Lecture /:
Query Execution and Optimization

Tuesday, February 20, 2007

Outline

 Chapters 4, 12-15

DBMS Architecture

How does a SQL engine work ?

 SQL query- relational algebra plan
e Relational algebra plan Optimized plan
 Execute each operator of the plan

Relational Algebra

 Formalism for creating new relations from
existing ones

e Its place in the big picture:

Declartive

query
language

> AIgebraI > Implementatio:l

SQL Relational algebra
relational calculus Relational bag algebra 4

Relational Algebra

e Five operators:
— Union:
— Difference: -
— Selectiono
— ProjectionTl
— Cartesian Produck
* Derived or auxiliary operators:
— Intersection, complement
— Joins (natural,equi-join, theta join, semi-join)
— Renamingp

1. Union and 2. Difference

R1[R2

Example:
— ActiveEmployees$] RetiredEmployees

R1 - R2
Example:
— AllEmployees -- RetiredEmployees

What about Intersection ?

It Is a derived operator
R1n R2=R1-(R1-R2)
Also expressed as a join (will see later)

Example
— UnionizedEmployees RetiredEmployees

3. Selection

Returns all tuples which satisfy a condition
Notation: o.(R)

Examples

— Ocuay- o EMplOyee)

— 0......s.e(EMployee)

The condition c can be =, £, >, 2, <>

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
41352342 Fred 500000

GSaIary > 40000(E m ployee)

SSN Name Salary
5423341 Smith 600000
41352342 Fred 500000

4. Projection

 Eliminates columns, then removes duplicates

« Example: project social-security number and

Nnames.

— I ssn, namd EMployee)
— QOutput schema: Answer(SSN, Name)

Note that there are two parts:
(1) Eliminate columns (easy)
(2) Remove duplicates (hard)
In the “extended” algebra we will separate them.

10

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000
I Name,SaIar;XEmployee)
Name Salary
John 20000
John 60000

11

5. Cartesian Product

Each tuple in R1 with each tuple in R2
Notation: R1x R2

Example:

— Employeex Dependents

Very rare In practice; mainly used to
express joins

12

Cartesian Product Example

Employee

Name SSN

John 999999999
Tony (77777777
Dependents

EmployeeSSN Dname
999999999 Emily
(77777777 Joe

Employee x Dependents

Name SSN EmployeeSSNname

John 999999999 999999999 Emily
John 999999999 7777777 Joe
Tony (07777777 999999999 Emily
Tony (0707707707 7707777777 Joe

13

Relational Algebra

e Five operators:
— Union:
— Difference: -
— Selectiono
— ProjectionTl
— Cartesian Produck
* Derived or auxiliary operators:
— Intersection, complement
— Joins (natural,equi-join, theta join, semi-join)
— Renamingp

14

Renaming

 Changes the schema, not the instance
« Notation:p g,
 Example:

_ pLastName, SocSocNgEm ployee)

— Output schema:
Answer(LastName, SocSocNo)

15

Renaming Example

Employee

Name SSN

John 999999999
Tony (77777777

pLastName, SocSocNo (E m pl Oyee)

LastName SocSocNo

John 999999999
Tony (777rires

16

Natural Join
e Notation: R1x| R2

 Meaning: R1%| R2 =l,(0-(R1 % R2))

e Where:

— The selectiow- checks equality of all common
attributes

— The projection eliminates the duplicate common
attributes

17

Natural Join Example

Employee

Name SSN

John 999999999
Tony (77777777
Dependents

SSN Dname
999999999 Emily
(77777777 Joe

Employee <1 Dependents =
[Myame, ssN. bnant@ ssn=ssntEMPloyee Xssho pnamtPePENdeEnts))
Name SSN Dname

John 999999999 Emily
Tony (7777777 Joe

18

Natural Join

19

A
X

e R XS

Natural Join

 Given the schemas R(A, B, C, D), S(A, C, E),
what Is the schema of R||S ?

 Given R(A, B, C), S(D, E), whatis R||S ?

 Given R(A, B), S(A, B), whatis K|S ?

