
1

Lecture 7:
Query Execution and Optimization

Tuesday, February 20, 2007

2

Outline

• Chapters 4, 12-15

3

DBMS Architecture

How does a SQL engine work ?

• SQL query → relational algebra plan

• Relational algebra plan → Optimized plan

• Execute each operator of the plan

4

Relational Algebra

• Formalism for creating new relations from
existing ones

• Its place in the big picture:

Declartive
query

language

Declartive
query

language
AlgebraAlgebra ImplementationImplementation

SQL,
relational calculus

Relational algebra
Relational bag algebra

5

Relational Algebra
• Five operators:

– Union: ∪
– Difference: -
– Selection:σ
– Projection: Π
– Cartesian Product: ×

• Derived or auxiliary operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)
– Renaming:ρ

6

1. Union and 2. Difference

• R1 ∪ R2

• Example:
– ActiveEmployees∪ RetiredEmployees

• R1 – R2

• Example:
– AllEmployees -- RetiredEmployees

7

What about Intersection ?

• It is a derived operator

• R1 ∩ R2 = R1 – (R1 – R2)

• Also expressed as a join (will see later)

• Example
– UnionizedEmployees∩ RetiredEmployees

8

3. Selection

• Returns all tuples which satisfy a condition

• Notation: σc(R)

• Examples
– σSalary > 40000(Employee)

– σname = “Smith”(Employee)

• The condition c can be =, <, ≤, >, ≥, <>

9

σSalary > 40000(Employee)

500000Fred4352342

600000Smith5423341

200000John1234545

SalaryNameSSN

500000Fred4352342

600000Smith5423341

SalaryNameSSN

10

4. Projection
• Eliminates columns, then removes duplicates

• Notation: Π A1,…,An(R)

• Example: project social-security number and
names:
– Π SSN, Name(Employee)

– Output schema: Answer(SSN, Name)

Note that there are two parts:
(1) Eliminate columns (easy)
(2) Remove duplicates (hard)
In the “extended” algebra we will separate them.

11

Π Name,Salary(Employee)

200000John4352342

600000John5423341

200000John1234545

SalaryNameSSN

60000John

20000John

SalaryName

12

5. Cartesian Product

• Each tuple in R1 with each tuple in R2

• Notation: R1 × R2

• Example:
– Employee × Dependents

• Very rare in practice; mainly used to
express joins

13

Cartesian Product Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
EmployeeSSN Dname
999999999 Emily
777777777 Joe

Employee x Dependents
Name SSN EmployeeSSN Dname
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

14

Relational Algebra
• Five operators:

– Union: ∪
– Difference: -
– Selection:σ
– Projection: Π
– Cartesian Product: ×

• Derived or auxiliary operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)
– Renaming:ρ

15

Renaming

• Changes the schema, not the instance

• Notation: ρ B1,…,Bn (R)

• Example:
– ρLastName, SocSocNo(Employee)

– Output schema:
Answer(LastName, SocSocNo)

16

Renaming Example

Employee
Name SSN
John 999999999
Tony 777777777

LastName SocSocNo
John 999999999
Tony 777777777

ρLastName, SocSocNo (Employee)

17

Natural Join
• Notation: R1 |×| R2

• Meaning: R1 |×| R2 = ΠA(σC(R1 × R2))

• Where:
– The selection σC checks equality of all common

attributes
– The projection eliminates the duplicate common

attributes

18

Natural Join Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
SSN Dname
999999999 Emily
777777777 Joe

Name SSN Dname
John 999999999 Emily
Tony 777777777 Joe

Employee Dependents =
ΠName, SSN, Dname(σ SSN=SSN2(Employee x ρSSN2, Dname(Dependents))

19

Natural Join

• R= S=

• R |×| S=

VZ

ZY

ZX

YX

BA

VZ

WV

UZ

CB

WVZ

VZY

UZY

VZX

UZX

CBA

20

Natural Join

• Given the schemas R(A, B, C, D), S(A, C, E),
what is the schema of R |×| S ?

