREStore.sid = y.sid)

GROUP BYStore.sname

Finally, choose some pid arbitrarily, if there are many
with highest price:

92

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:
– Value does not exists

– Value exists but is unknown

– Value not applicable

– Etc.

• The schema specifies for each attribute if can be null (nullable
attribute) or not

• How does SQL cope with tables that have NULLs ?

93

Null Values

• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe” is UNKNOWN

• In SQL there are three boolean values:
FALSE = 0

UNKNOWN = 0.5

TRUE = 1

94

Null Values

• C1 AND C2 = min(C1, C2)

• C1 OR C2 = max(C1, C2)

• NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

SELECT*
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

95

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

SELECT*
FROM Person
WHERE age < 25 OR age >= 25

96

Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

SELECT*
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

97

Outerjoins
Explicit joins in SQL = “inner joins”:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product JOINPurchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

98

Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product LEFT OUTER JOINPurchase ON

Product.name = Purchase.prodName

99

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

NULLOneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

100

Application

Compute, for each product, the total number of sales in ‘September’
Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

SELECTProduct.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

What’s wrong ?

101

Application

Compute, for each product, the total number of sales in ‘September’
Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

SELECTProduct.name, count(*)
FROM Product LEFT OUTER JOINPurchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

Now we also get the products who sold in 0 quantity

102

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

103

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

104

Insertions
General form:

Missing attribute → NULL.
May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

105

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

106

Insertion: an Example

prodNameis foreign key in Product.name

Suppose database got corrupted and we need to fix it:

gadgets100gizmo

categorylistPricename

225Smithcamera

80Smithgizmo

200Johncamera

pricebuyerNameprodName

Task: insert in Productall prodNamesfrom Purchase

Product

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Purchase

107

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

--camera

Gadgets100gizmo

categorylistPricename

108

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

-225 ??camera ??

-200camera

Gadgets100gizmo

categorylistPricename

Depends on the implementation

109

Deletions

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

110

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECTproduct
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

Example:

111

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition:defining the schema.

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

112

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

CREATE TABLEPerson(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

113

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Altering: (adding or removing an attribute).

What happens when you make changes to the schema?

Example:

DROP Person; DROPPerson; Example: Exercise with care !!

114

Default Values

Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

CREATE TABLEPerson(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

The default of defaults: NULL

115

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

Sequential scan of the file Person may take long

SELECT *
FROM Person
WHERE name = “Smith”

SELECT*
FROM Person
WHERE name = “Smith”

116

• Create an index on name:

Indexes

Smith ….….CharlesBettyAdam

B+ trees have fan-out of 100s: max 4 levels !
Will discuss in the second half of this course

117

Creating Indexes

CREATE INDEX nameIndex ON Person(name)CREATE INDEX nameIndex ON Person(name)

Syntax:

118

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

Why not create indexes on everything?

CREATE INDEX ageIndex ON Person (age)CREATE INDEXageIndex ON Person (age)

SELECT *
FROM Person
WHERE age > 25 AND age < 28

SELECT*
FROM Person
WHEREage > 25 AND age < 28

119

Creating Indexes
Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT*
FROM Person
WHEREage = 55 AND city = “Seattle”

Helps in:

SELECT *
FROM Person
WHERE city = “Seattle”

SELECT*
FROM Person
WHEREcity = “Seattle”

But not in:

CREATE INDEX doubleindex ON
Person (age, city)

CREATE INDEXdoubleindex ON
Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

SELECT*
FROM Person
WHEREage = 55

and even in:

120

The Index Selection Problem

• Why not build an index on every attribute ?
On every pair of attributes ? Etc. ?

• The index selection problem is hard:
balance the query cost v.s. the update cost,
in a large application workload