20

Theta Join

* A join that involves a predicate
* R1 K|gR2 =04(R1X%R2)
 HereB can be any condition

21

EQg-join

A theta join wher® Is an equality
R1 K| ,.g R2 =0 5.5 (R1x R2)
Example:

— Employee%| sgn=ssyPependents

Most useful join In practice

22

Semijoin

* RXS =M, an(RK[S)
« Where A, ..., A, are the attributes in R
 Example:

— Employee® Dependents

23

Semijoins in Distributed
Databases

e Semijoins are used In distributed databases
Dependents

Employee
SSN | Dname| Age

SSN

Name

network

EmplOyee)H ssn:ssn(G age>71(DependentS»)

_—— T =T g5\0 5ge>71(Dependents)
\

R = EmployedX T
Answer = R|X| Dependents

Complex RA Expressions

|

>

buyer-ssn=ssn

>

////////////////— pid=pid
>

seller-ssn=ssn

name

s

ssn pid

0) 0)

name=fred name=gizmo

Person Purchase Person Product
25

Summary on the Relational
Algebra

* A collection of 5 operators on relations

e Codd proved in 1970 that the relational

algebra Is equivalent to the relational
calculus

Relational calculus/
First order logic/ SQL/
declarative language

WHAT

Relational algebra/
procedural language

HOW

26

Operations on Bags

A bag = a set with repeated elements

All operations need to be defined carefully on bags
« {a,b,b,c}l1{a,b,b,b,e f f}={a,a,b,b,b,b,b,c,ef,f}
{a,b,b,b,c,c} - {b,c,c,c,d} ={a,b,b,d}

* 0(R): preserve the number of occurrences

* [1,(R): no duplicate elimination

o 0= explicit duplicate elimination

o (Cartesian product, join: no duplicate elimination
Important ! Relational Engines work on bags, nts $e

Reading assighment: 5.3 -5.4

27

Note: RA has Limitations !

o Cannot compute “transitive closure”

Namel Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse

Nancy Lou Sister

* Find all direct and indirect relatives of Fred
e Cannot express in RA Il Need to write C program

From SQL to RA

Purchase(buyer, product, city)

Person(name, age) e

SELECT DISTINCT P.buyer | tiy=seate

FROM Purchase P, Person Q e agf "

WHERE P.buyer=0Q.name AND =
P.city="Seattle’ AND R

Q.age > 20

Purchase Person

29

Also...

Purchase(buyer, product, city)
Person(name, age)

SELECT DISTINCT P.buyer M

FROM Purchase P, Person Q

WHERE P.buyer=Q.name AND| |
P.city="Seattle’ AND bu;iname

Q.age > 20

0) 0]
city='Seattle’ ’age > 20

Purchase Persgcgn

Non-monontone Queries (In class)

Purchase(buyer, product, city)
Person(name, age)

SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city="Seattle’ AND
not exists (select *
from Purchase P2, Person Q
where P2.product = P.product
and P2.buyer = Q.name

and Q.age > 20)

Extended Logical Algebra Operators
(operate on Bags, not Sets)

e Union, intersection, difference
e Selectiono

* ProjectionlT

e Join |X]

* Duplicate eliminatiord

o Groupingy

e Sortingt

32

Logical Query Plan

T3(city,)
SELECTcity, count(*) s
FROM sales city,
GROUP BYcity T2(city,p,c)
HAVING sum(price) > 10 o
p>100
T1(city,p,C)

Y city, sum(price}»p, count(*)— c

sales(product, city, price)

T1, T2, T3 =temporary tables 33

Logical v.s. Physical Algebra

 \We have seen the logical algebra so far:
— Five basic operators, plus group-by, plus sort

 The Physical algebra refines each operator
INnto a concrete algorithm

34

Physical Plan

Purchase(buyer, product, city) 0 Hash-based

dup. elim
Person(name, age) ‘
SELECT DISTINCT P.buyer uyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND| |
P.city="Seattle’” AND bu?_n':ffx'p'n
Q.age > 20 S
sequential scan %e 2 20 O(-:ity:.Seatﬂe,

Person Purcha3s5e

Physical Plans Can Be Subtle

SELECT *
FROM Purchase P
WHERE P.city="Seattle’

=~ Primary-index-join

—

0]
c|ty="Seattle’

buyer

sequential scan

City-index Purchase

Where did the join come from ? .

Architecture of a Database Engine
SQL query

Query
optimization<

Logical
plan

n

Physical
plan

37

Question In Class

Logical operator:
Product(pname, cname) |x| Company(cname, city)

Propose three physical operators for the join,ragsythe tables
are in main memory:

1.
2.
3.

38

Question In Class

Product(pname, cname) [x| Company(cname, city)

. 1000000 products
. 1000 companies

How much time do the following physical operatakd if the data isn main
memory ?