• Given R(A, B, C), S(D, E), what is R |×| S ?

• Given R(A, B), S(A, B), what is R |×| S ?

21

Theta Join

• A join that involves a predicate

• R1 |×| θ R2 = σ θ (R1 × R2)

• Here θ can be any condition

22

Eq-join

• A theta join where θ is an equality

• R1 |×| A=B R2 = σ A=B (R1 × R2)

• Example:
– Employee |×| SSN=SSNDependents

• Most useful join in practice

23

Semijoin

• R |× S = Π A1,…,An (R |×| S)

• Where A1, …, An are the attributes in R

• Example:
– Employee |× Dependents

24

Semijoins in Distributed
Databases

• Semijoins are used in distributed databases

.

NameSSN

Dname

.

AgeSSN
Employee

Dependents

network

Employee |×| ssn=ssn(σ age>71 (Dependents))Employee |×| ssn=ssn(σ age>71 (Dependents))

T = Π SSNσ age>71 (Dependents)
R = Employee |× T

Answer = R |×| Dependents

25

Complex RA Expressions

Person Purchase Person Product

σname=fred σname=gizmo

Π pidΠ ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

Π name

26

Summary on the Relational
Algebra

• A collection of 5 operators on relations

• Codd proved in 1970 that the relational
algebra is equivalent to the relational
calculus

Relational calculus/
First order logic/ SQL/
declarative language

=
WHAT

Relational algebra/
procedural language

=
HOW

=

27

Operations on Bags

A bag = a set with repeated elements

All operations need to be defined carefully on bags

• {a,b,b,c}∪{a,b,b,b,e,f,f}={a,a,b,b,b,b,b,c,e,f,f}

• {a,b,b,b,c,c} – {b,c,c,c,d} = {a,b,b,d}

• σC(R): preserve the number of occurrences

• ΠA(R): no duplicate elimination

• δ = explicit duplicate elimination

• Cartesian product, join: no duplicate elimination

Important ! Relational Engines work on bags, not sets !

Reading assignment: 5.3 – 5.4

28

Note: RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!! Need to write C program

SisterLouNancy

SpouseBillMary

CousinJoeMary

FatherMaryFred

RelationshipName2Name1

29

From SQL to RA

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20 Purchase Person

buyer=name

city=‘Seattle’
and age > 20

buyer

σ

Purchase(buyer, product, city)
Person(name, age)

30

Also…

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20

Purchase Person

buyer=name

city=‘Seattle’

buyer

σ

Purchase(buyer, product, city)
Person(name, age)

age > 20
σ

31

Non-monontone Queries (in class)

SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city=‘Seattle’ AND
not exists (select *

from Purchase P2, Person Q
where P2.product = P.product
and P2.buyer = Q.name
and Q.age > 20)

SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city=‘Seattle’ AND
not exists (select *

from Purchase P2, Person Q
where P2.product = P.product
and P2.buyer = Q.name
and Q.age > 20)

Purchase(buyer, product, city)
Person(name, age)

32

Extended Logical Algebra Operators
(operate on Bags, not Sets)

• Union, intersection, difference

• Selection σ
• Projection Π
• Join |x|

• Duplicate elimination δ
• Grouping γ
• Sorting τ

33

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

SELECTcity, count(*)
FROM sales
GROUP BYcity
HAVING sum(price) > 100

sales(product, city, price)

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3 = temporary tables

34

Logical v.s. Physical Algebra

• We have seen the logical algebra so far:
– Five basic operators, plus group-by, plus sort

• The Physical algebra refines each operator
into a concrete algorithm

35

Physical Plan

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND
Q.age > 20

PurchasePerson

buyer=name

city=‘Seattle’

buyer

σ

Purchase(buyer, product, city)
Person(name, age)

age > 20
σ

index-join

sequential scan

δ Hash-based
dup. elim

36

Physical Plans Can Be Subtle

SELECT *
FROM Purchase P
WHERE P.city=‘Seattle’

SELECT *
FROM Purchase P
WHERE P.city=‘Seattle’

PurchaseCity-index

buyer

city=‘Seattle’
σ

primary-index-join

sequential scan

Where did the join come from ?

