Lecture 7: Query Execution and Optimization Tuesday, February 20, 2007

Outline

• Chapters 4, 12-15

DBMS Architecture

How does a SQL engine work?

- SQL query \rightarrow relational algebra plan
- Relational algebra plan \rightarrow Optimized plan
- Execute each operator of the plan

Relational Algebra

- Formalism for creating new relations from existing ones
- Its place in the big picture:

Relational Algebra

- Five operators:
 - Union: \cup
 - Difference: -
 - Selection: σ
 - Projection: П
 - Cartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ

1. Union and 2. Difference

- $R1 \cup R2$
- Example:
 - ActiveEmployees \cup RetiredEmployees
- R1 R2
- Example:
 - AllEmployees -- RetiredEmployees

What about Intersection ?

- It is a derived operator
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees \cap RetiredEmployees

3. Selection

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name}="Smith"}$ (Employee)
- The condition c can be =, <, \leq , >, \geq , <>

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{\text{salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

4. Projection

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(\mathbf{R})$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

Note that there are two parts:

- (1) Eliminate columns (easy)
- (2) Remove duplicates (hard)

In the "extended" algebra we will separate them.

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

 $\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	20000
John	60000

5. Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - Employee \times Dependents
- Very rare in practice; mainly used to express joins

Cartesian Product Example

Employee		
Name	SSN	
John	999999999	
Tony	77777777	

Dependents

EmployeeSSN	Dname
999999999	Emily
77777777	Joe

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	9999999999	999999999	Emily
John	9999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe

Relational Algebra

- Five operators:
 - Union: \cup
 - Difference: -
 - Selection: σ
 - Projection: П
 - Cartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{B1,...,Bn}(R)$
- Example:
 - $\ \rho_{LastName, \ SocSocNo} \ (Employee)$
 - Output schema: Answer(LastName, SocSocNo)

Renaming Example

Employee	
Name	SSN
John	999999999
Tony	77777777

ρ_{LastName, SocSocNo} (Employee)

LastName	SocSocNo
John	999999999
Tony	77777777

Natural Join

- Notation: R1 $|\times|$ R2
- Meaning: R1 $|\times|$ R2 = $\Pi_A(\sigma_C(R1 \times R2))$
- Where:
 - The selection $\sigma_{\rm C}$ checks equality of all common attributes
 - The projection eliminates the duplicate common attributes

Natural Join Example

Employee Name SSN John 999999999 Tony 77777777

Dependents

SSN	Dname
999999999	Emily
777777777	Joe

Employee $\triangleright i$ **Dependents** =

 $\Pi_{\text{Name, SSN, Dname}}(\sigma_{\text{SSN=SSN2}}(\text{Employee x } \rho_{\text{SSN2, Dname}}(\text{Dependents}))$

Name	SSN	Dname
John	9999999999	Emily
Tony	777777777	Joe

Natural Join

А	В
Х	Y
Х	Z
Y	Z
Z	V

S =	В	С
	Z	U
	V	W
	Z	V

Natural Join

- Given the schemas R(A, B, C, D), S(A, C, E),
 what is the schema of R |×| S ?
- Given R(A, B, C), S(D, E), what is R $|\times|$ S?
- Given R(A, B), S(A, B), what is R |x| S?

Theta Join

- A join that involves a predicate
- R1 $|\times|_{\theta}$ R2 = σ_{θ} (R1 × R2)
- Here θ can be any condition

Eq-join

- A theta join where θ is an equality
- R1 $|\times|_{A=B}$ R2 = $\sigma_{A=B}$ (R1 × R2)
- Example:
 - Employee $|\times|_{SSN=SSN}$ Dependents
- Most useful join in practice

Semijoin

- $R \mid \times S = \prod_{A1,...,An} (R \mid \times \mid S)$
- Where A_1, \ldots, A_n are the attributes in R
- Example:
 - Employee |× Dependents

Semijoins in Distributed Databases

• Semijoins are used in distributed databases

Complex RA Expressions

Summary on the Relational Algebra

- A collection of 5 operators on relations
- Codd proved in 1970 that the relational algebra is equivalent to the relational calculus

Operations on Bags

A **bag** = a set with repeated elements

All operations need to be defined carefully on bags

- $\{a,b,b,c\} \cup \{a,b,b,b,e,f,f\} = \{a,a,b,b,b,b,c,e,f,f\}$
- $\{a,b,b,c,c\} \{b,c,c,c,d\} = \{a,b,b,d\}$
- $\sigma_{\rm C}({\rm R})$: preserve the number of occurrences
- $\Pi_A(R)$: no duplicate elimination
- $\delta = explicit duplicate elimination$
- Cartesian product, join: no duplicate elimination Important ! Relational Engines work on bags, not sets !