. Nested loop join time =

. Sort and merge = merge-join time =
. Hash join time =

39

Cost Parameters

Thecost of an operation = total number of I/Os

result assumed to be delivered in main memory

Cost parameters:

B(R) = number of blocks for relation R

T(R) = number of tuples in relation R

V(R, a) = number of distinct values of attribute a
M = size of main memory buffer pool, in blocks

NOTE: Book uses M for the number of blocks in
and B for the number of blocks in main memory

40

Cost Parameters

Clustered table R:
— Blocks consists only of records from this table

— B(R) << T(R)
Unclustered table R:

— Its records are placed on blocks with other tables
— B(R)=T(R)

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a)

41

Selection and Projection

Selectiono(R), projection1(R)
* Both aretuple-at-a-time algorithms

e Cost: B(R)

Input buffer

., Unary

operato

)

> Output buffer

42

Hash Tables

Key data structure used in many operators

May also be used for indexes, as alternative tdes
Recall basics:

— There are tuckets

— A hash function f(k) maps a key kto {0, 1, ..., h-1
— Store in bucket f(k) a pointer to record with key

Secondary storage: bucket = block, use overflachs when
needed

43

Hash Table Example

 Assume 1 bucket (block) stores 2 keys +
pointers

* h(e)=0 I e
* h(b)=n(f)=1 T L
+ h(g)=2 N
* h(a)=h(c)=3

I G

Here: h(x) = X mod]q y

Searching in a Hash Table

Search for a:
Compute h(a)=3
Read bucket 3
1 disk access

1

45

Insertion in Hash Table

* Place in right bucket, If space
e E.g. h(d)=2

e

O _______________

e
f

2 9]
d

3 &]
C

46

Insertion in Hash Table

* Create overflow block, If no space
 E.g. h(k)=1

0o e
1 PP K]
f
o |9
d
* Moreover- ; [a |
flow blocks c

may be needed 47

Hash Table Performance

 Excellent, if no overflow blocks

* Degrades considerably when number of
keys exceeds the number of buckets (l.e.
many overflow blocks).

48

Main Memory Hash Join

Hash join: R |X]| S
e Scan S, build buckets in main memory
 Then scan R and join

e Cost: B(R) + B(S)
« Assumption: B(S) <= M

49

Main Memory
Duplicate Elimination

Duplicate eliminatior®(R)
 Hash table in main memory

e Cost: B(R)
 Assumption: B§(R)) <=M

50

Main Memory Grouping

Grouping:
Product(name, department, quantity)

ydepartment, su m(quantin()P rodu Ct)9
Answer(department, sum)

Main memory hash table
Question: How ?

51

Nested Loop Joins

* Tuple-based nested loopRS

for each tuple r in Rlo
for each tuple sin S do
If rand s jointhenoutput (r,s

 Cost: T(R) B(S) when S is clustered
e Cost: T(R) T(S) when S is unclustered

52

Nested Loop Joins

e We can be much more clever

e Question: how would you compute the join in the
following cases ? What is the cost ?

— B(R) = 1000, B(S)=2,M =4
— B(R) = 1000, B(S)=3,M =4

— B(R) = 1000, B(S) =6, M =4

53

Nested Loop Joins

* Block-based Nested Loop Join

for each (M-2) blocks bs of &o
for each block br of Rlo
for each tuple s in bs
for each tuple r in bdo
If “r and s join"thenoutput(r,s

54

Nested Loop Joins

Hash table for block of S

(M-2 pages)

Y

.

A

=

>

Join Result

|nput buffer for R Output buffer

55

Nested Loop Joins

Block-based Nested Loop Join

Cost:
— Read S once: cost B(S)

— Quter loop runs B(S)/(M-2) times, and each
time need to read R: costs B(S)B(R)/(M-2)

_ Total cost: B(S) + B(S)B(R)/(M-2)

Notice: It IS better to iterate over the smaller
relation first

R |x| S: R=outer relation, S=inner relation
56

Index Based Selection

Selection on equalityo,_ (R)
e Clustered index on a: cost B(R)/V(R,a)

 Unclustered index on a: cost T(R)/V(R,a)
— We have seen that this is like a join

57

Index Based Selection

Example:

B(

R) = 2000
R) = 100,00

cost ofo__(R) = ?I

R, a) =20

Table scan (assuming R is clustered):
— B(R) = 2,000 I/Os
Index based selection:
— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson: don’t build unclustered indexes when V(kEsamall !

