Lecture 03
Views, Constraints

Tuesday, January 23, 2007

Outline

* Integrity constraints: Chapter 5.7

e Triggers: Chapter 5.8;
Also recommended: the other textbook

* Views: Chapters 3.6, 25.8, 25.9
We discuss here material that is NOT

covered in ANY books

Constraints in SQL

e A constraint = a property that we’d like our
database to hold

* The system will enforce the constraint by
taking some actions:
— forbid an update
— or perform compensating updates

Constraints in SQL

Constraints in SQL:
. Key;, foreign keys | w
o Attribute-level constraints

e Tuple-level constraints

e Global constraints: assertions

Most
complex

The more complex the constraint, the harder o ish
to enforce

Keys

CREATE TABLEProduct (
name CHAR(30PRIMARY KEY,
category VARCHAR(20))

OR: Product(namecategory)

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20

PRIMARY KEY (name))

Keys with Multiple Attributes

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category

Name

Category

Price

Gizmo

Gadget

10

Camera

Photo

20

Gizmo

Photo

30

110

et

Product(name, categaqrprice)

Other Keys

CREATE TABLE Product (
productlID CHAR(10),
name CHAR(30),
category VARCHAR(20),

orice INT,

PRIMARY KEY (productID),

UNIQUE (name, category))

There is at most oneRIMARY KEY,
there can be manyNIQUE

Foreign Key Constrai

Referential
Integrity
constraints

CREATE TABLE Purchase (

prodName CHAR(30)
REFERENCEroduct(name}s),
date DATETIME) AN

May write
just Product

prodName is &oreign keyto Product(name)
(why ?)

name must be key in Product

Produc/\Purchase

Name Category
Gizmo gadget
Camera Photo

OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Foreign Key Constraints

e OR
CREATE TABLEPurchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)
REFERENCESProduct(name, categoryp)

e (name, category) must be a PRIMARY
KEY

10

What happens during updates ?

Types of updates:

* In Purchase: insert/update
* In Product: delete/update

Product
yo
Name Category
Gizmo gadget
Camera Photo
OneClick Photo

Purchase
~—

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

11

What happens during updates ?

 SQL has three policies for maintaining
referential integrity:

* Rejectviolating modifications (default)

« Cascadeafter a delete/update do a
delete/update

o Set-nullset foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

12

Constraints on Attributes and
Tuples

e Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

e Constraints on tuples
CHECK condition

13

CREATE TABLEPurchase (
prodName CHAR(30),
date DATETIMENOT NULL)

14

What
IS the difference from
Foreign-Key ?

CREATE TABLE Purchase V
prodName CHAR(30)
CHECK (prodName IN

SELECTProduct.nam
FROM Product),
date DATETIMENOT NULL)

15

General Assertions

CREATE ASSERTIONmyAssertCHECK
NOT EXISTY
SELECTProduct.name
FROM Product, Purchase
WHEREProduct.name = Purchase.prodN
GROUP BYProduct.name
HAVING count(*) > 200)

16

Comments on Constraints

e Can give them names, and alter later

* We need to understand exactligen they
are checked

* \We need to understand exactligat actions
are taken if they fail

17

Semantic Optimization

* Apply constraints to rewrite the query
e Simple example:

SELET x.a FROM R x, S y WHERE x.tk=y.key
same as

SELECT x.a FROM R.x

 More advanced optimizations possible using
complex constraints

18

Triggers

Trigger = a procedure invoked by the DBMS
IN response to an update to the database

rigger = Event + Condition + Action

Recommended reading: Chapt. 7 frohe Complete Book 19

Triggers in SQL

A trigger contains aavent, acondition, anaction.
Event = INSERT, DELETE, UPDATE

Condition = any WHERE condition (may refer to
the old and the new values)

Action = more inserts, deletes, updates
Many, many more bells and whistles...
Read in the book (it only scratches the surfgce...

20

Triggers

Enable the database programmer to specify:
 when to check a constraint,
« what exactly to do.

A trigger has 3 parts:
* An event(e.g., update to an attribute)
A condition(e.g., a query to check)

e An action (deletion, update, insertion)

When thesventhappens, the system will check tanstraintand
If satisfied, will perform theaction

NOTE: triggers may cause cascading effects.
Database vendors did not walit for standards wiggérs! 21

Elements of Triggers (in SQL3)

e Timing of action execution: before, after or iresdeof triggering
event

e The action can refer to both the old and new sihtbe database.
» Update events may specify a particular columredio$ columns.
A condition is specified with a WHEN clause.