Note: RA has Limitations !

• Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write C program

From SQL to RA

Also...

Purchase(buyer, product, city) Person(name, age)

Non-monontone Queries (in class)

Purchase(buyer, product, city) Person(name, age)

SELECT DISTINCT P.product **FROM** Purchase P WHERE P.city='Seattle' AND not exists (select * from Purchase P2, Person Q where P2.product = P.product and P2.buyer = Q.name and Q.age > 20)

Extended Logical Algebra Operators (operate on Bags, not Sets)

- Union, intersection, difference
- Selection σ
- Projection Π
- Join |x|
- Duplicate elimination δ
- Grouping γ
- Sorting τ

T1, T2, T3 = temporary tables

Logical v.s. Physical Algebra

- We have seen the logical algebra so far:
 Five basic operators, plus group-by, plus sort
- The Physical algebra refines each operator into a concrete algorithm

Physical Plan

Hash-based

dup. elim

Purchase(buyer, product, city) Person(name, age)

Physical Plans Can Be Subtle

Architecture of a Database Engine

Question in Class

Logical operator:

Product(pname, cname) |×| **Company(cname, city)**

Propose three physical operators for the join, assuming the tables are in main memory:

1. 2.

3.

Question in Class

Product(pname, cname) |**x**| **Company(cname, city)**

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is <u>in main</u> <u>memory</u>?

- Nested loop join time =
- Sort and merge = merge-join time =
- Hash join time =

Cost Parameters

The *cost* of an operation = total number of I/Os result assumed to be delivered in main memory Cost parameters:

- B(R) = number of blocks for relation R
- T(R) = number of tuples in relation R
- V(R, a) = number of distinct values of attribute a
- M = size of main memory buffer pool, in blocks

NOTE: Book uses M for the number of blocks in R, and B for the number of blocks in main memory

Cost Parameters

- *Clustered* table R:
 - Blocks consists only of records from this table
 - B(R) << T(R)
- *Unclustered* table R:
 - Its records are placed on blocks with other tables
 - $B(R) \approx T(R)$
- When a is a key, V(R,a) = T(R)
- When a is not a key, V(R,a)

Selection and Projection

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are *tuple-at-a-time* algorithms
- Cost: B(R)

Hash Tables

- Key data structure used in many operators
- May also be used for indexes, as alternative to B+trees
- Recall basics:
 - There are n *buckets*
 - A hash function f(k) maps a key k to $\{0, 1, ..., n-1\}$
 - Store in bucket f(k) a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

Hash Table Example

0

1

3

- Assume 1 bucket (block) stores 2 keys + pointers
- h(e)=0
- h(b)=h(f)=1
- h(g)=2
- h(a)=h(c)=3

Here: $h(x) = x \mod 4$

Searching in a Hash Table

- Search for a:
- Compute h(a)=3
- Read bucket 3
- 1 disk access

Insertion in Hash Table

- Place in right bucket, if space
- E.g. h(d)=2

Insertion in Hash Table

- Create overflow block, if no space
- E.g. h(k)=1

• More over- 3 flow blocks may be needed

Hash Table Performance

- Excellent, if no overflow blocks
- Degrades considerably when number of keys exceeds the number of buckets (I.e. many overflow blocks).

Main Memory Hash Join

Hash join: R |x| S

- Scan S, build buckets in main memory
- Then scan R and join
- Cost: B(R) + B(S)
- Assumption: B(S) <= M

Main Memory Duplicate Elimination

Duplicate elimination $\delta(R)$

- Hash table in main memory
- Cost: B(R)
- Assumption: $B(\delta(R)) \le M$

Main Memory Grouping

Grouping: Product(name, department, quantity) $\gamma_{department, sum(quantity)}$ (Product) \rightarrow Answer(department, sum)

Main memory hash table Question: How ?