37

Architecture of a Database Engine

Parse Query

Select Logical Plan

Select Physical Plan

Query Execution

SQL query

Query
optimization

Logical
plan

Physical
plan

38

Question in Class

Logical operator:
Product(pname, cname) |××××| Company(cname, city)

Propose three physical operators for the join, assuming the tables
are in main memory:

1.
2.
3.

39

Question in Class

Product(pname, cname) |x| Company(cname, city)

• 1000000 products
• 1000 companies

How much time do the following physical operators take if the data is in main
memory ?

• Nested loop join time =
• Sort and merge = merge-join time =
• Hash join time =

40

Cost Parameters

The cost of an operation = total number of I/Os

result assumed to be delivered in main memory

Cost parameters:

• B(R) = number of blocks for relation R

• T(R) = number of tuples in relation R

• V(R, a) = number of distinct values of attribute a

• M = size of main memory buffer pool, in blocks

NOTE: Book uses M for the number of blocks in R,
and B for the number of blocks in main memory

41

Cost Parameters

• Clustered table R:
– Blocks consists only of records from this table
– B(R) << T(R)

• Unclustered table R:
– Its records are placed on blocks with other tables
– B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a)

42

Selection and Projection

Selection σ(R), projection Π(R)

• Both are tuple-at-a-time algorithms

• Cost: B(R)

Input buffer Output bufferUnary
operator

43

Hash Tables

• Key data structure used in many operators

• May also be used for indexes, as alternative to B+trees

• Recall basics:
– There are n buckets

– A hash function f(k) maps a key k to {0, 1, …, n-1}

– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use overflow blocks when
needed

44

• Assume 1 bucket (block) stores 2 keys +
pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

Here: h(x) = x mod 4Here: h(x) = x mod 4

45

• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3

46

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

47

• Create overflow block, if no space
• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k

48

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

49

Main Memory Hash Join

Hash join: R |x| S

• Scan S, build buckets in main memory

• Then scan R and join

• Cost: B(R) + B(S)

• Assumption: B(S) <= M

50

Main Memory
Duplicate Elimination

Duplicate elimination δ(R)

• Hash table in main memory

• Cost: B(R)

• Assumption: B(δ(R)) <= M

51

Main Memory Grouping

Grouping:

Product(name, department, quantity)

γdepartment, sum(quantity)(Product) �
Answer(department, sum)

Main memory hash table

Question: How ?

52

Nested Loop Joins

• Tuple-based nested loop R ⋈ S

• Cost: T(R) B(S) when S is clustered

• Cost: T(R) T(S) when S is unclustered

for each tuple r in R do

for each tuple s in S do

if r and s join thenoutput (r,s)

for each tuple r in R do

for each tuple s in S do

if r and s join thenoutput (r,s)

53

Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the
following cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

54

Nested Loop Joins

• Block-based Nested Loop Join

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if “r and s join” thenoutput(r,s)

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in brdo

if “r and s join”thenoutput(r,s)

55

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

56

Nested Loop Joins

• Block-based Nested Loop Join
• Cost:

– Read S once: cost B(S)
– Outer loop runs B(S)/(M-2) times, and each

time need to read R: costs B(S)B(R)/(M-2)
– Total cost: B(S) + B(S)B(R)/(M-2)

• Notice: it is better to iterate over the smaller
relation first

• R |x| S: R=outer relation, S=inner relation

57

Index Based Selection

Selection on equality: σa=v(R)

• Clustered index on a: cost B(R)/V(R,a)

• Unclustered index on a: cost T(R)/V(R,a)
– We have seen that this is like a join

58

Index Based Selection

• Example:

• Table scan (assuming R is clustered):
– B(R) = 2,000 I/Os

• Index based selection:
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson: don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?cost of σa=v(R) = ?