* The action can be performed either for

« once for every tuple, or

 once for all the tuples that are changed by thaldete operation.
22

Example: Row Level Trigger

CREATE TRIGGER InsertPromotions

AFTER UPDATE OF price ON Product
REFERENCING

OLD AS OldTuple

NEW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.price > NewTuple.price)

INSERT INTO Promotions(name, discount)
VALUES OldTuple.name,

@ (OldTuple.price-NewTuple.price)*100/OldTuple.price
23

EVENTS

INSERT, DELETE, UPDATE

e Trigger can be:
— AFTER event
— INSTEAD of event

24

Scope

« FOR EACH ROW = trigger executed for every
row affected by update

— OLD ROW
— NEW ROW

« FOR EACH STATEMENT = trigger executed
once for the entire statement

— OLD TABLE
— NEW TABLE

25

Statement Level Trigger

CREATE TRIGGER average-price-preserve
INSTEAD OF UPDATE OF price ON Product

REFERENCING
OLD_TABLE AS OldStuff
NEW_TABLE AS NewStuff
FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price)
FROM ((Product EXCEPT OldStuff) UNION NewsStuff))
DELETE FROM Product
WHERE (name, price, company) IN OldStuff;
INSERT INTO Product
(SELECT * FROM NewsStuff) 26

Bad Things Can Happen

CREATE TRIGGER Bad-trigger

AFTER UPDATEOQOF price IN Product

REFERENCINGOLD AS OldTuple
NEW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.price > 50)

UPDATE Product
SET price = NewTuple.price * 2
WHERE name = NewTuple.name

27

Trigers v.s. Integrity Constraints

Triggers can be used to enforce ICs

More versatile:

— Your project: ORDER should always “get” the address
from CUSTOMER

May have other usages:
— User alerts, generate log events for auditing

Hard to understand
— E.g. recursive triggers 28

Views

Views are relations, except that they are not ais1 stored.

For presenting different information to differerseus

Employedssn, name, department, project, salary)

CREATE VIEW DeveloperAS
SELECTname, project
FROM Employee
WHEREdepartment = ‘Development

Payroll has access EEmployee others only tdevelopers

29

Example
Purchase(customer, product, store)
Product(pnameprice)

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Productty,
WHERE x.product = y.pnam

CustomerPrice(customer, price¥virtual table”

30

Purchase(customer, product, store)
Product(pnameprice)

CustomerPrice(customer, price)

We can later use the view:

SELECT u.customer, v.store

FROM CustomerPrice UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

31

Types of Views

e Virtual views:
— Used in databases
— Computed only on-demand — slow at runtime
— Always up to date

 Materializedviews
— Used In data warehouses

— Pre-computed offline — fast at runtime
— May have stale data

32

Issues In Virtual Views

* Query Modification
* Applications
« Updating views

e Query minimization

33

View:

Query:

Queries Over Views:
Query Modification

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Produc
WHERE x.product = y.pnam

SELECT u.customer, v.store

FROM CustomerPrice ,UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

34

Queries Over Views:
Query Modification

Modified query:

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname) u, Purchasg-v,
WHERE u.customer = v.customer AND

u.price > 100

35

Queries Over Views:
Query Modification

Modified and rewritten query:

SELECT x.customer, v.store
FROM Purchase x, Produc| Purchase v
WHERE x.customer = v.customer AND
y.price > 100 AND
X.product = y.pname

36

But What About This ?

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

272

37

Answer

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

!

SELECT DISTINCTx.customer, v.store

FROM Purchase x, Product Purchase v

WHERE x.customer = v.customer AND
y.price > 100 AND

X.product = y.pname 38

Set v.s. Bag Semantics

SELECT DISTINCT a,b, :
ROM R, S, T

WHERE

SELECT a,b,c

FROM R, S,
WHERE ...

39

Inlining Queries: Sets/Sets

SELECT DISTINCT a,b.c

FROM (SELECT DISTINCT u, SELECT DISTINCT a.b,
FROM R,S —> |FROM R.,S,T
WHERE ..)), T WHERE

WHERE

40

Inlining Queries: Sets/Bags

SELECT DISTINCT a,b,

FROM (SELECT u,v SELECT DISTINCT a.b,
FROM R,S —> |[FROM R.S. T
WHERE ...), T WHERE ...

WHERE

41

Inlining Queries: Bags/Bags

SELECT a,b,c

FROM (SELECT u,v
FROM R,S
WHERE ...), T

WHERE ...

