
1

Lecture 03
Views, Constraints

Tuesday, January 23, 2007

2

Outline

• Integrity constraints: Chapter 5.7

• Triggers: Chapter 5.8;
Also recommended: the other textbook

• Views: Chapters 3.6, 25.8, 25.9
We discuss here material that is NOT
covered in ANY books

3

Constraints in SQL

• A constraint = a property that we’d like our
database to hold

• The system will enforce the constraint by
taking some actions:
– forbid an update

– or perform compensating updates

4

Constraints in SQL

Constraints in SQL:

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

5

Keys

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLEProduct (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

6

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

40GadgetGizmo

30

20

10

Price

PhotoGizmo

PhotoCamera

GadgetGizmo

CategoryName Product(name, category, price)

7

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

CREATE TABLEProduct (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

8

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES Product(name),
date DATETIME)

CREATE TABLEPurchase (
prodName CHAR(30)

REFERENCESProduct(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

(why ?)

9

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

10

Foreign Key Constraints

• OR

• (name, category) must be a PRIMARY
KEY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

CREATE TABLEPurchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY(prodName, category)

REFERENCESProduct(name, category)

11
PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

What happens during updates ?

Types of updates:

• In Purchase: insert/update

• In Product: delete/update

12

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:

• Rejectviolating modifications (default)
• Cascade: after a delete/update do a

delete/update
• Set-nullset foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

13

Constraints on Attributes and
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

14

CREATE TABLE Purchase (
prodName CHAR(30),
date DATETIME NOT NULL)

CREATE TABLEPurchase (
prodName CHAR(30),
date DATETIME NOT NULL)

15

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

CREATE TABLEPurchase (
prodName CHAR(30)

CHECK(prodName IN
SELECTProduct.name
FROMProduct),

date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

16

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

CREATE ASSERTIONmyAssertCHECK
NOT EXISTS(

SELECTProduct.name
FROMProduct, Purchase
WHEREProduct.name = Purchase.prodName
GROUP BYProduct.name
HAVING count(*) > 200)

17

Comments on Constraints

• Can give them names, and alter later

• We need to understand exactly when they
are checked

• We need to understand exactly what actions
are taken if they fail

18

Semantic Optimization

• Apply constraints to rewrite the query
• Simple example:

SELET x.a FROM R x, S y WHERE x.fk=y.key
same as

SELECT x.a FROM R.x

• More advanced optimizations possible using
complex constraints

19

Triggers

Trigger = a procedure invoked by the DBMS
in response to an update to the database

Trigger = Event + Condition + Action

Recommended reading: Chapt. 7 from The Complete Book

20

Triggers in SQL

• A trigger contains an event, a condition, an action.

• Event = INSERT, DELETE, UPDATE

• Condition = any WHERE condition (may refer to
the old and the new values)

• Action = more inserts, deletes, updates

• Many, many more bells and whistles...

• Read in the book (it only scratches the surface...)

21

Triggers
Enable the database programmer to specify:
• when to check a constraint,
• what exactly to do.

A trigger has 3 parts:

• An event(e.g., update to an attribute)
• A condition(e.g., a query to check)
• An action (deletion, update, insertion)

When the eventhappens, the system will check the constraint, and
if satisfied, will perform the action.

NOTE: triggers may cause cascading effects.
Database vendors did not wait for standards with triggers!

22

Elements of Triggers (in SQL3)
• Timing of action execution: before, after or instead of triggering

event

• The action can refer to both the old and new state of the database.

• Update events may specify a particular column or set of columns.

• A condition is specified with a WHEN clause.

• The action can be performed either for
• once for every tuple, or
• once for all the tuples that are changed by the database operation.