59

Index Based Join

• R S
• Assume S has an index on the join attribute

><

for each tuple r in R do

lookup the tuple(s) s in S using the index
output (r,s)

for each tuple r in R do

lookup the tuple(s) s in S using the index
output (r,s)

60

Index Based Join

Cost (Assuming R is clustered):

• If index is clustered: B(R) + T(R)B(S)/V(S,a)
• If index is unclustered: B(R) + T(R)T(S)/V(S,a)

61

Operations on Very Large Tables

• Partitioned hash algorithms

• Merge-sort algorithms

62

Partitioned Hash Algorithms

• Idea: partition a relation R into buckets, on disk

• Each bucket has size approx. B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

• Does each bucket fit in main memory ?
–Yes if B(R)/M <= M, i.e. B(R) <= M2

63

Duplicate Elimination

• Recall: δ(R) = duplicate elimination

• Step 1. Partition R into buckets

• Step 2. Apply δ to each bucket (may read in
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

64

Grouping

• Recall: γ(R) = grouping and aggregation

• Step 1. Partition R into buckets

• Step 2. Apply γ to each bucket (may read in
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

65

Partitioned Hash Join

R |x| S
• Step 1:

– Hash S into M buckets
– send all buckets to disk

• Step 2
– Hash R into M buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets

66

Hash-Join
• Partition both relations

using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

� Probe: Read in a
partition of R, hash
it using h2 (≠≠≠≠ h).
Scan matching
partition of S,
search for matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

67

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)

• Assumption: min(B(R), B(S)) <= M2

68

Hybrid Hash Join Algorithm

• Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

• Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

69

Hybrid Join Algorithm

• How to choose k and t ?
– Choose k large but s.t. k <= M

– Choose t/k large but s.t. t/k * B(S) <= M

– Moreover: t/k * B(S) + k-t <= M

• Assuming t/k * B(S) >> k-t: t/k = M/B(S)

70

Hybrid Join Algorithm

• How many I/Os ?

• Cost of partitioned hash join: 3B(R) + 3B(S)

• Hybrid join saves 2 I/Os for a t/k fraction of buckets

• Hybrid join saves 2t/k(B(R) + B(S)) I/Os

• Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

71

Hybrid Join Algorithm

• Question in class: what is the real advantage
of the hybrid algorithm ?

72

External Sorting

• Problem:

• Sort a file of size B with memory M

• Where we need this:
– ORDER BY in SQL queries

– Several physical operators

– Bulk loading of B+-tree indexes.

• Will discuss only 2-pass sorting, for when B < M2

73

External Merge-Sort: Step 1

• Phase one: load M bytes in memory, sort

DiskDisk

.
M

Main memory

Runs of length M bytes

74

External Merge-Sort: Step 2

• Merge M – 1 runs into a new run

• Result: runs of length M (M – 1)≈ M2

DiskDisk

.

Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory

75

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2

76

Extensions, Discussions

• Blocked I/O
– Group b blocks and process them together

– Same effect as increasing the block size by a factor b

• Double buffering:
– Keep two buffers for each input or output stream

– During regular merge on one set of buffers, perform the
I/O on the other set of buffers

– Decreases M to M/2

77

Extensions, Discussions

• Initial run formation (level 0-runs)
– Main memory sort (usually Quicksort): results in initial

runs of length M

– Replacement selection: start by reading a chunk of file
of size M, organize as heap, start to output the smallest
elements in increasing order; as the buffer empties, read
more data; the new elements are added to the heap as
long as they are > the last element output. Expected run
lengths turns out to be approx 2M

78

Duplicate Elimination

Duplicate elimination δ(R)
• Idea: do a two step merge sort, but change one of

the steps

• Question in class: which step needs to be changed
and how ?

• Cost = 3B(R)
• Assumption: B(δ(R)) <= M2

79

Grouping

Grouping: γa, sum(b)(R)

• Same as before: sort, then compute the
sum(b) for each group of a’s

• Total cost: 3B(R)

• Assumption: B(R) <= M2

80

Merge-Join

Join R |x| S
• Step 1a: initial runs for R
• Step 1b: initial runs for S
• Step 2: merge and join

81

Merge-Join

Main memory

DiskDisk

.