SELECT a,b,c
FROM R, S,
WHERE ...

42

Inlining Queries: Bags/Sets

SELECT a,b,c

FROM (SELECT DISTINCT u,
FROM R.S i NO
WHERE ...), T

WHERE ...

43

Applications of Virtual Views

e Logical data independence
Typical examples:

— Vertical data partitioning
— Horizontal data partitioning

o Security

— Table V reveals only what the users are allowed
to know

44

Vertical Partitioning

Resumes | SSN Name |Address |Resume |Picture
234234 |Mary |Huston |Clobl... |Blobl...
345345 | Sue Seattle |Clob2... |Blob2...
345343 |Joan |Seattle |Clob3... [Blob3...
234234 | Ann Portland | Clob4... |Blob4...

T1 2 T3
SSN Name | Address SSN Resume SSN Picture
234234 | Mary | Huston 234234 | Clobl... 234234 | Blobl...
345345 | Sue | Seattle 345345 | Clob2... 345345 | Blob2...
45—

Vertical Partitioning

CREATE VIEW ResumesAS

SELECT T1.ssn, Tl.name, T1l.address,
T2.resume, T3.picture

FROM T1,T2,T3

WHERE T1.ssn=T2.ssn and T2.ssn=T3.

@ do we use vertical par@

46

Vertical Partitioning

SELECTaddress
FROM Resumes
WHERE name = ‘Sue}-

Which of the tables T1, T2, T3 will
be gqueried by the system ?

47

Vertical Partitioning

Applications:

 When some fields are large, and rarely accessed
— E.g. Picture

e |n distributed databases

— Customer personal info at one site, customerlprafi
another

* |In data integration
— T1 comes from one source
— T2 comes from a different source

48

Horizontal Partitioning

CustomersinHuston

Customers
SSN Name | City Country
234234 | Mary | Huston USA
345345 | Sue Seattle USA
345343 |Joan | Seattle USA
234234 | Ann Portland | USA
-- Frank | Calgary | Canada
- Jean | Montreal | Canada

SSN Name | City Country
234234 | Mary | Huston | USA
CustomersinSeattle

SSN Name | City Country
345345 | Sue Seattle | USA
345343 | Joan | Seattle | USA
CustomersinCanada

SSN | Name | City Country
-- Frank | Calgary | Canada
-- Jean Montreal qu)\ada

Horizontal Partitioning

CREATE VIEW CustomersAS
CustomersinHuston
UNION ALL
CustomersinSeattle
UNION ALL

50

Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ?77?

51

Better:

Horizontal Partitioning

CREA"
(SE

'E VIEW CustomersAS
L ECT * FROM CustomersinHust

WH

ERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersinSeattie.
WHERE city = ‘Seattle’)

UNION ALL

52

Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

d

SELECTname
FROM CusotmersinSeatt

53

Horizontal Partitioning

Applications:
e Optimizations:

— E.g. archived applications and active
applications

e Distributed databases
e Data integration

54

Fred is

Views and Security

Fred is not
allowed to

Customers: s
Name Address |Balance

Mary Huston [450.99 4

Sue Seattle -240

Joan Seattle 333.25

Ann Portland |-520

allowed to
see this

CREATE VIEW PublicCustome
SELECT Name, Address
FROM Customers

55

Views and Security

Customers:

Name Address |Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland |-520

Johnis
allowed to
see only <0
balances

CREATE VIEW BadCreditCustome
SELECT *
FROM Customers

WHERE Balance <0

56

Updating Views

Purchase(customer, product, store)

Product(pnameprice)

CREATE VIEW Expensive-Produ@S
SELECT pname
FROM Product
WHERE price > 100

Updateable
view

INSERT
INTO Expensive-Produc
VALUES(*Gizmo’)

g

(N

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

Updating Views
Purchase(customer, product, store)
Product(pnameprice)

INSERT
INTO Toy-Product
VALUES(‘Joe’, ‘Gizmo’)

CREATE VIEW AcmePurchaseAS IS I
SELECT customer, product
INSERT
FROM Purchase INTO Product

WHERE re = ‘AcmeStore’ ;
store = AcCme VALUES(‘Joe’, Gizmo’,NULL)

Updateable
view
58

Updating Views

Purchase(customer, product, store)

Product(pna rice
(_D M) INSERT INTOCustomerPric
VALUES(‘Joe’, 200)

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price @

FROM Purchase x, Product
????t

WHERE x.product = y.pnam
Most views are

non-updateable

Non-updateable
view

| =4

959

Query Minimization

Order(cid, pid date)
Product(pid name, weight, price)