23

Example: Row Level Trigger

CREATE TRIGGER InsertPromotions

AFTER UPDATE OF price ON Product
REFERENCING

OLD AS OldTuple
NEW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.price > NewTuple.price)

INSERT INTO Promotions(name, discount)
VALUES OldTuple.name,

(OldTuple.price-NewTuple.price)*100/OldTuple.price

Event

Condition

Action

24

EVENTS

INSERT, DELETE, UPDATE

• Trigger can be:
– AFTER event

– INSTEAD of event

25

Scope

• FOR EACH ROW = trigger executed for every
row affected by update
– OLD ROW
– NEW ROW

• FOR EACH STATEMENT = trigger executed
once for the entire statement
– OLD TABLE
– NEW TABLE

26

Statement Level Trigger
CREATE TRIGGER average-price-preserve
INSTEAD OF UPDATE OF price ON Product

REFERENCING
OLD_TABLE AS OldStuff
NEW_TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price)

FROM ((Product EXCEPT OldStuff) UNION NewStuff))
DELETE FROM Product

WHERE (name, price, company) IN OldStuff;
INSERT INTO Product
(SELECT * FROM NewStuff)

27

Bad Things Can Happen
CREATE TRIGGERBad-trigger

AFTER UPDATEOF price IN Product
REFERENCINGOLD AS OldTuple

NEW AS NewTuple
FOR EACH ROW
WHEN (NewTuple.price > 50)

UPDATE Product
SET price = NewTuple.price * 2
WHERE name = NewTuple.name

28

Trigers v.s. Integrity Constraints

• Triggers can be used to enforce ICs

• More versatile:
– Your project: ORDER should always “get” the address

from CUSTOMER

• May have other usages:
– User alerts, generate log events for auditing

• Hard to understand
– E.g. recursive triggers

29

Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’

CREATE VIEW Developers AS
SELECTname, project
FROM Employee
WHERE department = ‘Development’

30

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

Example
Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)“virtual table”

31

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

32

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

• Materializedviews
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

33

Issues in Virtual Views

• Query Modification

• Applications

• Updating views

• Query minimization

34

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

View:

Query:

35

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

Modified query:

36

Queries Over Views:
Query Modification

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

Modified and rewritten query:

37

But What About This ?

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCTu.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

??

38

Answer

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCTu.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

SELECT DISTINCTx.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

39

Set v.s. Bag Semantics

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

Set semantics

Bag semantics

40

Inlining Queries: Sets/Sets

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

41

Inlining Queries: Sets/Bags

SELECT DISTINCT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

42

Inlining Queries: Bags/Bags

SELECT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

43

Inlining Queries: Bags/Sets

SELECT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

NO

44

Applications of Virtual Views

• Logical data independence
Typical examples:
– Vertical data partitioning
– Horizontal data partitioning

• Security
– Table V reveals only what the users are allowed

to know

45

Vertical Partitioning

Clob4…

Clob3…

Clob2…

Clob1…

Resume

234234

345343

345345

234234

SSN

Blob4…PortlandAnn

Blob3…SeattleJoan

Blob2…SeattleSue

Blob1…HustonMary

PictureAddressNameResumes

. . .

345345

234234

SSN

SeattleSue

HustonMary

AddressName

Clob2…

Clob1…

Resume

345345

234234

SSN

345345

234234

SSN

Blob2…

Blob1…

Picture

T1 T2 T3

46

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

CREATE VIEW ResumesAS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

47

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

48

Vertical Partitioning

Applications:
• When some fields are large, and rarely accessed

– E.g. Picture

• In distributed databases
– Customer personal info at one site, customer profile at

another

• In data integration
– T1 comes from one source
– T2 comes from a different source

49

Horizontal Partitioning

CanadaMontrealJean--

USAPortlandAnn234234

CanadaCalgaryFrank--

345343

345345

234234

SSN

USASeattleJoan

USASeattleSue

USAHustonMary

CountryCityName

Customers

USAHustonMary234234

CountryCityNameSSN

CustomersInHuston

USASeattleSue345345

USASeattleJoan345343

CountryCityNameSSN

CustomersInSeattle

CanadaCalgaryFrank--

CanadaMontrealJean--

CountryCityNameSSN

CustomersInCanada

50

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHuston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

CREATE VIEW CustomersAS
CustomersInHuston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

51

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

52

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT * FROM CustomersInHuston
WHERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

CREATE VIEW CustomersAS
(SELECT * FROM CustomersInHuston
WHERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Better:

