Lecture 7:
 Query Execution and Optimization

Tuesday, February 20, 2007

Outline

- Chapters 4, 12-15

DBMS Architecture

How does a SQL engine work?

- SQL query \rightarrow relational algebra plan
- Relational algebra plan \rightarrow Optimized plan
- Execute each operator of the plan

Relational Algebra

- Formalism for creating new relations from existing ones
- Its place in the big picture:

Implementation

SQL,
relational calculus

Relational algebra
Relational bag algebra

Relational Algebra

- Five operators:
- Union: \cup
- Difference: -
- Selection: σ
- Projection: П
- Cartesian Product: \times
- Derived or auxiliary operators:
- Intersection, complement
- Joins (natural, equi-join, theta join, semi-join)
- Renaming: ρ

1. Union and 2. Difference

- R1 \cup R2
- Example:
- ActiveEmployees \cup RetiredEmployees
- R1-R2
- Example:
- AllEmployees -- RetiredEmployees

What about Intersection?

- It is a derived operator
- R1 \cap R2 = R1 - (R1 - R2)
- Also expressed as a join (will see later)
- Example
- UnionizedEmployees \cap RetiredEmployees

3. Selection

- Returns all tuples which satisfy a condition
- Notation: $\sigma_{c}(\mathrm{R})$
- Examples

$$
\begin{aligned}
& -\sigma_{\text {Salary } 4 \text { 40000 }}(\text { Employee }) \\
& -\sigma_{\text {nams }=\text { "Smith" }}(\text { Employee })
\end{aligned}
$$

- The condition c can be $=,<, \leq,>, \geq,<>$

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{\text {Salary }>40000}($ Employee $)$

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

4. Projection

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{\mathrm{A} 1, \ldots, \mathrm{An}}(\mathrm{R})$
- Example: project social-security number and names:
- $\Pi_{\text {SSN, Name }}$ (Employee)
- Output schema: Answer(SSN, Name)

Note that there are two parts:
(1) Eliminate columns (easy)
(2) Remove duplicates (hard)

In the "extended" algebra we will separate them.

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

$\Pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000

5. Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: R1 \times R2
- Example:
- Employee \times Dependents
- Very rare in practice; mainly used to express joins

Cartesian Product Example

Employee				
Name	SSN			
John	999999999			
Tony	777777777			
Dependents				
EmployeeSSN	Dname			
999999999	Emily			
777777777	Joe			
Employee x Dependents				
Name	SSN	EmployeeSSN		
John	999999999	999999999		
John	999999999	777777777		
Tony	777777777	Emily		
Tony	777777777	777777777		

Relational Algebra

- Five operators:
- Union: \cup
- Difference: -
- Selection: σ
- Projection: П
- Cartesian Product: \times
- Derived or auxiliary operators:
- Intersection, complement
- Joins (natural,equi-join, theta join, semi-join)
- Renaming: ρ

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{\text {B1,...,Bn }}(\mathrm{R})$
- Example:
- $\rho_{\text {LastName, SocSocNo }}$ (Employee)
- Output schema:

Answer(LastName, SocSocNo)

Renaming Example

Employee	
Name	SSN
John	999999999
Tony	777777777

$\rho_{\text {LastName, SocSocNo }}$ (Employee)

LastName	SocSocNo
John	999999999
Tony	777777777

Natural Join

- Notation: R1 $|\times|$ R2
- Meaning: R1 $|\times| \mathrm{R} 2=\Pi_{\mathrm{A}}\left(\sigma_{\mathrm{C}}(\mathrm{R} 1 \times \mathrm{R} 2)\right)$
- Where:
- The selection σ_{C} checks equality of all common attributes
- The projection eliminates the duplicate common attributes

Natural Join Example

Employee

Name	SSN
John	999999999
Tony	777777777

Dependents

SSN	Dname
999999999	Emily
777777777	Joe

Employee \bowtie Dependents $=$
$\Pi_{\text {Name, SSN, Dname }}\left(\sigma_{\text {SSN=SSN2 }}\left(\right.\right.$ Employee x $\rho_{\mathrm{SSN} 2, \text { Dname }}($ Dependents $\left.)\right)$

Name	SSN	Dname
John	999999999	Emily
Tony	777777777	Joe

Natural Join

- $\mathrm{R}=$| A | B |
| :---: | :---: |
| X | Y |
| X | Z |
| Y | Z |
| Z | V |

$S=$| B | C |
| :---: | :---: |
| Z | U |
| V | W |
| Z | V |

- $R|\times| S=$| A | B | C |
| :---: | :---: | :---: |
| X | Z | U |
| X | Z | V |
| X | Z | U |
| Y | Z | V |
| Z | V | W |

Natural Join

- Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of $R|\times| S$?
- Given $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}), \mathrm{S}(\mathrm{D}, \mathrm{E})$, what is $\mathrm{R}|\times| \mathrm{S}$?
- Given $R(A, B), S(A, B)$, what is $R|x| S$?

