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Lecture 7:
Query Execution and Optimization

Tuesday, February 20, 2007
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Outline

• Chapters 4, 12-15
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DBMS Architecture

How does a SQL engine work ?

• SQL query → relational algebra plan

• Relational algebra plan → Optimized plan

• Execute each operator of the plan
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Relational Algebra

• Formalism for creating new relations from 
existing ones

• Its place in the big picture:

Declartive
query

language

Declartive
query

language
AlgebraAlgebra ImplementationImplementation

SQL,
relational calculus

Relational algebra
Relational bag algebra
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Relational Algebra
• Five operators:

– Union: ∪
– Difference: -
– Selection:σ
– Projection: Π
– Cartesian Product: ×

• Derived or auxiliary operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)
– Renaming:ρ
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1. Union and 2. Difference

• R1 ∪ R2

• Example:  
– ActiveEmployees∪ RetiredEmployees

• R1 – R2

• Example:
– AllEmployees -- RetiredEmployees
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What about Intersection ?

• It is a derived operator

• R1 ∩ R2 = R1 – (R1 – R2)

• Also expressed as a join (will see later)

• Example
– UnionizedEmployees∩ RetiredEmployees
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3. Selection

• Returns all tuples which satisfy a condition

• Notation: σc(R)

• Examples
– σSalary > 40000(Employee)

– σname = “Smith”(Employee)

• The condition c can be =, <, ≤, >, ≥, <>
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σSalary > 40000(Employee)

500000Fred4352342

600000Smith5423341

200000John1234545

SalaryNameSSN

500000Fred4352342

600000Smith5423341

SalaryNameSSN
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4. Projection
• Eliminates columns, then removes duplicates

• Notation:   Π A1,…,An(R)

• Example: project social-security number and 
names:
– Π SSN, Name(Employee)

– Output schema:   Answer(SSN, Name)

Note that there are two parts:
(1) Eliminate columns (easy)
(2) Remove duplicates (hard)
In the “extended” algebra we will separate them.
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Π Name,Salary(Employee)

200000John4352342

600000John5423341

200000John1234545

SalaryNameSSN

60000John

20000John

SalaryName
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5. Cartesian Product

• Each tuple in R1 with each tuple in R2

• Notation: R1 × R2

• Example:  
– Employee × Dependents

• Very rare in practice; mainly used to 
express joins
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Cartesian Product Example 
 
Employee 
Name SSN 
John 999999999 
Tony 777777777 
 
Dependents 
EmployeeSSN Dname 
999999999 Emily 
777777777 Joe 
 
Employee x Dependents 
Name SSN EmployeeSSN Dname 
John 999999999 999999999 Emily 
John 999999999 777777777 Joe 
Tony 777777777 999999999 Emily 
Tony 777777777 777777777 Joe 
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Relational Algebra
• Five operators:

– Union: ∪
– Difference: -
– Selection:σ
– Projection: Π
– Cartesian Product: ×

• Derived or auxiliary operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)
– Renaming:ρ
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Renaming

• Changes the schema, not the instance

• Notation: ρ B1,…,Bn (R)

• Example:
– ρLastName, SocSocNo(Employee)

– Output schema: 
Answer(LastName, SocSocNo)



16

Renaming Example

Employee
Name SSN
John 999999999
Tony 777777777

LastName SocSocNo
John 999999999
Tony 777777777

ρLastName, SocSocNo (Employee)
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Natural Join
• Notation: R1 |×| R2

• Meaning:  R1 |×| R2 = ΠA(σC(R1 × R2))

• Where:
– The selection σC checks equality of all common 

attributes
– The projection eliminates the duplicate common 

attributes
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Natural Join Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
SSN Dname
999999999 Emily
777777777 Joe

Name SSN Dname
John 999999999 Emily
Tony 777777777 Joe

Employee         Dependents = 
ΠName, SSN, Dname(σ SSN=SSN2(Employee x ρSSN2, Dname(Dependents))
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Natural Join

• R=                                S=

• R |×| S=

VZ

ZY

ZX

YX

BA

VZ

WV

UZ

CB

WVZ

VZY

UZY

VZX

UZX

CBA
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Natural Join

• Given the schemas R(A, B, C, D), S(A, C, E), 
what is the schema of R |×| S ?