53

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM CusotmersInSeattle

SELECT name
FROM CusotmersInSeattle

54

Horizontal Partitioning

Applications:

• Optimizations:
– E.g. archived applications and active

applications

• Distributed databases

• Data integration

55

Views and Security

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

Fred is
allowed to

see this

Customers:
Fred is not
allowed to

see this

56

Views and Security

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

Customers: John is
allowed to
see only <0

balances

57

CREATE VIEW Expensive-Product AS
SELECT pname
FROM Product
WHERE price > 100

CREATE VIEW Expensive-Product AS
SELECT pname
FROM Product
WHERE price > 100

Updating Views

INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)

INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

58

CREATE VIEW AcmePurchase AS
SELECT customer, product
FROM Purchase
WHERE store = ‘AcmeStore’

CREATE VIEW AcmePurchaseAS
SELECT customer, product
FROM Purchase
WHERE store = ‘AcmeStore’

Updating Views

INSERT
INTO Toy-Product
VALUES(‘Joe’, ‘Gizmo’)

INSERT
INTO Toy-Product
VALUES(‘Joe’, ‘Gizmo’)

INSERT
INTO Product
VALUES(‘Joe’,’Gizmo’,NULL)

INSERT
INTO Product
VALUES(‘Joe’,’Gizmo’,NULL)

Note
this

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

59

Updating Views

INSERT INTO CustomerPrice
VALUES(‘Joe’, 200)

INSERT INTOCustomerPrice
VALUES(‘Joe’, 200)

? ? ? ? ?? ? ? ? ?

Non-updateable
view

Most views are
non-updateable

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

60

Query Minimization

CREATE VIEW CheapOrders AS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

CREATE VIEW LightOrders AS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and b.weight < 100

CREATE VIEW CheapOrdersAS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

CREATE VIEW LightOrdersAS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and b.weight < 100

Order(cid, pid, date)
Product(pid, name, weight, price)

SELECT u.cid
FROM CheapOrders u,

LightOrders v
WHERE u.pid = v.pid

and u.cid = v.cid

SELECT u.cid
FROM CheapOrders u,

LightOrders v
WHERE u.pid = v.pid

and u.cid = v.cid

Customers
who bought a
cheap, light

product

61

Query Minimization

CREATE VIEW CheapOrders AS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

CREATE VIEW LightOrders AS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and b.weight < 100

CREATE VIEW CheapOrdersAS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 100

CREATE VIEW LightOrdersAS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and b.weight < 100

Order(cid, pid, date)
Product(pid, name, weight, price) SELECT u.cid

FROM CheapOrders u,
LightOrders v

WHERE u.pid = v.pid
and u.cid = v.cid

SELECT u.cid
FROM CheapOrders u,

LightOrders v
WHERE u.pid = v.pid

and u.cid = v.cid

SELECT a.cid
FROM Order x, Product y

Order a, Product b
WHERE

SELECT a.cid
FROM Order x, Product y

Order a, Product b
WHERE

Redundant Orders and Products

62

Query Minimization under Bag
Semantics

Rule 1: If x, y are tuple variables over the
same table and x.id = y.id, then combine x,
y into a single variable

Rule 2: If x ranges over S, y ranges over T,
and the only condition on y is x.fk = y.key,
then remove T from the query

63

SELECT a.cid
FROM Order x, Product y, Order a, Product b
WHERE x.pid = y.pid and a.pid = b.pid

and y.price < 100 and b.weight < 10
and x.cid = a.cid and x.pid = a.pid

SELECT a.cid
FROM Order x, Product y, Order a, Product b
WHERE x.pid = y.pid and a.pid = b.pid

and y.price < 100 and b.weight < 10
and x.cid = a.cid and x.pid = a.pid

SELECT a.cid
FROM Order x, Product y, Product b
WHERE x.pid = y.pid and x.pid = b.pid

and y.price < 100 and b.weight < 10

SELECT a.cid
FROM Order x, Product y, Product b
WHERE x.pid = y.pid and x.pid = b.pid

and y.price < 100 and b.weight < 10

x = a

SELECT a.cid
FROM Order x, Product y
WHERE x.pid = y.pid and

y.price <100 and x.weight < 10

SELECT a.cid
FROM Order x, Product y
WHERE x.pid = y.pid and

y.price <100 and x.weight < 10

y = b

64

Query Minimization under Set
Semantics

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500
and z.weight > 10

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500
and z.weight > 10

SELECT DISTINCT x.pid
FROM Product x, Product z
WHERE x.category = z.category and z.price > 500

and z.weight > 10

SELECT DISTINCT x.pid
FROM Product x, Product z
WHERE x.category = z.category and z.price > 500

and z.weight > 10

Same as:

65

Query Minimization under Set
Semantics

Rule 3: Let Q’ be the query obtained by
removing the tuple variable x from Q. If
there exists a homomorphism from Q to Q’
then Q’ is equivalent to Q, hence one can
safely remove x.

Definition. A homomorphism from Q to Q’ is mapping h
from the tuple variables of Q to those of Q’ s.t. for every
predicate P in the WHERE clause of Q, the predicate h(P)
is logically implied by the WHERE clause in Q’

66

Homomorphism

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500
and z.weight > 10

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500
and z.weight > 10

SELECT DISTINCT x’.pid
FROM Product x’, Product z’
WHERE x’.category = z’.category and z’.price > 500

and z’.weight > 10

SELECT DISTINCT x’.pid
FROM Product x’, Product z’
WHERE x’.category = z’.category and z’.price > 500

and z’.weight > 10

Q

Q’

H(x) = x’, H(y) = H(z) = z’

67

Materialized Views

Examples:

• Indexes

• Join indexes

• Views in data warehouses

• Distribution/replication

68

Issues with Materialized Views

• Synchronization
– View becomes stale when base tables get updated

• Query rewriting using views
– Much harder than query modification

• View selection
– Given a choice, which views should we materialize ?

69

View Synchronization

• Immediate synchronization = after each
update

• Deferred synchronization
– Lazy = at query time

– Periodic

– Forced = manual

Which one is best for: indexes, data warehouses, replication ?

70

Denormalization:
Story From the Trenches

Graduate Admissions:
• Application(id, name, school)

GRE(id, score, year) /* normalization ! */
• Very common query:

List(id, name, school,
GRE-some-average-or-last-score)

• VERY SLOW !
• Solution: Application(id,name,school,GRE)
• De-normalized; computed field; materialized view
• Synchronized periodically (once per night).

71

CREATE VIEW FullOrder AS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid

CREATE VIEW FullOrderAS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid

Incremental View Update

UPDATE Product
SET price = price / 2
WHERE pid = ‘12345’

UPDATE Product
SET price = price / 2
WHEREpid = ‘12345’

Order(cid, pid, date)
Product(pid, name, price)

UPDATE FullOrder
SET price = price / 2
WHERE pid = ‘12345’

UPDATE FullOrder
SET price = price / 2
WHEREpid = ‘12345’

No need to recompute the entire view !

72

CREATE VIEW Categories AS
SELECT DISTINCT category
FROM Product

CREATE VIEW Categories AS
SELECT DISTINCTcategory
FROM Product

Incremental View Update

DELETE Product
WHERE pid = ‘12345’

DELETE Product
WHEREpid = ‘12345’

Product(pid, name, category, price)

DELETE Categories
WHERE category in

(SELECT category
FROM Product
WHERE pid = ‘12345’)

DELETE Categories
WHEREcategory in

(SELECT category
FROM Product
WHERE pid = ‘12345’)

It doesn’t work ! Why ? How can we fix it ?

73

Answering Queries Using Views

• What if we want to use a set of views to
answer a query.

• Why?
– The obvious reason…

74

Reusing a Materialized View
• Suppose I have only the result of SeattleView:

SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer

• and I want to answer the query
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x..pname = y.buyer AND
y.product=‘gizmo’.

Then, I can rewrite the query using the view.

75

Query Rewriting Using Views

Rewritten query:
SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Original query:
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x..pname = y.buyer AND
y.product=‘gizmo’.