58

Index Based Join

e Rpg S
« Assume S has an index on the join attribute
for each tuple r in Rlo

lookup the tuple(s) s in S using the In
output (r,s)

59

Index Based Join

Cost (Assuming R is clustered):

 If Index is clustered: B(R) + T(R)B(S)/V(S,a)
 If Index Is unclustered: B(R) + T(R)T(S)/V(S,a)

60

Operations on Very Large Tables

« Partitioned hash algorithms

 Merge-sort algorithms

61

Partitioned Hash Algorithms

* |dea: partition a relation R into buckets, on disk
« Each bucket has size approx. B(R)/M

B(R)

» Does each bucket fit in main memory ?
—Yes if B(R)/M <= M,

Relation R
OUTPUT
> 1
INPUT 2
hash
> function o0
e o o h M-1
— .
Disk M main memory buffers

Partitions
e

l.e. B(R) <=M

M-1

62

Duplicate Elimination

Recall: o(R) = duplicate elimination
Step 1. Partition R into buckets

Step 2. Apply to each bucket (may read In
main memory)

Cost: 3B(R)
Assumption:B(R) <= M

63

Grouping

Recall: y(R) = grouping and aggregation
Step 1. Partition R into buckets

Step 2. Applyy to each bucket (may read In
main memory)

Cost: 3B(R)
Assumption:B(R) <= M

64

Partitioned Hash Join

RIX|S
o Step 1:
— Hash S into M buckets
— send all buckets to disk
o Step 2
— Hash R into M buckets
— Send all buckets to disk
e Step 3
— Join every pair of buckets

65

Hash-Join

e Partition both relations

using hash fin: R tuples ip

partition i will only match
tuples in partition i.

< Probe: Read in a
partition of R, hash
it using h2 (# h).
Scan matching
partition of S,
search for matches.

Original

Partitions
e

Join Result

e

Y

Relation OUTPUT
> 1
INPUT 2
hash
S > function o0
e o o h M1
~
Disk B main memory buffers
Partitions
of R& S .
—— Hash table for partition
hash S (<M-1 pages)
fn
h2 o 0 O
o
00 0 >
I nput buffer Output
for Ri buffer
N~

Disk

~

B main memory buffers

Digk

Partitioned Hash Join

e Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= ¥

67

Hybrid Hash Join Algorithm

e Partition S into k buckets

t buckets $, ..., § stay in memory
k-t buckets §,, ..., S to disk

e Partition R into k buckets
— First t buckets join immediately with S
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Rt+1’S[+1)’ (Rt+2’S[+2)’ " (ROSK)

68

Hybrid Join Algorithm

e How to choose kand t ?

— Choose k large but s.t. k <=M
— Choose t/k large but s.t. t/k *B(S) <=M
— Moreover: t/k * B(S) + k-t <=M

e Assuming t/k * B(S) >> k-t: t/k = M/B(S)

69

Hybrid Join Algorithm

« How many I/Os ?

» Cost of partitioned hash join: 3B(R) + 3B(S)
« Hybrid join saves 2 I/Os for a t/k fraction of lkats
 Hybrid join saves 2t/k(B(R) + B(S)) 1/Os

 Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) B(S))

70

Hybrid Join Algorithm

e Question In class: what is the real advantage
of the hybrid algorithm ?

71

External Sorting

Problem:
Sort a file of size B with memory M

Where we need this:

— ORDER BY in SQL queries

— Several physical operators

— Bulk loading of B+-tree indexes.

Will discuss only 2-pass sorting, for when B € M

72

External Merge-Sort: Step 1

 Phase one: load M bytes in memory, sort

< > < >
\//
: :\\\ M | |
| |
| | | |
v ‘\/
Disk Disk

Main memory |

73

External Merge-Sort: Step 2

« Merge M — 1 runs into a new run
e Result: runs of length M (M — £)M?

< > | .|Inputl < >
| F | |
| ! “lnput2 > Output S
| 4| ' / | |
~_ [>|Input M —
Disk Main memory Disk
If B <= M? then we are done 74

Cost of External Merge Sort

 Read+writetread = 3B(R)

e Assumption: B(R) <= M

75

Extensions, Discussions

e Blocked I/O

— Group b blocks and process them together
— Same effect as increasing the block size by a féctor

e Double buffering:

— Keep two buffers for each input or output stream

— During regular merge on one set of buffers, perftren
I/O on the other set of buffers

— Decreases M to M/2

76

Extensions, Discussions

 [nitial run formation (level 0-runs)

— Main memory sort (usually Quicksort): resultsnrtial
runs of length M

— Replacement selection: start by reading a chuffikeof
of size M, organize as heap, start to output thallsst
elements in increasing order; as the buffer emptezsl
more datathe new e ements are added to the heap as
long as they are > the last element output. Expected run
lengths turns out to be approx 2M

77

Duplicate Elimination

Duplicate eliminatio®d(R)
e |dea: do a two step merge sort, but change one of
the steps

e Question In class: which step needs to be changed
and how ?