• Given R(A, B, C),  S(D, E), what is R |×| S  ?

• Given R(A, B),  S(A, B),  what is  R |×| S  ?
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Theta Join

• A join that involves a predicate

• R1 |×| θ R2   =  σ θ (R1 × R2)

• Here θ can be any condition 
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Eq-join

• A theta join where θ is an equality

• R1 |×| A=B R2   =  σ A=B (R1 × R2)

• Example:
– Employee |×| SSN=SSNDependents 

• Most useful join in practice
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Semijoin

• R |× S  = Π A1,…,An (R |×| S)

• Where A1, …, An are the attributes in R

• Example:
– Employee |× Dependents 
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Semijoins in Distributed 
Databases

• Semijoins are used in distributed databases

. . .. . .

NameSSN

Dname

. . .. . .

AgeSSN
Employee

Dependents

network

Employee |×| ssn=ssn(σ age>71 (Dependents))Employee |×| ssn=ssn(σ age>71 (Dependents))

T = Π SSNσ age>71 (Dependents)
R = Employee |× T

Answer = R |×| Dependents
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Complex RA Expressions

Person         Purchase                    Person          Product

σname=fred σname=gizmo

Π pidΠ ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

Π name
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Summary on the Relational 
Algebra

• A collection of 5 operators on relations

• Codd proved in 1970 that the relational 
algebra is equivalent to the relational 
calculus

Relational calculus/
First order logic/ SQL/
declarative language

=
WHAT

Relational algebra/
procedural language

=
HOW

=
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Operations on Bags

A bag = a set with repeated elements

All operations need to be defined carefully on bags

• {a,b,b,c}∪{a,b,b,b,e,f,f}={a,a,b,b,b,b,b,c,e,f,f}

• {a,b,b,b,c,c} – {b,c,c,c,d} = {a,b,b,d}

• σC(R): preserve the number of occurrences

• ΠA(R): no duplicate elimination

• δ = explicit duplicate elimination 

• Cartesian product, join: no duplicate elimination

Important ! Relational Engines work on bags, not sets !

Reading assignment: 5.3 – 5.4



28

Note: RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!!  Need to write C program

SisterLouNancy

SpouseBillMary

CousinJoeMary

FatherMaryFred

RelationshipName2Name1
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From SQL to RA

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20 Purchase Person

buyer=name

city=‘Seattle’
and  age > 20

buyer

σ

Purchase(buyer, product, city)
Person(name, age)
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Also…

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20

Purchase Person

buyer=name

city=‘Seattle’

buyer

σ

Purchase(buyer, product, city)
Person(name, age)

age > 20
σ
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Non-monontone Queries (in class)

SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city=‘Seattle’ AND 
not exists (select *

from Purchase P2, Person Q
where P2.product = P.product
and P2.buyer = Q.name
and Q.age > 20)

SELECT DISTINCT P.product
FROM Purchase P
WHERE P.city=‘Seattle’ AND 
not exists (select *

from Purchase P2, Person Q
where P2.product = P.product
and P2.buyer = Q.name
and Q.age > 20)

Purchase(buyer, product, city)
Person(name, age)
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Extended Logical Algebra Operators
(operate on Bags, not Sets)

• Union, intersection, difference

• Selection  σ
• Projection Π
• Join |x|

• Duplicate elimination δ
• Grouping γ
• Sorting τ
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Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

SELECTcity, count(*)
FROM sales
GROUP BYcity
HAVING sum(price) > 100

sales(product, city, price)

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3  = temporary tables
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Logical v.s. Physical Algebra

• We have seen the logical algebra so far:
– Five basic operators, plus group-by, plus sort

• The Physical algebra refines each operator 
into a concrete algorithm
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Physical Plan

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20

SELECT DISTINCT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘Seattle’ AND 
Q.age > 20

PurchasePerson

buyer=name

city=‘Seattle’

buyer

σ

Purchase(buyer, product, city)
Person(name, age)

age > 20
σ

index-join

sequential scan

δ Hash-based
dup. elim
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Physical Plans Can Be Subtle

SELECT *
FROM Purchase P
WHERE P.city=‘Seattle’

SELECT *
FROM Purchase P
WHERE P.city=‘Seattle’

PurchaseCity-index

buyer

city=‘Seattle’
σ

primary-index-join

sequential scan

Where did the join come from ?
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Architecture of a Database Engine

Parse Query

Select Logical Plan

Select Physical Plan

Query Execution

SQL query

Query
optimization

Logical
plan

Physical
plan
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Question in Class

Logical operator:
Product(pname, cname) |××××| Company(cname, city)

Propose three physical operators for the join, assuming the tables 
are in main memory:

1.
2.
3.
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Question in Class

Product(pname, cname) |x| Company(cname, city)

• 1000000 products
• 1000 companies

How much time do the following physical operators take if the data is in main 
memory ?