76

Another Example
• I still have only the result of SeattleView:

SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer

• but I want to answer the query
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer AND
x.Phone LIKE ‘206 543 %’.

77

And Now?
• I still have only the result of SeattleOtherView:

SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y, Product z
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer AND
y.product = z.name AND
z.price < 100

• but I want to answer the query
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer.

78

And Now?
• I still have only the result of:

SELECT seller, buyer, Sum(Price)
FROM Purchase
WHERE Purchase.store = ‘The Bon’
Group Byseller, buyer

• but I want to answer the query
SELECT seller, Sum(Price)
FROM Purchase
WHERE Person.store = ‘The Bon’
Group Byseller

And what if it’s the other way around?

79

Finally…
• I still have only the result of:

SELECT seller, buyer, Count(*)
FROM Purchase
WHERE Purchase.store = ‘The Bon’
Group Byseller, buyer

• but I want to answer the query
SELECT seller, Count(*)
FROM Purchase
WHERE Person.store = ‘The Bon’
Group Byseller

80

The General Problem

• Given a set of views V1,…,Vn, and a query
Q, can we answer Q using only the answers to
V1,…,Vn?

81

Application 1:
Horizontal Partition

CREATE VIEW CustomersInHuston AS
SELECT *
FROM Customers
WHERE city=‘Huston’

CREATE VIEW CustomersInSeattle AS
SELECT *
FROM Customers
WHERE city=‘Seattle’

. . . .

CREATE VIEW CustomersInHustonAS
SELECT*
FROM Customers
WHERE city=‘Huston’

CREATE VIEW CustomersInSeattleAS
SELECT*
FROM Customers
WHERE city=‘Seattle’

. . . .

No
more
unions !

82

Application 1:
Horizontal Partition

SELECT name
FROM Customer
WHERE city = ‘Seattle’

SELECT name
FROM Customer
WHEREcity = ‘Seattle’

Rewrite using available views:

This is query rewriting using views

SELECT name
FROM CustomersInSeattle

SELECT name
FROM CustomersInSeattle

83

CREATE INDEX W ON Product(weight)
CREATE INDEX P ON Product(price)

CREATE INDEX W ON Product(weight)
CREATE INDEX P ON Product(price)

Application 2:
Aggressive Use of Indexes

SELECT weight, price
FROM Product
WHERE weight > 10 and price < 100

SELECT weight, price
FROM Product
WHEREweight > 10 and price < 100

Product(pid, name, weight, price, …many other attributes)

Which files are needed to answer the query ?

DMBS stores three files: Product W P(big) (smaller)

84

CREATE VIEW W AS
SELECT pid, weight
FROM Product

CREATE VIEW P AS
SELECT pid, weight
FROM Product

CREATE VIEW W AS
SELECTpid, weight
FROM Product

CREATE VIEW P AS
SELECTpid, weight
FROM Product

Indexes ARE Views
Product(pid, name, weight, price, …many other attributes)

CREATE INDEX W ON Product(weight)

CREATE INDEX P ON Product(price)

CREATE INDEX W ON Product(weight)

CREATE INDEX P ON Product(price)

85

Indexes ARE Views
Product(pid, name, weight, price, …many other attributes)

SELECT weight, price
FROM Product
WHERE weight > 10 and price < 100

SELECT weight, price
FROM Product
WHEREweight > 10 and price < 100

CREATE VIEW W AS
SELECT pid, weight
FROM Product

CREATE VIEW P AS
SELECT pid, weight
FROM Product

CREATE VIEW W AS
SELECTpid, weight
FROM Product

CREATE VIEW P AS
SELECTpid, weight
FROM Product

SELECT weight, price
FROM W, P
WHERE weight > 10

and price < 100
and W.pid = P.pid

SELECT weight, price
FROM W, P
WHEREweight > 10

and price < 100
and W.pid = P.pid

This, too, is query rewriting using views

86

Application 3: Semantic Caching

• Queries Q1, Q2, … have been executed,
and their results are stored in main memory

• Now we need to compute a new query Q

• Sometimes we can use the prior results in
answering Q

• This, too, is a form of query rewriting using
views (why ?)