• Tuple-based nested loop $R \bowtie S$

for each tuple r in R do
for each tuple s in S do
if r and s join then output (r,s)

- Cost: T(R) B(S) when S is clustered
- Cost: T(R) T(S) when S is unclustered

- We can be much more clever
- <u>*Question*</u>: how would you compute the join in the following cases ? What is the cost ?
 - B(R) = 1000, B(S) = 2, M = 4
 - B(R) = 1000, B(S) = 3, M = 4
 - B(R) = 1000, B(S) = 6, M = 4

• Block-based Nested Loop Join

for each (M-2) blocks bs of S do for each block br of R do for each tuple s in bs for each tuple r in br do if "r and s join" then output(r,s)

- Block-based Nested Loop Join
- Cost:
 - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-2) times, and each time need to read R: costs B(S)B(R)/(M-2)
 - Total cost: B(S) + B(S)B(R)/(M-2)
- Notice: it is better to iterate over the smaller relation first
- R |x| S: R=outer relation, S=inner relation

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: $\cos B(R)/V(R,a)$
- Unclustered index on a: cost T(R)/V(R,a)
 We have seen that this is like a join

Index Based Selection

• Example:

B(R) = 2000T(R) = 100,000V(R, a) = 20

cost of
$$\sigma_{a=v}(R) = ?$$

- Table scan (assuming R is clustered):
 - B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os
- Lesson: don't build unclustered indexes when V(R,a) is small !

Index Based Join

- R 🖂 S
- Assume S has an index on the join attribute
 for each tuple r in R do
 lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: B(R) + T(R)B(S)/V(S,a)
- If index is unclustered: B(R) + T(R)T(S)/V(S,a)

Operations on Very Large Tables

- Partitioned hash algorithms
- Merge-sort algorithms

Partitioned Hash Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

• Does each bucket fit in main memory ? -Yes if B(R)/M <= M, i.e. B(R) <= M²

Duplicate Elimination

- Recall: $\delta(R)$ = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R) \le M^2$

Grouping

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R) \le M^2$

Partitioned Hash Join

- $R \mid \! x \! \mid S$
- Step 1:
 - Hash S into M buckets
 - send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Hash-Join

• **Partition** both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

◆ Probe: Read in a partition of R, hash it using h2 (≠ h).
 Scan matching partition of S, search for matches.

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $min(B(R), B(S)) \le M^2$

Hybrid Hash Join Algorithm

- Partition S into k buckets

 t buckets S₁, ..., S_t stay in memory
 k-t buckets S_{t+1}, ..., S_k to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets: $(R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), \dots, (R_k, S_k)$

Hybrid Join Algorithm

- How to choose k and t?
 - Choose k large but s.t. $k \le M$
 - Choose t/k large but s.t.
 - Moreover: $t/k * B(S) + k-t \le M$
- Assuming t/k * B(S) >> k-t: t/k = M/B(S)

 $t/k * B(S) \leq M$

Hybrid Join Algorithm

- How many I/Os ?
- Cost of partitioned hash join: 3B(R) + 3B(S)
- Hybrid join saves 2 I/Os for a t/k fraction of buckets
- Hybrid join saves 2t/k(B(R) + B(S)) I/Os
- Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Hybrid Join Algorithm

• Question in class: what is the real advantage of the hybrid algorithm ?

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $B < M^2 \label{eq:mass_sorting}$
External Merge-Sort: Step 1

• Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²

If $B \le M^2$ then we are done

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: $B(R) \le M^2$

Extensions, Discussions

- Blocked I/O
 - Group b blocks and process them together
 - Same effect as increasing the block size by a factor b
- Double buffering:
 - Keep two buffers for each input or output stream
 - During regular merge on one set of buffers, perform the I/O on the other set of buffers
 - Decreases M to M/2

Extensions, Discussions

- Initial run formation (level 0-runs)
 - Main memory sort (usually Quicksort): results in initial runs of length M
 - Replacement selection: start by reading a chunk of file of size M, organize as heap, start to output the smallest elements in increasing order; as the buffer empties, read more data; *the new elements are added to the heap as long as they are > the last element output*. Expected run lengths turns out to be approx 2M

Duplicate Elimination

Duplicate elimination $\delta(R)$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how ?
- Cost = 3B(R)
- Assumption: $B(\delta(R)) \le M^2$

Grouping

Grouping: $\gamma_{a, sum(b)}$ (R)

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $B(R) \le M^2$

Merge-Join

Join R |x| S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

 $M_1 = B(R)/M \text{ runs for } R$ $M_2 = B(S)/M \text{ runs for } S$ If $B \le M^2$ then we are done

Two-Pass Algorithms Based on Sorting

Join R |x| S

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R) + B(S) \le M^2$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: B(R) + T(R)B(S)/V(S,a)
- Partitioned Hash: 3B(R)+3B(S);
 min(B(R),B(S)) <= M²
- Merge Join: 3B(R)+3B(S

 $- B(R) + B(S) <= M^2$

Example

Product(pname, maker), Company(cname, city)

Select Product.pname
From Product, Company
Where Product.maker=Company.cname
and Company.city = "Seattle"

• How do we execute this query ?