Theta Join

- A join that involves a predicate
- $\mathrm{R} 1|\times|_{\theta} \mathrm{R} 2=\sigma_{\theta}(\mathrm{R} 1 \times \mathrm{R} 2)$
- Here θ can be any condition

Eq-join

- A theta join where θ is an equality
- $\mathrm{R} 1|\times|_{\mathrm{A}=\mathrm{B}} \mathrm{R} 2=\sigma_{\mathrm{A}=\mathrm{B}}(\mathrm{R} 1 \times \mathrm{R} 2)$
- Example:
- Employee $|\times|_{\text {SSN=SSN }}$ Dependents
- Most useful join in practice

Semijoin

- $\mathrm{R} \mid \times \mathrm{S}=\Pi_{\mathrm{Al}, \ldots, \mathrm{An}}(\mathrm{R}|\times| \mathrm{S})$
- Where A_{1}, \ldots, A_{n} are the attributes in R
- Example:
- Employee $\mid \times$ Dependents

Semijoins in Distributed Databases

- Semijoins are used in distributed databases

$\mathrm{R}=$ Employee $\mid \times \mathrm{T} \longmapsto \mathrm{T}=\Pi_{\mathrm{SSN}} \sigma_{\text {age }>71}$ (Dependents)

Complex RA Expressions

Summary on the Relational Algebra

- A collection of 5 operators on relations
- Codd proved in 1970 that the relational algebra is equivalent to the relational calculus

Relational calculus/
First order logic/ SQL/ declarative language
=
WHAT

Operations on Bags

A bag = a set with repeated elements
All operations need to be defined carefully on bags

- $\{a, b, b, c\} \cup\{a, b, b, b, e, f, f\}=\{a, a, b, b, b, b, b, c, e, f, f\}$
- $\{\mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{b}, \mathrm{c}, \mathrm{c}\}-\{\mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{c}, \mathrm{d}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{d}\}$
- $\sigma_{C}(\mathrm{R})$: preserve the number of occurrences
- $\Pi_{\mathrm{A}}(\mathrm{R})$: no duplicate elimination
- $\delta=$ explicit duplicate elimination
- Cartesian product, join: no duplicate elimination Important! Relational Engines work on bags, not sets !

Reading assignment: 5.3-5.4

Note: RA has Limitations !

- Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write C program

From SQL to RA

Purchase(buyer, product, city)
Person(name, age)
SELECT DISTINCT P.buyer FROM Purchase P, Person Q WHERE P.buyer=Q.name AND P.city='Seattle' AND
Q.age > 20

Also...

Purchase(buyer, product, city)
Person(name, age)

SELECT DISTINCT P.buyer FROM Purchase P, Person Q WHERE P.buyer=Q.name AND P.city='Seattle' AND
 Q.age > 20

σ	σ
city='Seattle'	\quad age >20
Purchase	Perşon

Non-monontone Queries (in class)

Purchase(buyer, product, city)
Person(name, age)
SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city='Seattle’ AND not exists (select *
from Purchase P2, Person Q
where P2.product $=$ P.product and P2.buyer $=$ Q.name and Q.age > 20)

Extended Logical Algebra Operators (operate on Bags, not Sets)

- Union, intersection, difference
- Selection σ
- Projection Π
- Join $|x|$
- Duplicate elimination δ
- Grouping γ
- Sorting τ

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

$\Pi_{\text {city, }}$	
1	T2(city,p,c)
$\sigma_{p>100}$	
	T1(city,p,c)
$\gamma_{\text {city }, \text { sum(price }) \rightarrow \mathrm{p}, \operatorname{count}(*) \rightarrow \mathrm{c}}$	
sales(product, city, price)	

$\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3=$ temporary tables

Logical v.s. Physical Algebra

- We have seen the logical algebra so far:
- Five basic operators, plus group-by, plus sort
- The Physical algebra refines each operator into a concrete algorithm

Physical Plan

Purchase(buyer, product, city)
Person(name, age)
δ Hash-based dup. elim

SELECT DISTINCT P.buyer FROM Purchase P, Person Q WHERE P.buyer=Q.name AND P.city='Seattle' AND
Q.age > 20

Physical Plans Can Be Subtle

SELECT *
 FROM Purchase P WHERE P.city='Seattle'

City-index

Architecture of a Database Engine

Question in Class

Logical operator:
Product(pname, cname) $|\times|$ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Question in Class

Product(pname, cname) |x| Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is in main memory?