• Nested loop join time = 
• Sort and merge = merge-join time =
• Hash join time =
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Cost Parameters

The cost of an operation = total number of I/Os

result assumed to be delivered in main memory

Cost parameters:

• B(R) = number of blocks for relation R

• T(R) = number of tuples in relation R

• V(R, a) = number of distinct values of attribute a

• M = size of main memory buffer pool, in blocks

NOTE: Book uses M for the number of blocks in R,
and B for the number of blocks in main memory
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Cost Parameters

• Clustered table R:
– Blocks consists only of records from this table
– B(R) << T(R)

• Unclustered table R:
– Its records are placed on blocks with other tables
– B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a) 
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Selection and Projection

Selection σ(R), projection Π(R)

• Both are tuple-at-a-time algorithms

• Cost: B(R)

Input buffer Output bufferUnary
operator
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Hash Tables

• Key data structure used in many operators

• May also be used for indexes, as alternative to B+trees

• Recall basics:
– There are n buckets

– A hash function f(k) maps a key k to {0, 1, …, n-1}

– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use overflow blocks when 
needed
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• Assume 1 bucket (block) stores 2 keys + 
pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

Here: h(x) = x mod 4Here: h(x) = x mod 4
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• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3



46

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3
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• Create overflow block, if no space
• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k



48

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of 
keys exceeds the number of buckets (I.e. 
many overflow blocks).
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Main Memory Hash Join

Hash join:  R |x| S

• Scan S, build buckets in main memory

• Then scan R and join

• Cost: B(R) + B(S)

• Assumption: B(S) <= M
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Main Memory
Duplicate Elimination

Duplicate elimination δ(R)

• Hash table in main memory

• Cost: B(R)

• Assumption: B(δ(R)) <= M
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Main Memory Grouping

Grouping:

Product(name, department, quantity)

γdepartment, sum(quantity)(Product) �
Answer(department, sum)

Main memory hash table

Question: How ?
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Nested Loop Joins

• Tuple-based nested loop R ⋈ S

• Cost: T(R) B(S) when S is clustered

• Cost: T(R) T(S) when S is unclustered

for each tuple r in R do

for each tuple s in S do

if r and s join thenoutput (r,s)

for each tuple r in R do

for each tuple s in S do

if r and s join thenoutput (r,s)
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Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the 
following cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4
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Nested Loop Joins

• Block-based Nested Loop Join

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if “r and s join” thenoutput(r,s)

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in brdo

if “r and s join”thenoutput(r,s)
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Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result
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Nested Loop Joins

• Block-based Nested Loop Join
• Cost:

– Read S once: cost B(S)
– Outer loop runs B(S)/(M-2) times, and each 

time need to read R: costs B(S)B(R)/(M-2)
– Total cost:  B(S)  +  B(S)B(R)/(M-2)

• Notice: it is better to iterate over the smaller 
relation first

• R |x| S:  R=outer relation, S=inner relation
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Index Based Selection

Selection on equality: σa=v(R)

• Clustered index on a:  cost B(R)/V(R,a)

• Unclustered index on a: cost T(R)/V(R,a)
– We have seen that this is like a join
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Index Based Selection

• Example:

• Table scan (assuming R is clustered):
– B(R) = 2,000 I/Os

• Index based selection:
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson: don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?cost of σa=v(R) = ?
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Index Based Join

• R       S
• Assume S has an index on the join attribute

><

for each tuple r in R do

lookup the tuple(s) s in S using the index
output (r,s)

for each tuple r in R do

lookup the tuple(s) s in S using the index
output (r,s)
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Index Based Join

Cost (Assuming R is clustered):