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: **Product**.<u>pname</u>, **Company**.<u>cname</u> Unclustered index: **Product**.maker, **Company**.city

Logical Plan:

Physical plan 1:

Physical plans 2a and 2b:

T(Company) / V(Company, city)

Plan 1: T(**Company**)/V(**Company**,city) × T(**Product**)/V(**Product**,maker) Plan 2a: B(**Company**) + 3B(**Product**) Plan 2b: B(**Company**) + T(**Product**)

Example

T(Company) = 5,000B(Company) = 500M = 100T(Product) = 100,000B(Product) = 1,000

We may assume V(**Product**, maker) \approx T(**Company**) (why ?)

• Case 1: V(**Company**, city) \approx T(**Company**)

V(Company,city) = 2,000

• Case 2: V(**Company**, city) << T(**Company**)

V(Company,city) = 20

Which Plan is Best?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker) Plan 2a: B(Company) + 3B(Product) Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

Lessons

- Need to consider several physical plan
 even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
 - need to have *statistics* over the data
 - the B's, the T's, the V's

Query Optimzation

- Have a SQL query Q
- Create a plan P

- Find equivalent plans P = P' = P'' = ...
- Choose the "cheapest".

Logical Query Plan

Logical Query Plan

Optimization

• Main idea: rewrite a logical query plan into an equivalent "more efficient" logical plan

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

- Commutative and Associative Laws $R \cup S = S \cup R, R \cup (S \cup T) = (R \cup S) \cup T$ $R |\times| S = S |\times| R, R |\times| (S |\times| T) = (R |\times| S) |\times| T$ $R |\times| S = S |\times| R, R |\times| (S |\times| T) = (R |\times| S) |\times| T$
- Distributive Laws $R \mid \times \mid (S \cup T) = (R \mid \times \mid S) \cup (R \mid \times \mid T)$

• Laws involving selection:

 $\sigma_{C \text{ AND } C'}(R) = \sigma_{C}(\sigma_{C'}(R)) = \sigma_{C}(R) \cap \sigma_{C'}(R)$ $\sigma_{C \text{ OR } C'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$ $\sigma_{C}(R |x| | S) = \sigma_{C}(R) |x| | S$

• When C involves only attributes of R

 $\sigma_{C}(R - S) = \sigma_{C}(R) - S$ $\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup \sigma_{C}(S)$ $\sigma_{C}(R \mid \times \mid S) = \sigma_{C}(R) \mid \times \mid S$

• Example: R(A, B, C, D), S(E, F, G) $\sigma_{F=3}(R |\times|_{D=E} S) = ?$ $\sigma_{A=5 \text{ AND } G=9}(R |\times|_{D=E} S) = ?$

• Laws involving projections $\Pi_{M}(R \mid \times \mid S) = \Pi_{M}(\Pi_{P}(R) \mid \times \mid \Pi_{Q}(S))$ $\Pi_{M}(\Pi_{N}(R)) = \Pi_{M,N}(R)$

• Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R |\times|_{D=E} S) = \Pi_{?}(\Pi_{?}(R) |\times|_{D=E} \Pi_{?}(S))$

- Laws involving grouping and aggregation: $\delta(\gamma_{A, agg(B)}(R)) = \gamma_{A, agg(B)}(R)$ $\gamma_{A, agg(B)}(\delta(R)) = \gamma_{A, agg(B)}(R)$ if agg is "duplicate insensitive"
- Which of the following are "duplicate insensitive"? sum, count, avg, min, max

$$\begin{array}{l} \gamma_{A, \operatorname{agg}(D)}(R(A,B) \mid \times \mid_{B=C} S(C,D)) = \\ \gamma_{A, \operatorname{agg}(D)}(R(A,B) \mid \times \mid_{B=C} (\gamma_{C, \operatorname{agg}(D)} S(C,D))) \end{array}$$

THIS IS ADVANCED STUFF; NOT ON THE FINAL

- $\mathbf{R} \bowtie \mathbf{S} = \prod_{A1,\dots,An} (\mathbf{R} \bowtie \mathbf{S})$
- Where the schemas are:
 - Input: R(A1,...An), S(B1,...,Bm)
 - Output: T(A1,...,An)

Semijoins: a bit of theory (see [AHV])