- Nested loop join time $=$
- \quad Sort and merge $=$ merge-join time $=$
- Hash join

$$
\text { time }=
$$

Cost Parameters

The cost of an operation = total number of I/Os
result assumed to be delivered in main memory
Cost parameters:

- $B(R)=$ number of blocks for relation R
- $T(R)=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ number of distinct values of attribute a
- $M=$ size of main memory buffer pool, in blocks

NOTE: Book uses M for the number of blocks in R, and B for the number of blocks in main memory

Cost Parameters

- Clustered table R:
- Blocks consists only of records from this table
- B(R) << T(R)
- Unclustered table R:
- Its records are placed on blocks with other tables
$-\mathrm{B}(\mathrm{R}) \approx \mathrm{T}(\mathrm{R})$
- When a is a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})=\mathrm{T}(\mathrm{R})$
- When a is not a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})$

Selection and Projection

Selection $\sigma(\mathrm{R})$, projection $\Pi(\mathrm{R})$

- Both are tuple-at-a-time algorithms
- Cost: B(R)

Hash Tables

- Key data structure used in many operators
- May also be used for indexes, as alternative to B+trees
- Recall basics:
- There are n buckets
- A hash function $\mathrm{f}(\mathrm{k})$ maps a key k to $\{0,1, \ldots, \mathrm{n}-1\}$
- Store in bucket $f(k)$ a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- $\mathrm{h}(\mathrm{e})=0$
- $h(b)=h(f)=1$
- $h(g)=2$
- $h(a)=h(c)=3$

Here: $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 4$

Searching in a Hash Table

- Search for a:
- Compute h(a)=3
- Read bucket 3
- 1 disk access

Insertion in Hash Table

- Place in right bucket, if space
- E.g. $h(d)=2$

Insertion in Hash Table

- Create overflow block, if no space
- E.g. $h(k)=1$
- More over- 3 flow blocks
 may be needed

Hash Table Performance

- Excellent, if no overflow blocks
- Degrades considerably when number of keys exceeds the number of buckets (I.e. many overflow blocks).

Main Memory Hash Join

Hash join: $\mathrm{R}|\mathrm{x}| \mathrm{S}$

- Scan S, build buckets in main memory
- Then scan R and join
- Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- Assumption: $\mathrm{B}(\mathrm{S})<=\mathrm{M}$

Main Memory Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Hash table in main memory
- Cost: B(R)
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}$

Main Memory Grouping

Grouping:
Product(name, department, quantity)
$\gamma_{\text {department, sum(quantity) }}$ (Product) \rightarrow
Answer(department, sum)

Main memory hash table
Question: How ?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
for each tuple r in R do for each tuple s in S do if r and s join then output (r, s)
- Cost: $T(R) B(S)$ when S is clustered
- Cost: $T(R) T(S)$ when S is unclustered

Nested Loop Joins

- We can be much more clever
- Question: how would you compute the join in the following cases? What is the cost ?
$-\mathrm{B}(\mathrm{R})=1000, \mathrm{~B}(\mathrm{~S})=2, \mathrm{M}=4$
- $\mathrm{B}(\mathrm{R})=1000, \mathrm{~B}(\mathrm{~S})=3, \mathrm{M}=4$
- $\mathrm{B}(\mathrm{R})=1000, \mathrm{~B}(\mathrm{~S})=6, \mathrm{M}=4$

Nested Loop Joins

- Block-based Nested Loop Join
for each (M-2) blocks bs of S do for each block br of R do
for each tuple s in bs
for each tuple r in $b r \underline{d o}$
if " r and s join" then output(r, s)

Nested Loop Joins

Nested Loop Joins

- Block-based Nested Loop Join
- Cost:
- Read S once: cost B(S)
- Outer loop runs $\mathrm{B}(\mathrm{S}) /(\mathrm{M}-2)$ times, and each time need to read R : costs $\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Total cost: B(S) + B(S)B(R)/(M-2)
- Notice: it is better to iterate over the smaller relation first
- $\mathrm{R}|\mathrm{x}| \mathrm{S}: \mathrm{R}=$ outer relation, $\mathrm{S}=$ inner relation

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on $\mathrm{a}: \operatorname{cost} \mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- Unclustered index on a: cost $\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- We have seen that this is like a join

Index Based Selection

- Example: $\quad \begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan (assuming R is clustered):
$-\mathrm{B}(\mathrm{R})=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 I / O s$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$
- Lesson: don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small !

Index Based Join

- $\mathrm{R} \bowtie \mathrm{S}$
- Assume S has an index on the join attribute for each tuple r in R do lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$
- If index is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Operations on Very Large Tables

- Partitioned hash algorithms
- Merge-sort algorithms

Partitioned Hash Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. $\mathrm{B}(\mathrm{R}) / \mathrm{M}$

- Does each bucket fit in main memory ?
- Yes if $B(R) / M<=M$, i.e. $B(R)<=M^{2}$

Duplicate Elimination

- Recall: $\delta(\mathrm{R})=$ duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=M^{2}$

Grouping

- Recall: $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Partitioned Hash Join

R |x| S

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Hash-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.
* Probe: Read in a partition of R, hash it using h2 ($\neq \mathbf{h}$). Scan matching partition of S, search for matches.