• If index is clustered:  B(R) + T(R)B(S)/V(S,a)
• If index is unclustered: B(R) + T(R)T(S)/V(S,a)
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Operations on Very Large Tables

• Partitioned hash algorithms

• Merge-sort algorithms
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Partitioned Hash Algorithms

• Idea: partition a relation R into buckets, on disk

• Each bucket has size approx. B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

• Does each bucket fit in main memory ?
–Yes if B(R)/M <= M,   i.e. B(R) <= M2
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Duplicate Elimination

• Recall:  δ(R) = duplicate elimination 

• Step 1. Partition R into buckets

• Step 2. Apply δ to each bucket (may read in 
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2



64

Grouping

• Recall:  γ(R) = grouping and aggregation

• Step 1. Partition R into buckets

• Step 2. Apply γ to each bucket (may read in 
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2
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Partitioned Hash Join

R |x| S
• Step 1:

– Hash S into M buckets
– send all buckets to disk

• Step 2
– Hash R into M buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets
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Hash-Join
• Partition both relations 

using hash fn h:  R tuples in 
partition i will only match S 
tuples in partition i.

� Probe: Read in a 
partition of R, hash 
it using h2 (≠≠≠≠ h). 
Scan matching 
partition of S, 
search for matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si ( < M-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .
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Partitioned Hash Join

• Cost: 3B(R) + 3B(S)

• Assumption: min(B(R), B(S)) <= M2
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Hybrid Hash Join Algorithm

• Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

• Partition R into k buckets
– First t buckets join immediately with S 
– Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)
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Hybrid Join Algorithm

• How to choose k and t ?
– Choose k large but s.t. k <= M

– Choose t/k large but s.t. t/k * B(S) <= M

– Moreover: t/k * B(S) + k-t <= M

• Assuming t/k * B(S) >> k-t:     t/k = M/B(S)
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Hybrid Join Algorithm

• How many I/Os ?

• Cost of partitioned hash join:  3B(R) + 3B(S)

• Hybrid join saves 2 I/Os for a t/k fraction of buckets

• Hybrid join saves 2t/k(B(R) + B(S))   I/Os

• Cost: (3-2t/k)(B(R) + B(S)) =     (3-2M/B(S))(B(R) + B(S)) 
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Hybrid Join Algorithm

• Question in class: what is the real advantage 
of the hybrid algorithm ?
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External Sorting

• Problem:

• Sort a file of size B with memory M

• Where we need this: 
– ORDER BY in SQL queries

– Several physical operators

– Bulk loading of B+-tree indexes. 

• Will discuss only 2-pass sorting, for when B < M2
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External Merge-Sort: Step 1

• Phase one: load M bytes in memory, sort

DiskDisk

. . .. . .
M

Main memory

Runs of length M bytes
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External Merge-Sort: Step 2

• Merge M – 1 runs into a new run

• Result: runs of length M (M – 1)≈ M2

DiskDisk

. . .. . .

Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory
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Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2
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Extensions, Discussions

• Blocked I/O
– Group b blocks and process them together

– Same effect as increasing the block size by a factor b

• Double buffering:
– Keep two buffers for each input or output stream

– During regular merge on one set of buffers, perform the 
I/O on the other set of buffers

– Decreases M to M/2
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Extensions, Discussions

• Initial run formation (level 0-runs)
– Main memory sort (usually Quicksort): results in initial 

runs of length M

– Replacement selection: start by reading a chunk of file 
of size M, organize as heap, start to output the smallest 
elements in increasing order; as the buffer empties, read 
more data; the new elements are added to the heap as 
long as they are > the last element output. Expected run 
lengths turns out to be approx 2M
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Duplicate Elimination

Duplicate elimination δ(R)
• Idea: do a two step merge sort, but change one of 

the steps

• Question in class: which step needs to be changed 
and how ?

• Cost = 3B(R)
• Assumption: B(δ(R)) <= M2
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Grouping

Grouping: γa, sum(b)(R)

• Same as before: sort, then compute the 
sum(b) for each group of a’s

• Total cost: 3B(R)

• Assumption: B(R) <= M2
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Merge-Join

Join R |x| S
• Step 1a: initial runs for R
• Step 1b: initial runs for S
• Step 2: merge and join
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Merge-Join

Main memory

DiskDisk

. . .. . .