• Given a query:

$$\mathbf{Q} := \Pi \left(\sigma \left(\mathbf{R}_1 \mid \mathbf{x} \mid \mathbf{R}_2 \mid \mathbf{x} \mid \dots \mid \mathbf{x} \mid \mathbf{R}_n \right) \right)$$

• A full reducer for Q is a program:

$$R_{i1} := R_{i1} \bowtie R_{j1}$$
$$R_{i2} := R_{i2} \bowtie R_{j2}$$
$$\dots$$
$$R_{ip} := R_{ip} \bowtie R_{jp}$$

• Such that no dangling tuples remain in any relation

- Example: Q(A,E) := R1(A,B) |x| R2(B,C) |x| R3(C,D,E)
- A full reducer is: R2(B,C) := R2(B,C) |x R1(A,B)R3(C,D,E) := R3(C,D,E) |x R2(B,C)R2(B,C) := R2(B,C) |x R3(C,D,E)R1(A,B) := R1(A,B) |x R2(B,C)

The new tables have only the tuples necessary to compute $Q(E_{107})$

• Example:

Q(E) := R1(A,B) |x| R2(B,C) |x| R3(A,C,E)

• Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic"
• Semijoins in [Chaudhuri'98]

CREATE VIEW DepAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E GROUP BY E.did)

SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

• First idea:

CREATE VIEW LimitedAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Dept D WHERE E.did = D.did AND D.buget > 100k GROUP BY E.did)

SELECT E.eid, E.sal FROM Emp E, Dept D, LimitedAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

• Better: full reducer

CREATE VIEW PartialResult AS (SELECT E.id, E.sal, E.did FROM Emp E, Dept D WHERE E.did=D.did AND E.age < 30 AND D.budget > 100k)

CREATE VIEW Filter AS (SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Filter F WHERE E.did = F.did GROUP BY E.did)

111

SELECT P.eid, P.sal FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one

– Will see in a few slides

• Problem: there are too many ways to apply the laws, hence too many (partial) plans

Cost-based Optimizations

Approaches:

- **Top-down**: the partial plan is a top fragment of the logical plan
- **Bottom up**: the partial plan is a bottom fragment of the logical plan

Originally proposed in System R

• Only handles single block queries:

SELECT list FROM list WHERE $cond_1$ AND $cond_2$ AND . . . AND $cond_k$

- Heuristics: selections down, projections up
- Dynamic programming: *join reordering*

Join Trees

- R1 $|\times|$ R2 $|\times|$ $|\times|$ Rn
- Join tree:

• A partial plan = a subtree of a join tree

Types of Join Trees

• Left deep:

Types of Join Trees

• Bushy:

Types of Join Trees

• Right deep:

- Given: a query $R1 \mid \times \mid R2 \mid \times \mid \times \mid Rn$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

- Idea: for each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for $\{R1\}, \{R2\}, ..., \{Rn\}$
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
 - ...
 - Step n: for {R1, ..., Rn}
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a *subquery*

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

- **Step 1**: For each $\{R_i\}$ do:
 - $-\operatorname{Size}(\{R_i\}) = B(R_i)$
 - $\operatorname{Plan}(\{R_i\}) = R_i$
 - $\text{Cost}(\{R_i\}) = (\text{cost of scanning } R_i)$

- Step i: For each Q ⊆{R₁, ..., R_n} of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q''
 s.t. Q = Q' ∪ Q''
 compute cost(Plan(Q') |×| Plan(Q''))
 - $\operatorname{Cost}(Q) =$ the smallest such cost
 - Plan(Q) = the corresponding plan

• Return $Plan(\{R_1, ..., R_n\})$

To illustrate, we will make the following simplifications:

- $Cost(P_1 |x| P_2) = Cost(P_1) + Cost(P_2) + size(intermediate result(s))$
- Intermediate results:
 - If $P_1 = a$ join, then the size of the intermediate result is size(P_1), otherwise the size is 0
 - Similarly for P₂
- Cost of a scan = 0

- Example:
- Cost(R5 |x| R7) = 0 (no intermediate results)
- $\operatorname{Cost}((\operatorname{R2}|X|\operatorname{R1})|X|\operatorname{R7})$ = $\operatorname{Cost}(\operatorname{R2}|X|\operatorname{R1}) + \operatorname{Cost}(\operatorname{R7}) + \operatorname{size}(\operatorname{R2}|X|\operatorname{R1})$ = $\operatorname{size}(\operatorname{R2}|X|\operatorname{R1})$