 Cost = 3B(R)
e Assumption: B(R)) <= M?

78

Grouping

Grouping:ya, sum(b)(R)
e Same as before: sort, then compute the
sum(b) for each group of a’s

e Total cost: 3B(R)
e Assumption: B(R)<=M

79

Merge-Join

Join R [X| S

e Step la: initial runs for R
e Step 1b: initial runs for S
e Step 2: merge and join

80

Merge-Join

> | |Input1l < >
| | |
! “|Input2 3 Outputl | ——————
L =
— Input M ,
Disk Disk
Main memory

M, = B(R)/M runs for R

M, = B(S)/M runs for S
If B <= M? then we are done

81

Two-Pass Algorithms Based on
Sorting

Join R |X| S
 If the number of tuples in R matching those

In S I1s small (or vice versa) we can compute
the join during the merge phase

o Total cost: 3B(R)+3B(S)
e Assumption: B(R) + B(S) <= M

82

Summary of External Join

Algorithms
Block Nested Loop: B(S) + B(R)*B(S)/M

Index Join: B(R) + T(R)B(S)/V(S,a)

Partitioned Hash: 3B(R)+3B(S);
— min(B(R),B(S)) <= M

Merge Join: 3B(R)+3B(S
— B(R)+B(S) <= M

83

Example

Product(pname maker),Company(cnhame city)

SelectProduct.pname

From Product, Company
WhereProduct.maker<Company.cnam
and Company.city = “Seattle”

« How do we execute this query ?

84

Example

Product(pname maker),Company(cnhame city)
Assume:

Clustered index: Product.pname Company.cname
Unclustered indexr oduct.maker,Company.city

85

Logical Plan:

/

Product
(pnamemaker)

aker=cname

o)
|

Company
(chamecity)

city="Seattle”

86

Physical plan 1:

Company
(cnamecity)

chame=maker

O-city:“Sem

Product
(pnamemaker)

87

Physical plans 2a and 2Db:

C Which one Is better ?? N/.

aker=cname
/ O-city:“SeattIe”
Product Company
(pnamemakerfcnamecity)

Physical plan 1. x T(Product) / V(Product, maker)‘

Total cost:

/ [><]cname:maker
T(Company) / V(Company, city)
o eattle”

‘ city="S x T(Product) / V(Product, maker)

Company Product
(cnamecity) (pnamemaker)

T(Company) / V(Company, city)

89

Total cost:

(2a): 3BProduct) + B(Company) | Physical plans 2a and 2b:
(2b): T(Product) + B(Company)

3B(Product)

T(Product)

.

NO extra cos‘l

(why ?) aker=cname
/ O-city:“SeattIe”
Product Company
(pnamemakerfcnamecity)

B(Company)

90

Plan 1. TCompany)/V(Company,city) X
T(Product)/V(Product,maker

Plan 2a: BCompany) + 3B([Product)

Plan 2b: BCompany) + T(Product)

_ Which one is better ??)
Q It depends on the data!!)

91

Example

T(Company) = 5,000 BCompany)=500 M =100
T(Product) = 100,000 BProduct) = 1,000

We may assume ¥Y(oduct, maker)= T(Company) (why ?)

e Case 1: VCompany, city) = T(Company)

V(Company,city) = 2,00ﬂ

e Case 2: VCompany, city) << T(Company)

V(Company,city) = 20'

92

Which Plan is Best ?

Plan 1. TCompany)/V(Company,city) x T(Product)/V(Product,maker)
Plan 2a: BCompany) + 3B(Product)
Plan 2b: BCompany) + T(Product)

Case 1.

Case 2:

93

Lessons

 Need to consider several physical plan
— even for one, simple logical plan

 No magic “best” plan: depends on the data

* In order to make the right choice

— need to havaatistics over the data
—the B’s, the T's, the V’s

94

Query Optimzation

Have a SQL query Q

Create aplan P ,

Find equivalent plans P =P’ =P” = ...

Choose the “cheapest”.