Partitions

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}))<=\mathrm{M}^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets
t buckets S_{1}, \ldots, S_{t} stay in memory
k-t buckets S_{t+1}, \ldots, S_{k} to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(\mathrm{R}_{\mathrm{t}+1}, \mathrm{~S}_{\mathrm{t}+1}\right),\left(\mathrm{R}_{\mathrm{t}+2}, \mathrm{~S}_{\mathrm{t}+2}\right), \ldots,\left(\mathrm{R}_{\mathrm{k}}, \mathrm{S}_{\mathrm{k}}\right)$

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t.

$\mathrm{k}<=\mathrm{M}$
$\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S})<=\mathrm{M}$
$\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S})+\mathrm{k}-\mathrm{t}<=\mathrm{M}$

- Choose t/k large but s.t.
- Moreover:
- Assuming $\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S}) \gg \mathrm{k}-\mathrm{t}: \mathrm{t} / \mathrm{k}=\mathrm{M} / \mathrm{B}(\mathrm{S})$

Hybrid Join Algorithm

- How many I/Os ?
- Cost of partitioned hash join: $3 B(R)+3 B(S)$
- Hybrid join saves $2 I / O s$ for a t / k fraction of buckets
- Hybrid join saves $2 \mathrm{t} / \mathrm{k}(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$) I/Os
- Cost: $(3-2 t / k)(B(R)+B(S))=(3-2 M / B(S))(B(R)+B(S))$

Hybrid Join Algorithm

- Question in class: what is the real advantage of the hybrid algorithm ?

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $\mathrm{B}<\mathrm{M}^{2}$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $\mathrm{M}(\mathrm{M}-1) \approx \mathrm{M}^{2}$

If $\mathrm{B}<=\mathrm{M}^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 \mathrm{~B}(\mathrm{R})$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Extensions, Discussions

- Blocked I/O
- Group b blocks and process them together
- Same effect as increasing the block size by a factor b
- Double buffering:
- Keep two buffers for each input or output stream
- During regular merge on one set of buffers, perform the I/O on the other set of buffers
- Decreases M to M/2

Extensions, Discussions

- Initial run formation (level 0-runs)
- Main memory sort (usually Quicksort): results in initial runs of length M
- Replacement selection: start by reading a chunk of file of size M, organize as heap, start to output the smallest elements in increasing order; as the buffer empties, read more data; the new elements are added to the heap as long as they are > the last element output. Expected run lengths turns out to be approx 2 M

Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?
- Cost $=3 \mathrm{~B}(\mathrm{R})$
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}^{2}$

Grouping

Grouping: $\gamma_{\mathrm{a}, \text { sum(b) }}(\mathrm{R})$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Merge-Join

Join R|x|S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

$M_{1}=B(R) / M$ runs for R
$M_{2}=B(S) / M$ runs for S
If $\mathrm{B}<=\mathrm{M}^{2}$ then we are done

Two-Pass Algorithms Based on Sorting

Join R |x| S

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})<=\mathrm{M}^{2}$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: 3B(R)+3B(S
$-B(R)+B(S)<=M^{2}$

Example

Product(pname, maker), Company(cname, city)

> | Select Product.pname |
| :--- |
| From Product, Company |
| Where Product.maker=Company.cname |
| \quad and Company.city $=$ "Seattle" |

- How do we execute this query?

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Logical Plan:

Physical plan 1:

Physical plans 2a and 2b:

Which one is better ??

Merge-join

Product
Company (pname,maker)(cname,city)

Scan and sort (2a)

 index scan (2b)

```
Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)
```

Physical plans 2a and 2b:

Plan 1: $\mathrm{T}($ Company $) / \mathrm{V}($ Company, city $) \times$ T(Product)/V(Product,maker)
 Plan 2a: B(Company) + 3B(Product) Plan 2b: B(Company) +T (Product)

Which one is better ??

It depends on the data !!

Example

$$
\begin{aligned}
& \mathrm{T}(\text { Company })=5,000 \quad \mathrm{~B}(\text { Company })=500 \quad \mathrm{M}=100 \\
& \mathrm{~T}(\text { Product })=100,000 \quad \mathrm{~B}(\text { Product })=1,000 \\
& \\
& \text { We may assume } \mathrm{V}(\text { Product, maker }) \approx \mathrm{T}(\text { Company }) \text { (why ?) }
\end{aligned}
$$

- Case 1: V(Company, city) $\approx \mathrm{T}($ Company $)$

$$
\mathrm{V}(\text { Company,city })=2,000
$$

- Case 2: V(Company, city) << T(Company)

$$
\mathrm{V}(\text { Company,city })=20
$$

Which Plan is Best?

```
Plan 1: T(Company)/V(Company,city) }\times\textrm{T}(\mathrm{ Product )/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)
```

Case 1:

Case 2:

Lessons

- Need to consider several physical plan
- even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

Query Optimzation

- Have a SQL query Q
- Create a plan P

- Find equivalent plans $\mathrm{P}=\mathrm{P}^{\prime}=\mathrm{P}^{\prime}{ }^{\prime}=\ldots$
- Choose the "cheapest".