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
If B <= M2 then we are done

82

Two-Pass Algorithms Based on
Sorting

Join R |x| S

• If the number of tuples in R matching those
in S is small (or vice versa) we can compute
the join during the merge phase

• Total cost: 3B(R)+3B(S)

• Assumption: B(R) + B(S) <= M2

83

Summary of External Join
Algorithms

• Block Nested Loop: B(S) + B(R)*B(S)/M

• Index Join: B(R) + T(R)B(S)/V(S,a)

• Partitioned Hash: 3B(R)+3B(S);
– min(B(R),B(S)) <= M2

• Merge Join: 3B(R)+3B(S
– B(R)+B(S) <= M2

84

Example

Product(pname, maker), Company(cname, city)

• How do we execute this query ?

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and Company.city = “Seattle”

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and Company.city = “Seattle”

85

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname

Unclustered index: Product.maker, Company.city

86

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Logical Plan:

87

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

88

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Index-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

Which one is better ??Which one is better ??

89

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

90

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Table-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

B(Company)

3B(Product)

T(Product)

No extra cost
(why ?)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

91

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Which one is better ??Which one is better ??

It depends on the data !!It depends on the data !!

92

Example

• Case 1: V(Company, city) ≈ T(Company)

• Case 2: V(Company, city) << T(Company)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

V(Company,city) = 2,000V(Company,city) = 2,000

V(Company,city) = 20V(Company,city) = 20

93

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

94

Lessons

• Need to consider several physical plan
– even for one, simple logical plan

• No magic “best” plan: depends on the data

• In order to make the right choice
– need to have statistics over the data

– the B’s, the T’s, the V’s

95

Query Optimzation

• Have a SQL query Q

• Create a plan P

• Find equivalent plans P = P’ = P’’ = …

• Choose the “cheapest”.

HOW ??

96

Logical Query Plan
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

σ

In class:
find a “better” plan P’

P=

Purchasse(buyer, city)
Person(name, phone)

97

Logical Query Plan

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100

SELECTcity, sum(quantity)
FROM sales
GROUP BYcity
HAVING sum(quantity) < 100

sales(product, city, quantity)

γ city, sum(quantity)→p

σ p < 100

T1(city,p)

T2(city,p)

In class:
find a “better” plan P’

Q=

P=

98

Optimization

• Main idea: rewrite a logical query plan into
an equivalent “more efficient” logical plan

99

The three components of an
optimizer

We need three things in an optimizer:

• Algebraic laws

• An optimization algorithm

• A cost estimator

100

Algebraic Laws

• Commutative and Associative Laws
R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T

R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

• Distributive Laws
R |×| (S ∪ T) = (R |×| S) ∪ (R |×| T)

101

Algebraic Laws

• Laws involving selection:
σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
σ C OR C’(R) = σ C(R) ∪ σ C’(R)
σ C (R |×| S) = σ C (R) |×| S

• When C involves only attributes of R
σ C (R – S) = σ C (R) – S
σ C (R ∪ S) = σ C (R) ∪ σ C (S)
σ C (R |×| S) = σ C (R) |×| S

102

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)
σ F=3 (R |×| D=E S) = ?

σ A=5 AND G=9 (R |×| D=E S) = ?

103

Algebraic Laws

• Laws involving projections
ΠM(R |×| S) = ΠM(ΠP(R) |×| ΠQ(S))

ΠM(ΠN(R)) = ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R |×| D=E S) = Π ? (Π?(R) |×| D=E Π?(S))

104

Algebraic Laws

• Laws involving grouping and aggregation:
δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

• Which of the following are “duplicate insensitive”?
sum, count, avg, min, max

γA, agg(D)(R(A,B) |×| B=C S(C,D)) =
γA, agg(D)(R(A,B) |×| B=C (γC, agg(D)S(C,D)))

105

Optimizations Based on
Semijoins

THIS IS ADVANCED STUFF; NOT ON
THE FINAL

• R S = Π A1,…,An (R S)
• Where the schemas are:

– Input: R(A1,…An), S(B1,…,Bm)
– Output: T(A1,…,An)

106

Optimizations Based on
Semijoins

Semijoins: a bit of theory (see [AHV])
• Given a query:

• A full reducer for Q is a program:

• Such that no dangling tuples remain in any relation

Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn))Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn))

Ri1 := Ri1 Rj1

Ri2 := Ri2 Rj2

.