95

Logical Query Plan

SELECT P.buyer Purchasse(buyer, city)

FROM Purchase P, Person Q Person(name, phone)
WHERE P.buyer=Q.name AND

P.city="seattle’” AND
Q.phone > “5430000 P=

buyer

o
City="seattle’ /\phone>’5430000’

>
Buyer=name

N

Purchase Person

96

Logical Query Plan

SELECTcity, sum(guantity)
FROM sales

GROUP BYcity
HAVING sum(quantity) < 10

P= T2(city,p)
o p <100

T1(city,p)

Y city, sum(quantityy-p

sales(product, city, quantity)

97

Optimization

 Main idea: rewrite a logical query plan into
an equivalent “more efficient” logical plan

98

The three components of an
optimizer

We need three things in an optimizer:

« Algebraic laws
* An optimization algorithm
e A cost estimator

99

Algebraic Laws

e Commutative and Associative Laws

RS =S
RIS =S¥
RS =S¥

R, RO(SOT) =(R
R, RK(SKIT)=(

R, R¥[(SKIT)=(

e Distributive Laws
RX(SOT) = (RKS)O(RKT)

1S)0
R K| S)

R K| S)

><|T

><|T

100

Algebraic Laws

e Laws involving selection:
O canpc(R) =0 (0 (R)) =0 (R) n 0 (R)
Ocorc(R) =0(R)U 0 (R)
0c(RKS)=0c(R)KS

 When C involves only attributes of R
0-(R-S)=0-(R)-S
0c(RUS)=0(R)L0(S)
0c(RKS) =0c(R) XS

101

Algebraic Laws
« Example: R(A, B, C, D), S(E, F, G)

O r—3(R K| p=g S) =

O a=5 aND G=9 (R X| p=g S) =

102

Algebraic Laws

e Laws Involving projections
My(R X[S) =Mu(Me(R) X[M(S))
My(My(R)) = I_IM,N(R)

 Example R(A,B,C,D), S(E, F, G)
Mapc(R K p=g S) =M, (MAR) K| p=g [1AS))

103

Algebraic Laws

e Laws involving grouping and aggregation:

O(Ya, agg@R)) =VYa, aggefR)
Ya, agafO(R)) =VYa, aggefR) If 299 Is “duplicate insensitive”

* Which of the following are “duplicate insensitive”
sum, count, avg, min, max

yA, agg(D)(R(A’B) |><| B=C S(C’D)) =
yA, agg(D)(R(A’B) |><| B=C (VC, agg(Dﬁ(C’D)))

104

Optimizations Based on
Semijoins
THIS IS ADVANCED STUFF; NOT ON
THE FINAL

e Where the schemas are:
— Input: R(AL,...An), S(B1,...,Bm)
— Output: T(AL,...,An)

105

Optimizations Based on
Semijoins
Semijoins: a bit of theory (see [AHV])
e Given a query:

Q:-M@R X|RX]|...[XIR))

» A full reducer for Q is a program:
Rip = Ry <Ry

e Such that no dangling tuples remain in any relation

106

Optimizations Based on
Semijoins

* Example: | E) - R1(AB) Ix| R2(B,C) x| R3(C,D, 1),

o A full reducer is R2(B,C) := R2(B,C) |x R1(A,B)
R3(C,D,E) := R3(C,D,E) [x R2(B,)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

The new tables have only the tuples necessary tpen®Q (&),

Optimizations Based on
Semijoins

« Example:

Q(E) :- R1(A,B) [x]| R2(B,C) |x| R3(A,C, gg)

 Doesn’t have a full reducer (we can reduce forever

Theorem a query has a full reducer iff it is “acyclic”

108

Optimizations Based on
Semijoins
e Semijoins in [Chaudhuri’98]

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 10
AND E.sal > V.avgsal

109

Optimizations Based on
Semijoins

e Firstidea:

CREATE VIEW LimitedAvgSalAs (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp EDept D
WHERE E.did = D.did AND D.buget > 10
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept Di.imitedAvgSalV
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

110

Optimizations Based on
Semijoins
e Better: full reducer
CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D

WHERE E.did=D.did AND E.age < 30
AND D.budget > 100Kk)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F

WHERE E.did = F.did GROUP BY E.did) 111

Optimizations Based on
Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal
WHERE P.did = V.did AND P.sal > V.avgsal|

112

Cost-based Optimizations

 Main idea: apply algebraic laws, until
estimated cost iIs minimal

* Practically: start from partial plans,
Introduce operators one by one

— Wil see In a few slides

* Problem: there are too many ways to apply
the laws, hence too many (partial) plans

113

Cost-based Optimizations

Approaches:

 Top-down: the partial plan is a top
fragment of the logical plan

e Bottom up: the partial plan is a bottom
fragment of the logical plan

114

Dynamic Programming

Originally proposed in System R

 Only handles single block queries:

SELECT list
FROM list
WHERE cond AND cond, AND . . . AND cong

* Heuristics: selections down, projections up
 Dynamic programmingoin reordering

115

Join Trees

R1 k| R2 K| k| Rn
Join tree:

/\
/\ /\

A plan = aljp tree R4
A partial plan = a subtree of a join tree

116

Types of Join Trees

o Left deep:

117

Types of Join Trees

 Bushy:
/ \

AN /

R3 >

/N

R1 RS

N

118

Types of Join Trees

* Right deep:
<]

e
SN
R1 / \N
R5 /N
R2 R4

119

Dynamic Programming

 Given: aquery Rk R2x ... |xRn

 Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

120

Dynamic Programming

ldea: for each subset of {R1, ..., Rn}, compute lblest
plan for that subset

In increasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— éiep n: for {R1, ..., Rn}
It is a bottom-up strategy
A subset of {R1, ..., Rn} Iis also calledsabquery

121

Dynamic Programming

e For each subquery (}{R1, ..., Rn}
compute the following:

— Size(Q)
— A best plan for Q: Plan(Q)

— The cost of that plan: Cost(Q)

122

Dynamic Programming

e Step 1: For each {R do:
— Size({R}) = B(R;)

- Plan({R}) = R,
— Cost({R}) = (cost of scanning R

123

Dynamic Programming

e Step I: For each QKR 4, ..., R} of
cardinality 1 do:
— Compute Size(Q) (later...)
— For every pair of subqueries Q’, Q"

s.t. Q=0Q10Q"
compute cost(Plan(Q’¥] Plan(Q™))

— Cost(Q) = the smallest such cost
— Plan(Q) = the corresponding plan

124

Dynamic Programming

 Return Plan({R, ..., R})

125

Dynamic Programming

To illustrate, we will make the following simplifations:
» Cost(R |x| P,) = Cost(R) + Cost(B) +
size(intermediate result(s))

e |ntermediate results:

— If P = ajoin, then the size of the intermediate ressusize(R),
otherwise the size is O

— Similarly for B,
e Costofascan=0

126

Dynamic Programming

 Example:
e Cost(R9x|R7) =0 (no intermediate results)
e Cost((R2x| R1) |x] R7)

= Cost(R2x| R1) + Cost(R7) + size(RZ| R1)

= size(R2Zx| R1)

127

Dynamic Programming

 Relations: R, S, T, U
 Number of tuples: 2000, 5000, 3000, 1000
e Size estimation: T(Ax| B) = 0.01*T(A)*T(B)

128

Subquery

Size

Cost

Plan

RS

RT

RU

ST

SuU

TU

RST

RSU

RTU

STU

RSTU

129

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
SuU 50k 0 SuU
TU 30k 0 TU
RST 3M 60k (RT)S

RSU 1M 20k (RU)S
RTU 0.6M 20k (RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k | (RT)(SU)

130

Reducing the Search Space

o Left-linear trees v.s. Bushy trees
* Trees without cartesian product
Example: R(A,B)%| S(B,C) k| T(C,D)

Plan: (R(A,B) | T(C,D)) k| S(B,C) has a cartesian product —
most query optimizers will not consider it

131

Dynamic Programming:
Summary

 Handles only join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

 Takes exponential time in general, BUT:
— Left linear joins may reduce time
— Non-cartesian products may reduce time further

132

Rule-Based Optimizers

Extensible collection of rules
Rule = Algebraic law with a direction

Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

Volcano (later SQL Sever)
Starburst (later DB2)

133

Completing the
Physical Query Plan

e Choose algorithm to implement each
operator

— Need to account for more than cost:
« How much memory do we have ?
* Are the input operand(s) sorted ?

e Decide for each intermediate result:
— To materialize
— To pipeline

134

Materialize Intermediate Results
Between Operators

HashTable& S
repeat read(R, Xx)

y < join(HashTable, x)
// \\ write(V1, y)
HashTable& T

repeat read(V1,y)

z < join(HashTable, y)
Vl / \\ write(V2, z)

HashTable&< U

repeat read(V2, z)
u < join(HashTable, z)
write(Answer, u)

135

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

e What is the total cost of the plan ?
— Cost =

« How much main memory do we need ?
— M=

136

Pipeline Between Operators

/4

/HashTabIelé S
HashTableZ T
HashTable3 U
repeat read(R, Xx)

y € join(HashTablel, x)
z < join(HashTable2, y)
u < join(HashTable3, z)

write(Answer, u)

137

Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

e What is the total cost of the plan ?
— Cost =

« How much main memory do we need ?
— M=

138

Pipeline in Bushy Trees

/' M / \\
Vv /X Z

1>4
/x T/ X
S T | X Y

Example

* Logical plan is:
<

k blocks 4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x.y)
5,000 blocks 10,000 blocks