Logical Query Plan

SELECT P.buyer
 FROM Purchase P, Person Q
 WHERE P.buyer=Q.name AND P.city=‘seattle' AND
 Q.phone > '5430000'

Purchasse(buyer, city)
Person(name, phone)

$\sigma_{\text {City }=\text { 'seattle' }} \wedge$ phone>'5430000' ∞

Logical Query Plan

Optimization

- Main idea: rewrite a logical query plan into an equivalent "more efficient" logical plan

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws

- Commutative and Associative Laws

$$
\begin{aligned}
& R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T \\
& R|x| S=S|\times|R, R| \times|(S|x| T)=(R|x| S)| \times| T \\
& R|\times|S=S| \times|R, R| x|(S|x| T)=(R|x| S)|\times| T
\end{aligned}
$$

- Distributive Laws

$$
R|x|(S \cup T)=(R|x| S) \cup(R|x| T)
$$

Algebraic Laws

- Laws involving selection:

$$
\begin{aligned}
& \sigma_{\mathrm{CAND}}(\mathrm{R})=\sigma_{\mathrm{C}^{\prime}}\left(\sigma_{\mathrm{C}^{\prime}}(\mathrm{R})\right)=\sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \cap \sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \\
& \sigma_{\mathrm{CORC}}(\mathrm{R})=\sigma_{\mathrm{C}}(\mathrm{R}) \cup \sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \\
& \sigma_{\mathrm{C}}(\mathrm{R}|\times| \mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})|\times| \mathrm{S}
\end{aligned}
$$

- When C involves only attributes of R

$$
\begin{aligned}
& \sigma_{\mathrm{C}}(\mathrm{R}-\mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})-\mathrm{S} \\
& \sigma_{\mathrm{C}}(\mathrm{R} \cup S)=\sigma_{\mathrm{C}}(\mathrm{R}) \cup \sigma_{\mathrm{C}}(\mathrm{~S}) \\
& \sigma_{\mathrm{C}}(\mathrm{R}|\times| S)=\sigma_{\mathrm{C}}(\mathrm{R})|\times| S
\end{aligned}
$$

Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)

$$
\sigma_{\mathrm{F}=3}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{~S}\right)=
$$

$$
\sigma_{\mathrm{A}=5 \mathrm{AND} \mathrm{G}=9}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{~S}\right)=?
$$

Algebraic Laws

- Laws involving projections

$$
\begin{aligned}
& \Pi_{\mathrm{M}}(\mathrm{R}|\times| \mathrm{S})=\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R})|\times| \Pi_{\mathrm{Q}}(\mathrm{~S})\right) \\
& \Pi_{\mathrm{M}}\left(\Pi_{\mathrm{N}}(\mathrm{R})\right)=\Pi_{\mathrm{M}, \mathrm{~V}}(\mathrm{R})
\end{aligned}
$$

- Example R(A,B,C,D), S(E, F, G)
$\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{G}}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R})|\times|_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)$

Algebraic Laws

- Laws involving grouping and aggregation:

$$
\begin{aligned}
& \delta\left(\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R})\right)=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R}) \\
& \gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\delta(\mathrm{R}))=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R}) \text { if agg is "duplicate insensitive" }
\end{aligned}
$$

- Which of the following are "duplicate insensitive" ? sum, count, avg, min, max

$$
\begin{aligned}
& \gamma_{A, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{~A}, \mathrm{~B})|\times|_{\mathrm{B}=\mathrm{C}} \mathrm{~S}(\mathrm{C}, \mathrm{D})\right)= \\
& \gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{~A}, \mathrm{~B})|\times|_{\mathrm{B}=\mathrm{C}}\left(\gamma_{\mathrm{C}, \operatorname{agg}(\mathrm{D})} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)\right)
\end{aligned}
$$

Optimizations Based on

Semijoins
THIS IS ADVANCED STUFF; NOT ON THE FINAL

- $R \ltimes S=\Pi_{A 1, \ldots, \mathrm{An}}(\mathrm{R} \bowtie S)$
- Where the schemas are:
- Input: R(A1, ..An), S(B1, ...Bm)
- Output: T(A1, .., An)

Optimizations Based on

Semijoins

Semijoins: a bit of theory (see [AHV])

- Given a query:

$$
\mathrm{Q}:-\Pi\left(\sigma\left(\mathrm{R}_{1}|\mathrm{x}| \mathrm{R}_{2}|\mathrm{x}| \ldots|\mathrm{x}| \mathrm{R}_{\mathrm{n}}\right)\right)
$$

- A full reducer for Q is a program:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i} 1}:=\mathrm{R}_{\mathrm{i} 1} \bowtie \mathrm{R}_{\mathrm{i} 1} \\
& \mathrm{R}_{\mathrm{i} 2}:=\mathrm{R}_{\mathrm{i} 2} \bowtie \mathrm{R}_{\mathrm{i} 2} \\
& \dddot{\mathrm{R}}_{\mathrm{ip}, \mathrm{p}}=\mathrm{R}_{\mathrm{ipp}} \bowtie<\mathrm{R}_{\mathrm{ipp}}
\end{aligned}
$$