Customers
who bought a
cheap, light
product

CREATE VIEW CheapOrderAS
SELECT x.cid,x.pid,x.date,y.name,y.pride.
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

CREATE VIEW LightOrdersAS

SELECT a.cid,a.pid,a.date,b.name,b.prife: | s ECT . cid
FROM Order a, Product b '

WHERE a.pid = b.pid and b.weight < 1dg, | TROM Ehﬁf‘garders
ightOrders v

WHERE u.pid =v.pid
andu.cid =v.cid

Query Minimization

Order(cid, pid date)
Product(pid name, weight, price)

CREATE VIEW CheapOrderAS
SELECT x.cid,x.pid,x.date,y.name,y.pri
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

fan

SELECTu.cid
FROM CheapOrders
LightOrders v
WHERE u.pid =v.pid
andu.cid =v.cid

CREATE VIEW LightOrdersAS
SELECT a.cid,a.pid,a.date,b.name,b.pri€ed
FROM Order a, Product b
WHERE a.pid = b.pid and b.weight < 100,

SELECTa.cid
FROM Order x, Product

Order a, Product
WHERE

@dant Orders an@

61

Query Minimization under Bag
Semantics
Rule 1:1f x, y are tuple variables over the

same table and x.id = y.id, then combine X,
y Into a single variable

Rule 2 If X ranges over S, y ranges over T,
and the only condition on y Is x.fk = y.key,
then remove T from the query

62

SELECTa.cid
FROM Order x, Product y, Order a, Productih,
WHERE x.pid = y.pid and a.pid = b.pid

and y.price < 100 and b.weight < 10

and x.cid = a.cid and x.pid = a.pid

SELECTa.cid

FROM Order x, Product y, Product b
X=a WHERE x.pid = y.pid and x.pid = b.pid
and y.price < 100 and b.weight < Q)

SELECTa.cid

y=Db FROM Order x, Product y
WHEREX.pid = y.pid and

y.price <100 and x.weight < 1

Query Minimization under Set

Semantics

SELECT DISTINCTX.pid

FROM Product x, Product y, Product z

WHERE Xx.category = y.category and y.price > 1
and x.category = z.category and z.price >

and z.weight > 1

Same as:

SELECT DISTINCTX.pid

FROM Product x, Product z
WHERE Xx.category = z.category and z.price > 5
and z.weight > 1

Query Minimization under Set
Semantics

Rule 3: Let Q’ be the query obtained by
removing the tuple variable x from Q. If
there exists a homomorphism from Q to Q
then Q’ Is equivalent to Q, hence one can
safely remove x.

Definition. A homomorphism from Q to Q' is mapping h
from the tuple variables of Q to those of Q’ s.t. forevery
predicate P in the WHERE clause of Q, the predicata(P)
IS logically implied by the WHERE clause in Q’

Homomorphism

SELECT DISTINCTX.pid

FROM Product x, Product y, Product z

WHERE Xx.category = y.category and y.price > 1
and x.category = z.category and z.price >

and z.weight > 1

H09 =X, HE) = H(z) =2

SELECT DISTINCTX .pid

FROM Product x’, Product Z’
WHERE X'.category = z'.category and z’.price > 5
and z’.weight > 10

Materialized Views

Examples:

e |ndexes

e Join indexes

e Views In data warehouses
 Distribution/replication

67

Issues with Materialized Views

e Synchronization
— View becomes stale when base tables get updated

e Query rewriting using views
— Much harder than query modification

e View selection
— Given a choice, which views should we materiafize

68

View Synchronization

Immediate synchronization = after each
update

Deferred synchronization
— Lazy = at query time

— Periodic

— Forced = manual

Which one is best for: indexes, data warehouseication ?
69

Denormalization:
Story From the Trenches

Graduate Admissions:

« Application(id, name, school)
GRE(id, score, year) /* normalization ! */

* Very common query:
List(id, name, school,
GRE-some-average-or-last-score)

« VERY SLOW !

« Solution: Application(id,name,school,GRE)
 De-normalized; computed field; materialized view
e Synchronized periodically (once per night).

70

Incremental View Update

Order(cid, pid, date)

Product(pid name, price)

CREATE VIEW FullOrderAS
SELECT x.cid,x.pid,x.date,y.name,y.pri¢e-
') FROM Order x, Product y

WHERE x.pid = y.pid

UPDATE Product
SET price = price / 2

UPDATE FullOrder

:> SET price = price / 2
WHEREpid = ‘12345’ WHEREpid = ‘12345’

No need to recompute the entire view !