« Main memory M = 101 buffers

140

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(wW,X) S(x,y)
Naive evalué,ﬁ)@ﬂ _blocks 10,000 blocks

o 2 partitioned hash-joins
e Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

141

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x,y)
5,000 blocks 10,000 blocks
Smarter:
o Step 1: hash R on x into 100 buckets, each oflé€kb; to disk
o Step 2: hash S on x into 100 buckets; to disk

« Step 3: read each R memory (50 buffer) join with . §1 buffer); hash result on
y into 50 buckets (50 buffers) -- here pipeline

 Costso far: 3B(R) + 3B(S) 142

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x.y)
5,000 blocks 10,000 blocks

Continuing:

« How large are the 50 buckets ony ? Answer: k/50.

o If k <=50 then keep all 50 buckets in Step 3 emmory, then:
o Step 4: read U from disk, hash on y and join wmémory

e Total cost: 3B(R) + 3B(S) + B(U) = 55,000 143

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x.y)
5,000 blocks 10,000 blocks

Continuing:

If 50 < k <=5000 then send the 50 buckets in Steépdisk
— Each bucket has size k/50 <= 100

Step 4: partition U into 50 buckets
Step 5: read each partition and join in memory
Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,00@k

144

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

.. RWwX) S(x,y)
Continuing: 5,000 blocks 10,000 blocks

 If k >5000 then materialize instead of pipeline
e 2 partitioned hash-joins
e Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

145

Example

Summary:

e |f k <= 50, cost = 55,000

e |[f 50 <k <=5000, cost= 75,000 + 2k
e |f k> 5000, cost = 75,000 + 4k

146

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

* This Is hard without computing E
e Wil ‘estimate’ them instead

147

Size Estimation

Estimating the size of a projection

» Easy: T(1,(R)) = T(R)

* This Is because a projection doesn’t
eliminate duplicates

148

Size Estimation

Estimating the size of a selection

* S :GA:C(R)
— T(S) san be anything from 0 to T(R) - V(R,A) + 1
— Estimate: T(S) = T(R)/V(R,A)
— When V(R,A) is not available, estimate T(S) = T{R)

e S=0,.R)
— T(S) can be anything from 0 to T(R)
— Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R))T(R)
— When Low, High unavailable, estimate T(S) = T(R)/3

149

Size Estimation

Estimating the size of a natural join,®,|S

 \When the set of A values are disjoint, then
T(RK[,S)=0

« When Ais a key In S and a foreign key In
R, then T(R*|, S) = T(R)

 When A has a unigue value, the same In R
and S, then T(R«|, S) = T(R) T(S)

150

Size Estimation

Assumptions:

e Containment of values: if V(R,A) <= V(S,A), then the set
of A values of R is included in the set of A valugss

— Note: this indeed holds when A is a foreign keRRirand a key in
S

* Preservation of values. for any other attribute B,
V(R x| o S, B) = V(R, B) (or (S, B))

151

Size Estimation

Assume V(R,A) <= V(S,A)

« Then each tuple tin R joirsmmetuple(s) in S
— How many ?
— On average T(S)/V(S,A)
— twill contribute T(S)/V(S,A) tuples in K|, S

. Hence T(R¥|, S) = T(R) T(S) / V(S,A)

In general: T(R4|, S) = T(R) T(S) / max(V(R,A),V(S,A))

152

Size Estimation
Example:
 T(R) =10000, T(S)=20000

 V(R,A) =100, V(S,A) =200
« How largeisRx| , S ?

Answer: T(R %[, S) = 10000 20000/200 = 1M

153

Size Estimation

Joins on more than one attribute:
* T(R |X|A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

154

Histograms

e Statistics on data maintained by the
RDBMS

 Makes size estimation much more accurate
(hence, cost estimations are more accurate)

155

Histograms

Employee(ssnname, salary, phone)

e Maintain a histogram on salary:

Salary:

0..20k

20k..40k

40k..60k

60k..80k

80k..100k

> 100k

Tuples

200

800

5000

12000

6500

500

 T(Employee) = 25000, but now we know the distnitmoit

156

Histograms

Ranks(rankName, salary)
* Estimate the size of Employeq {,,,Ranks

Employee| 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k| > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k| > 100k
8 20 40 80 100 2

157

 Eqgqwidth

 Egdepth

Histograms

0.20 | 20.40 | 40..60 | 60..80 | 80..100
2 104 9739 152 3

0.44 | 44.48 | 48..50 | 50..56 | 55..100

2000 2000 2000 2000 2000

158