- Such that no dangling tuples remain in any relation

Optimizations Based on Semijoins

- Example:

$$
\mathrm{Q}(\mathrm{~A}, \mathrm{E}):-\mathrm{R} 1(\mathrm{~A}, \mathrm{~B})|\mathrm{x}| \mathrm{R} 2(\mathrm{~B}, \mathrm{C})|\mathrm{x}| \mathrm{R} 3(\mathrm{C}, \mathrm{D}, \mathrm{E})
$$

- A full reducer is: $\mathrm{R} 2(\mathrm{~B}, \mathrm{C}):=\mathrm{R} 2(\mathrm{~B}, \mathrm{C}) \mid \mathrm{x} 1(\mathrm{~A}, \mathrm{~B})$

R3(C,D,E) := R3(C,D,E) |x R2(B,C)
R2(B,C) := R2(B,C)|x R3(C,D,E)
$\mathrm{R} 1(\mathrm{~A}, \mathrm{~B}):=\mathrm{R} 1(\mathrm{~A}, \mathrm{~B}) \mid \mathrm{x}$ R2(B,C)
The new tables have only the tuples necessary to compute Q ($\mathrm{E}_{\text {j07 }}$

Optimizations Based on Semijoins

- Example:

$$
\mathrm{Q}(\mathrm{E}):-\mathrm{R} 1(\mathrm{~A}, \mathrm{~B})|\mathrm{x}| \mathrm{R} 2(\mathrm{~B}, \mathrm{C})|\mathrm{x}| \mathrm{R} 3(\mathrm{~A}, \mathrm{C}, \mathrm{E})
$$

- Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic"

Optimizations Based on Semijoins

- Semijoins in [Chaudhuri'98]

```
CREATE VIEW DepAvgSal As (
    SELECT E.did, Avg(E.Sal) AS avgsal
    FROM Emp E
    GROUP BY E.did)
SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did
    AND E.age < 30 AND D.budget > 100k
    AND E.sal > V.avgsal
```


Optimizations Based on

Semijoins

- First idea:

```
CREATE VIEW LimitedAvgSal As (
    SELECT E.did, Avg(E.Sal) AS avgsal
    FROM Emp E, Dept D
    WHERE E.did = D.did AND D.buget > 100k
    GROUP BY E.did)
SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
    AND E.age < 30 AND D.budget > 100k
    AND E.sal > V.avgsal
```


Optimizations Based on

Semijoins

- Better: full reducer

CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, $\operatorname{Avg}(E . S a l)$ AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Optimizations Based on Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
- Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

Cost-based Optimizations

Approaches:

- Top-down: the partial plan is a top fragment of the logical plan
- Bottom up: the partial plan is a bottom fragment of the logical plan

Dynamic Programming

Originally proposed in System R

- Only handles single block queries:

SELECT list
FROM list WHERE cond ${ }_{1}$ AND cond 2 AND . . . AND cond $_{\mathrm{k}}$

- Heuristics: selections down, projections up
- Dynamic programming: join reordering

Join Trees

- R1 $|x| \mathrm{R} 2|x| \ldots .|x| \mathrm{Rn}$
- Join tree:

- A partial plan = a subtree of a join tree

Types of Join Trees

- Left deep:

Types of Join Trees

- Bushy:

Types of Join Trees

- Right deep:

Dynamic Programming

- Given: a query R1 $1 \times \mid$ R2 $|x| \ldots|x| \mathrm{Rn}$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

Dynamic Programming

- Idea: for each subset of $\{R 1, \ldots, R n\}$, compute the best plan for that subset
- In increasing order of set cardinality:
- Step 1: for $\{\mathrm{R} 1\},\{\mathrm{R} 2\}, \ldots,\{\mathrm{Rn}\}$
- Step 2: for $\{\mathrm{R} 1, \mathrm{R} 2\},\{\mathrm{R} 1, \mathrm{R} 3\}, \ldots,\{\mathrm{Rn}-1, \mathrm{Rn}\}$
...
- Step n: for $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$
- It is a bottom-up strategy
- A subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ is also called a subquery

Dynamic Programming

- For each subquery $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ compute the following:
- Size(Q)
- A best plan for Q : Plan(Q)
- The cost of that plan: $\operatorname{Cost}(\mathrm{Q})$

Dynamic Programming

- Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$ do:
$-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=B\left(R_{i}\right)$
$-\operatorname{Plan}\left(\left\{R_{i}\right\}\right)=R_{i}$
$-\operatorname{Cost}\left(\left\{\mathrm{R}_{\mathrm{i}}\right\}\right)=\left(\right.$ cost of scanning $\left.\mathrm{R}_{\mathrm{i}}\right)$