71

Incremental View Update

Product(pid name, category, price)

CREATE VIEW CategorieAS
SELECT DISTINCTcategory
FROM Product

> | DELETE Categories
DELETE P_ro_dl‘JCt | WHERE category in
WHERE pid = ‘12345 (SELECT category

FROM Product
WHERE pid = ‘12345’

It doesn’t work ! Why ? How can we fix it ? 72

Answering Queries Using Views

 What If we want tause a set of views to
answer a guery.

e Why?
— The obvious reason...

73

Reusing a Materialized View

e Suppose | havenly the result of SeattleView:
SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

X.pname = y.buyer

e and | want to answer the query
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

X..phame = y.buyer AND
y.product=‘gizmo’.

Then, | can rewrite the query using the view.

74

Query Rewriting Using Views

Rewritten query:
SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Original query:
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
X..pname = y.buyer AND
y.product=‘gizmo’.

75

Another Example

| still haveonly the result of SeattleView:
SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
X.pname = y.buyer
e but | want to answer the query
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
X.pname = y.buyer AND
X.Phone LIKE ‘206 543 %'.

76

And Now?

| still haveonly the result of SeattleOtherView:

SELECT y.buyer, y.seller, y.product, y.store

FROM Person x, Purchase y, Product z

WHERE x.city = ‘Seattle’ AND
X.pname = y.buyer AND
y.product = z.name AND
z.price < 100

e Dbut | want to answer the query

SELECT y.buyer, y.seller

FROM Person x, Purchase y

WHERE x.city = ‘Seattle’ AND
X.pname = y.buyer.

77

And Now?

| still haveonly the result of:
SELECT seller, buyer, Sum(Price)
FROM Purchase
WHERE Purchase.store = ‘The Bon'’
Group Byseller, buyer

e but | want to answer the query
SELECT seller, Sum(Price)
FROM Purchase
WHERE Person.store = ‘The Bon'’
Group Byseller

And what if it's the other way around?

78

Finally...

| still haveonly the result of:
SELECT seller, buyer, Count(*)
FROM Purchase
WHERE Purchase.store = ‘The Bon’
Group Byseller, buyer

e but | want to answer the query
SELECT seller, Count(*)
FROM Purchase
WHERE Person.store = ‘The Bon'’
Group Byseller

79

The General Problem

e Given a set of views V1,...,Vn, and a query
Q, can we answer Q using only the answers to
Vi,...,.vn?

80

Application 1.
Horizontal Partition

CREA

E VIEW CustomersinHustorAS|s

SELECT*
FROM Customers
WHERE city="Huston NO

CREA

maore
E VIEW CustomersinSeattlAS [sunions !

SELECT*
FROM Customers
WHERE city='Seattle

81

Application 1.

Horizontal Partition

SELECTname
FROM Customer
WHERECcIty = ‘Seattle’

Rewrite using available views:

SELECTname
FROM CustomersinSeattfge

This Is query rewriting using vieWs y

Application 2:

Aggressive Use of Indexes

Product(pid name, weight, price, ...many other attributes)

CREATE INDEX W ON Product(weight)
CREATE INDEX P ON Product(price)

DMBS stores three files:

Product

(big)

SELECTwelght, price
FROM Product
WHEREweight > 10 and price < 1

(smaller)

Which files are needed to answer the query?

Indexes ARE Views

Product(pid name, weight, price, ...many other attributes)

CREATE INDEX W ON Product(weight},

CREATE INDEX P ON Product(price)

CREATE VIEW W AS
\% SELECTpid, weight

FROM Product

CREATE VIEW P AS
SELECTpid, weight
FROM Product

Indexes ARE Views

Product(pid name, weight, price, ...many other attributes)
CREATE VIEW W AS

SELECTpid, weight
FROM Product

CREATE VIEW P AS
SELECTpid, weight
FROM Product

SELECTweight, price

SELECTweight, price FROMW, P
FROM Product j> WHEREweight > 10
WHEREweight > 10 and price < 1 and price < 100

and W.pid = P.pi

This, too, is query rewriting using vieWs 85

Application 3: Semantic Caching

e Queries Q1, Q2, ... have been executed,
and their results are stored in main memory

« Now we need to compute a new query Q

e Sometimes we can use the prior results Iin
answering Q

e This, too, Is a form of query rewriting using
views (why ?)

86