Rip := Rip Rjp

Ri1 := Ri1 Rj1

Ri2 := Ri2 Rj2

.

Rip := Rip Rjp

107

Optimizations Based on
Semijoins

• Example:

• A full reducer is:

Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

The new tables have only the tuples necessary to compute Q(E)

108

Optimizations Based on
Semijoins

• Example:

• Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”

Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)

109

Optimizations Based on
Semijoins

• Semijoins in [Chaudhuri’98]

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

110

Optimizations Based on
Semijoins

• First idea:

CREATE VIEW LimitedAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW LimitedAvgSalAs (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSalV
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

111

Optimizations Based on
Semijoins

• Better: full reducer
CREATE VIEW PartialResult AS

(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

112

Optimizations Based on
Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

113

Cost-based Optimizations

• Main idea: apply algebraic laws, until
estimated cost is minimal

• Practically: start from partial plans,
introduce operators one by one
– Will see in a few slides

• Problem: there are too many ways to apply
the laws, hence too many (partial) plans

114

Cost-based Optimizations

Approaches:

• Top-down: the partial plan is a top
fragment of the logical plan

• Bottom up: the partial plan is a bottom
fragment of the logical plan

115

Dynamic Programming

Originally proposed in System R

• Only handles single block queries:

• Heuristics: selections down, projections up

• Dynamic programming: join reordering

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

116

Join Trees

• R1 |×| R2 |×| …. |×| Rn
• Join tree:

• A plan = a join tree
• A partial plan = a subtree of a join tree

R3 R1 R2 R4

117

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

118

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

119

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

120

Dynamic Programming

• Given: a query R1 |×| R2 |×| … |×| Rn

• Assume we have a function cost() that gives
us the cost of every join tree

• Find the best join tree for the query

121

Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the best
plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

122

Dynamic Programming

• For each subquery Q ⊆{R1, …, Rn}
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)

123

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)

124

Dynamic Programming

• Step i: For each Q ⊆{R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)

– For every pair of subqueries Q’, Q’’
s.t. Q = Q’∪ Q’’
compute cost(Plan(Q’) |×| Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

125

Dynamic Programming

• Return Plan({R1, …, Rn})

126

Dynamic Programming

To illustrate, we will make the following simplifications:
• Cost(P1 |×| P2) = Cost(P1) + Cost(P2) +

size(intermediate result(s))
• Intermediate results:

– If P1 = a join, then the size of the intermediate result is size(P1),
otherwise the size is 0

– Similarly for P2
• Cost of a scan = 0

127

Dynamic Programming

• Example:

• Cost(R5 |×| R7) = 0 (no intermediate results)

• Cost((R2 |×| R1) |×| R7)
= Cost(R2 |×| R1) + Cost(R7) + size(R2 |×| R1)
= size(R2 |×| R1)

128

Dynamic Programming

• Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000

• Size estimation: T(A |×| B) = 0.01*T(A)*T(B)

129RSTU

STU

RTU

RSU

RST

TU

SU

ST

RU

RT

RS

PlanCostSizeSubquery

130(RT)(SU)60k+50k=110k30MRSTU

(TU)S30k1.5MSTU

(RU)T20k0.6MRTU

(RU)S20k1MRSU

(RT)S60k3MRST

TU030kTU

SU050kSU

ST0150kST

RU020kRU

RT060kRT

RS0100kRS

PlanCostSizeSubquery

131

Reducing the Search Space

• Left-linear trees v.s. Bushy trees

• Trees without cartesian product

Example: R(A,B) |×| S(B,C) |×| T(C,D)

Plan: (R(A,B) |×| T(C,D)) |×| S(B,C) has a cartesian product –
most query optimizers will not consider it

132

Dynamic Programming:
Summary

• Handles only join queries:
– Selections are pushed down (i.e. early)
– Projections are pulled up (i.e. late)

• Takes exponential time in general, BUT:
– Left linear joins may reduce time
– Non-cartesian products may reduce time further

133

Rule-Based Optimizers

• Extensible collection of rules
Rule = Algebraic law with a direction

• Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

• Volcano (later SQL Sever)
• Starburst (later DB2)

134

Completing the
Physical Query Plan

• Choose algorithm to implement each
operator
– Need to account for more than cost:

• How much memory do we have ?

• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize

– To pipeline

135

Materialize Intermediate Results
Between Operators

⋈

⋈

⋈ T

R S

U

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

V1

V2

136

Materialize Intermediate Results
Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

137

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x)
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x)
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

pi
pe

lin
e

138

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

139

Pipeline in Bushy Trees

⋈

⋈

⋈

XR S

⋈

⋈ Z

Y

⋈

V

T

⋈

I

140

Example

• Logical plan is:

• Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

141

Example

Naïve evaluation:

• 2 partitioned hash-joins

• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

142

Example

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on

y into 50 buckets (50 buffers) -- here we pipeline
• Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

143

Example

Continuing:
• How large are the 50 buckets on y ? Answer: k/50.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join with memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

144

Example

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100

• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

145

Example

Continuing:
• If k > 5000 then materialize instead of pipeline
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

146

Example

Summary:

• If k <= 50, cost = 55,000

• If 50 < k <=5000, cost = 75,000 + 2k

• If k > 5000, cost = 75,000 + 4k

147

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

• This is hard without computing E

• Will ‘estimate’ them instead

148

Size Estimation

Estimating the size of a projection

• Easy: T(ΠL(R)) = T(R)

• This is because a projection doesn’t
eliminate duplicates

149

Size Estimation

Estimating the size of a selection
• S = σA=c(R)

– T(S) san be anything from 0 to T(R) – V(R,A) + 1
– Estimate: T(S) = T(R)/V(R,A)
– When V(R,A) is not available, estimate T(S) = T(R)/10

• S = σA<c(R)
– T(S) can be anything from 0 to T(R)
– Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
– When Low, High unavailable, estimate T(S) = T(R)/3

150

Size Estimation

Estimating the size of a natural join, R |×|A S

• When the set of A values are disjoint, then
T(R |×|A S) = 0

• When A is a key in S and a foreign key in
R, then T(R |×|A S) = T(R)

• When A has a unique value, the same in R
and S, then T(R |×|A S) = T(R) T(S)

151

Size Estimation

Assumptions:

• Containment of values: if V(R,A) <= V(S,A), then the set
of A values of R is included in the set of A values of S
– Note: this indeed holds when A is a foreign key in R, and a key in

S

• Preservation of values: for any other attribute B,
V(R |×| A S, B) = V(R, B) (or V(S, B))

152

Size Estimation

Assume V(R,A) <= V(S,A)

• Then each tuple t in R joins some tuple(s) in S
– How many ?

– On average T(S)/V(S,A)

– t will contribute T(S)/V(S,A) tuples in R |×|A S

• Hence T(R |×|A S) = T(R) T(S) / V(S,A)

In general: T(R |×|A S) = T(R) T(S) / max(V(R,A),V(S,A))

153

Size Estimation

Example:

• T(R) = 10000, T(S) = 20000

• V(R,A) = 100, V(S,A) = 200

• How large is R |×| A S ?

Answer: T(R |×|A S) = 10000 20000/200 = 1M

154

Size Estimation

Joins on more than one attribute:

• T(R |×|A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

155

Histograms

• Statistics on data maintained by the
RDBMS

• Makes size estimation much more accurate
(hence, cost estimations are more accurate)

156

Histograms

Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:

157

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee |×| SalaryRanks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

158

Histograms

• Eqwidth

• Eqdepth

315297391042

80..10060..8040..6020..400..20

20002000200020002000

55..10050..5648..5044..480..44