Dynamic Programming

- Step i: For each $\mathrm{Q} \subseteq\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$ of cardinality i do:
- Compute Size(Q) (later...)
- For every pair of subqueries Q', Q"'
s.t. $\mathrm{Q}=\mathrm{Q}^{\prime} \cup \mathrm{Q}^{\prime \prime}$
compute $\operatorname{cost}\left(\operatorname{Plan}\left(\mathrm{Q}^{\prime}\right)|\times| \operatorname{Plan}\left(\mathrm{Q}^{\prime \prime}\right)\right)$
$-\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
$-\mathrm{Plan}(\mathrm{Q})=$ the corresponding plan

Dynamic Programming

- Return $\operatorname{Plan}\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}\right)$

Dynamic Programming

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}\left(\mathrm{P}_{1}|x| \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+$
size(intermediate result(s))
- Intermediate results:
- If $\mathrm{P}_{1}=$ a join, then the size of the intermediate result is $\operatorname{size}\left(\mathrm{P}_{1}\right)$, otherwise the size is 0
- Similarly for P_{2}
- Cost of a scan $=0$

Dynamic Programming

- Example:
- $\operatorname{Cost}(\mathrm{R} 5|\times| \mathrm{R} 7)=0 \quad$ (no intermediate results)
- $\operatorname{Cost}((\mathrm{R} 2|\times| \mathrm{R} 1)|\times| \mathrm{R} 7)$
$=\operatorname{Cost}(\mathrm{R} 2|\times| \mathrm{R} 1)+\operatorname{Cost}(\mathrm{R} 7)+\operatorname{size}(\mathrm{R} 2|\times| \mathrm{R} 1)$
$=\operatorname{size}(\mathrm{R} 2|x| \mathrm{R} 1)$

Dynamic Programming

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $\mathrm{T}(\mathrm{A}|\times| \mathrm{B})=0.01 * \mathrm{~T}(\mathrm{~A}) * \mathrm{~T}(\mathrm{~B})$

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3 M	60k	(RT)S
RSU	1 M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5 M	30k	(TU)S
RSTU	30 M	$60 \mathrm{k}+50 \mathrm{k}=110 \mathrm{k}$	$(\mathrm{RT})(\mathrm{SU})$

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $R(A, B)|x| S(B, C)|x| T(C, D)$

Plan: (R(A,B) $|\times| T(C, D))|\times| S(B, C)$ has a cartesian product most query optimizers will not consider it

Dynamic Programming:
 Summary

- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further

Rule-Based Optimizers

- Extensible collection of rules

Rule $=$ Algebraic law with a direction

- Algorithm for firing these rules

Generate many alternative plans, in some order Prune by cost

- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm to implement each operator
- Need to account for more than cost:
- How much memory do we have ?
- Are the input operand(s) sorted ?
- Decide for each intermediate result:
- To materialize
- To pipeline

Materialize Intermediate Results Between Operators

Materialize Intermediate Results Between Operators

Question in class

Given $\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}), \mathrm{B}(\mathrm{T}), \mathrm{B}(\mathrm{U})$

- What is the total cost of the plan?
- Cost =
- How much main memory do we need ?
- $\mathrm{M}=$

Pipeline Between Operators

Pipeline Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan?
- Cost =
- How much main memory do we need ?
- $\mathrm{M}=$

Pipeline in Bushy Trees

Example

- Logical plan is:

- Main memory $\mathrm{M}=101$ buffers

Example

$$
\mathrm{M}=101
$$

Naïve evaluafirf ${ }^{5} 0$ blocks 10,000 blocks

- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

$$
\mathrm{M}=101
$$

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_{i} in memory (50 buffer) join with S_{i} (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Example

$$
\mathrm{M}=101
$$

Continuing:

- How large are the 50 buckets on y ? Answer: k/50.
- If $\mathrm{k}<=50$ then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+\mathrm{B}(\mathrm{U})=55,000$

Example

$$
\mathrm{M}=101
$$

Continuing:

- If $50<\mathrm{k}<=5000$ then send the 50 buckets in Step 3 to disk
- Each bucket has size $\mathrm{k} / 50<=100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+2 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75,000+2 \mathrm{k}$

Example

$M=101$

Continuing. $\quad \mathrm{R}(\mathrm{w}, \mathrm{x}) \quad \mathrm{S}(\mathrm{x}, \mathrm{y})$

5,000 blocks 10,000 blocks

- If $\mathrm{k}>5000$ then materialize instead of pipeline
- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

Summary:

- If $\mathrm{k}<=50, \quad$ cost $=55,000$
- If $50<\mathrm{k}<=5000, \quad$ cost $=75,000+2 \mathrm{k}$
- If $\mathrm{k}>5000, \quad$ cost $=75,000+4 \mathrm{k}$

Size Estimation

The problem: Given an expression E, compute $T(E)$ and $V(E, A)$

- This is hard without computing E
- Will 'estimate’ them instead

Size Estimation

Estimating the size of a projection

- Easy: $\mathrm{T}\left(\Pi_{\mathrm{L}}(\mathrm{R})\right)=\mathrm{T}(\mathrm{R})$
- This is because a projection doesn't eliminate duplicates