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: T(A |x| B) = 0.01*T(A)*T(B)

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k+50k=110k	(RT)(SU)

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $R(A,B) |\times| S(B,C) |\times| T(C,D)$

Plan: $(R(A,B) |\times| T(C,D)) |\times| S(B,C)$ has a cartesian product – most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Rule-Based Optimizers

- *Extensible* collection of rules Rule = Algebraic law with a direction
- Algorithm for firing these rules
 Generate many alternative plans, in some order
 Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted ?
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Materialize Intermediate Results Between Operators

HashTable \leftarrow S repeat read(R, x) y \leftarrow join(HashTable, x) write(V1, y)

HashTable \leftarrow T repeat read(V1, y) z \leftarrow join(HashTable, y) write(V2, z)

HashTable \leftarrow U repeat read(V2, z) $u \leftarrow join(HashTable, z)$ write(Answer, u)

Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan ?
 - Cost =
- How much main memory do we need ?

– M =

Pipeline Between Operators

HashTable1 \leftarrow S HashTable2 \leftarrow T HashTable3 \leftarrow U repeat read(R, x) $y \leftarrow$ join(HashTable1, x) $z \leftarrow$ join(HashTable2, y) $u \leftarrow$ join(HashTable3, z) write(Answer, u)

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan ?
 - Cost =
- How much main memory do we need ?

– M =

Pipeline in Bushy Trees

• Logical plan is:

• Main memory M = 101 buffers

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we *pipeline*
- Cost so far: 3B(R) + 3B(S)

Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Continuing:

- If $50 < k \le 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size $k/50 \le 100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k
Example

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example

Summary:

- If $k \le 50$, cost = 55,000
- If 50 < k <=5000,
- cost = 75,000 + 2k
- If k > 5000, cost = 75,000 + 4k

The problem: Given an expression E, compute T(E) and V(E, A)

- This is hard without computing E
- Will 'estimate' them instead

Estimating the size of a projection

- Easy: $T(\Pi_L(R)) = T(R)$
- This is because a projection doesn't eliminate duplicates

Estimating the size of a selection

- $S = \sigma_{A=c}(R)$
 - T(S) san be anything from 0 to T(R) V(R,A) + 1
 - Estimate: T(S) = T(R)/V(R,A)
 - When V(R,A) is not available, estimate T(S) = T(R)/10
- $S = \sigma_{A < c}(R)$
 - T(S) can be anything from 0 to T(R)
 - Estimate: T(S) = (c Low(R, A))/(High(R,A) Low(R,A))T(R)
 - When Low, High unavailable, estimate T(S) = T(R)/3

Estimating the size of a natural join, R $\left|\times\right|_{A}$ S

- When the set of A values are disjoint, then $T(R |\times|_A S) = 0$
- When A is a key in S and a foreign key in R, then $T(R |\times|_A S) = T(R)$
- When A has a unique value, the same in R and S, then $T(R |\times|_A S) = T(R) T(S)$

Assumptions:

- <u>Containment of values</u>: if V(R,A) <= V(S,A), then the set of A values of R is included in the set of A values of S
 - Note: this indeed holds when A is a foreign key in R, and a key in S
- <u>Preservation of values</u>: for any other attribute B, $V(R |\times|_A S, B) = V(R, B)$ (or V(S, B))

Assume $V(R,A) \leq V(S,A)$

- Then each tuple t in R joins *some* tuple(s) in S
 - How many ?
 - On average T(S)/V(S,A)
 - t will contribute T(S)/V(S,A) tuples in R $|\times|_A$ S
- Hence $T(R |\times|_A S) = T(R) T(S) / V(S,A)$

In general: $T(R |\times|_A S) = T(R) T(S) / max(V(R,A),V(S,A))$

Example:

- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,A) = 200
- How large is $R |\times|_A S$?

Answer: $T(R |x|_A S) = 10000 \ 20000/200 = 1M$

Joins on more than one attribute:

• $T(R |X|_{A,B} S) =$

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(ssn, name, salary, phone)

• Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

Ranks(rankName, salary)

• Estimate the size of Employee $|\times|_{Salary}$ Ranks

Employee	020k	20k40k	40k60k	60k80k	80k100k	>100k
	200	800	5000	12000	6500	500

Ranks	020k	20k40k	40k60k	60k80k	80k100k	>100k
	8	20	40	80	100	2

• Eqwidth

020	2040	4060	6080	80100
2	104	9739	152	3

• Eqdepth

044	4448	4850	5056	55100
2000	2000	2000	2000	2000