Size Estimation

Estimating the size of a selection

- $S=\sigma_{A=c}(R)$
- $\mathrm{T}(\mathrm{S})$ san be anything from 0 to $\mathrm{T}(\mathrm{R})-\mathrm{V}(\mathrm{R}, \mathrm{A})+1$
- Estimate: $T(S)=T(R) / V(R, A)$
- When $\mathrm{V}(\mathrm{R}, \mathrm{A})$ is not available, estimate $\mathrm{T}(\mathrm{S})=\mathrm{T}(\mathrm{R}) / 10$
- $S=\sigma_{A<c}(R)$
- $T(S)$ can be anything from 0 to $T(R)$
- Estimate: $\mathrm{T}(\mathrm{S})=(\mathrm{c}-\operatorname{Low}(\mathrm{R}, \mathrm{A})) /(\operatorname{High}(\mathrm{R}, \mathrm{A})-\operatorname{Low}(\mathrm{R}, \mathrm{A})) \mathrm{T}(\mathrm{R})$
- When Low, High unavailable, estimate $T(S)=T(R) / 3$

Size Estimation

Estimating the size of a natural join, $R|x|_{A} S$

- When the set of A values are disjoint, then $T\left(R|\times|_{A} S\right)=0$
- When A is a key in S and a foreign key in R, then $T\left(R|x|_{A} S\right)=T(R)$
- When A has a unique value, the same in R and S, then $T\left(R|x|_{A} S\right)=T(R) T(S)$

Size Estimation

Assumptions:

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$, then the set of A values of R is included in the set of A values of S
- Note: this indeed holds when A is a foreign key in R, and a key in S
- Preservation of values: for any other attribute B , $\mathrm{V}\left(\mathrm{R}|\times|_{\mathrm{A}} \mathrm{S}, \mathrm{B}\right)=\mathrm{V}(\mathrm{R}, \mathrm{B}) \quad($ or $\mathrm{V}(\mathrm{S}, \mathrm{B}))$

Size Estimation

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$

- Then each tuple t in R joins some tuple(s) in S
- How many?
- On average T(S)/V(S,A)
- t will contribute $T(S) / V(S, A)$ tuples in $R|x|_{A} S$
- Hence $T\left(R|\times|_{A} S\right)=T(R) T(S) / V(S, A)$

In general: $T\left(R|\times|_{A} S\right)=T(R) T(S) / \max (V(R, A), V(S, A))$

Size Estimation

Example:

- $\mathrm{T}(\mathrm{R})=10000, \mathrm{~T}(\mathrm{~S})=20000$
- $\mathrm{V}(\mathrm{R}, \mathrm{A})=100, \mathrm{~V}(\mathrm{~S}, \mathrm{~A})=200$
- How large is $R|x|_{A} S$?

Answer: $T\left(\mathrm{R}|\times|_{\mathrm{A}} \mathrm{S}\right)=1000020000 / 200=1 \mathrm{M}$

Size Estimation

Joins on more than one attribute:

- $T\left(R|\times|_{A, B} S\right)=$

$$
\mathrm{T}(\mathrm{R}) \mathrm{T}(\mathrm{~S}) /(\max (\mathrm{V}(\mathrm{R}, \mathrm{~A}), \mathrm{V}(\mathrm{~S}, \mathrm{~A})) * \max (\mathrm{~V}(\mathrm{R}, \mathrm{~B}), \mathrm{V}(\mathrm{~S}, \mathrm{~B})))
$$

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)

- Maintain a histogram on salary:

Salary:	$0 . .20 \mathrm{k}$	$20 \mathrm{k} . .40 \mathrm{k}$	$40 \mathrm{k} . .60 \mathrm{k}$	$60 \mathrm{k} . .80 \mathrm{k}$	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
Tuples	200	800	5000	12000	6500	500

- $\mathrm{T}($ Employee $)=25000$, but now we know the distribution

Histograms

Ranks(rankName, salary)

- Estimate the size of Employee $|\times|_{\text {Salary }}$ Ranks

Employee	$0 . .20 \mathrm{k}$	$20 \mathrm{k} . .40 \mathrm{k}$	$40 \mathrm{k} . .60 \mathrm{k}$	$60 \mathrm{k} . .80 \mathrm{k}$	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
	200	800	5000	12000	6500	500

Ranks	$0 . .20 \mathrm{k}$	$20 \mathrm{k} . .40 \mathrm{k}$	$40 \mathrm{k} . .60 \mathrm{k}$	$60 \mathrm{k} . .80 \mathrm{k}$	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
	8	20	40	80	100	2

Histograms

- Eqwidth

$0 . .20$	$20 . .40$	$40 . .60$	$60 . .80$	$80 . .100$
2	104	9739	152	3

- Eqdepth

$0 . .44$	$44 . .48$	$48 . .50$	$50 . .56$	$55 . .100$
2000	2000	2000	2000	2000