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
If B <= M2 then we are done
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Two-Pass Algorithms Based on 
Sorting

Join R |x| S

• If the number of tuples in R matching those 
in S is small (or vice versa) we can compute 
the join during the merge phase

• Total cost: 3B(R)+3B(S) 

• Assumption: B(R) + B(S) <= M2



83

Summary of External Join 
Algorithms

• Block Nested Loop: B(S) + B(R)*B(S)/M

• Index Join: B(R) + T(R)B(S)/V(S,a)

• Partitioned Hash: 3B(R)+3B(S);
– min(B(R),B(S)) <= M2

• Merge Join: 3B(R)+3B(S
– B(R)+B(S) <= M2
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Example

Product(pname, maker), Company(cname, city)

• How do we execute this query ?

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and  Company.city = “Seattle”

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and  Company.city = “Seattle”
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Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index:     Product.pname, Company.cname

Unclustered index: Product.maker, Company.city
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><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Logical Plan:
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><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join
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><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Index-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

Which one is better ??Which one is better ??
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><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

T(Company) / V(Company, city) 

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city) 

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city) 

× T(Product) / V(Product, maker)
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><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Table-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

B(Company) 

3B(Product)

T(Product)

No extra cost
(why ?)

Total cost:
(2a): 3B(Product) + B(Company) 
(2b): T(Product) + B(Company)

Total cost:
(2a): 3B(Product) + B(Company) 
(2b): T(Product) + B(Company)
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Plan 1:   T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1:   T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Which one is better ??Which one is better ??

It depends on the data !!It depends on the data !!
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Example

• Case 1: V(Company, city) ≈ T(Company) 

• Case 2: V(Company, city) << T(Company)

T(Company) = 5,000     B(Company) = 500      M = 100
T(Product) = 100,000    B(Product)  = 1,000

We may assume V(Product, maker) ≈ T(Company)  (why ?)

T(Company) = 5,000     B(Company) = 500      M = 100
T(Product) = 100,000    B(Product)  = 1,000

We may assume V(Product, maker) ≈ T(Company)  (why ?)

V(Company,city) = 2,000V(Company,city) = 2,000

V(Company,city) = 20V(Company,city) = 20



93

Which Plan is Best ?

Plan 1:   T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1:   T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:
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Lessons

• Need to consider several physical plan
– even for one, simple logical plan

• No magic “best” plan: depends on the data

• In order to make the right choice
– need to have statistics over the data

– the B’s, the T’s, the V’s
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Query Optimzation

• Have a SQL query Q

• Create a plan P

• Find equivalent plans P = P’ = P’’ = …

• Choose the “cheapest”.  

HOW ??
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Logical Query Plan
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

σ

In class:
find a “better” plan P’

P=

Purchasse(buyer, city)
Person(name, phone)
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Logical Query Plan

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100

SELECTcity, sum(quantity)
FROM sales
GROUP BYcity
HAVING sum(quantity) < 100

sales(product, city, quantity)

γ city, sum(quantity)→p

σ p < 100

T1(city,p)

T2(city,p)

In class:
find a “better” plan P’

Q=

P=
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Optimization

• Main idea: rewrite a logical query plan into 
an equivalent “more efficient” logical plan
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The three components of an 
optimizer

We need three things in an optimizer:

• Algebraic laws

• An optimization algorithm

• A cost estimator
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Algebraic Laws

• Commutative and Associative Laws
R ∪ S = S ∪ R,  R ∪ (S ∪ T) = (R ∪ S) ∪ T

R |×| S = S |×| R,  R |×| (S |×| T) = (R |×| S) |×| T

R |×| S = S |×| R,  R |×| (S |×| T) = (R |×| S) |×| T

• Distributive Laws
R |×| (S ∪ T)  =  (R |×| S) ∪ (R |×| T)
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Algebraic Laws

• Laws involving selection:
σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
σ C OR C’(R) = σ C(R) ∪ σ C’(R)
σ C (R |×| S) = σ C (R) |×| S 

• When C involves only attributes of R
σ C (R – S) = σ C (R) – S
σ C (R ∪ S) = σ C (R) ∪ σ C (S)
σ C (R |×| S)  = σ C (R) |×| S
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Algebraic Laws

• Example:  R(A, B, C, D), S(E, F, G)
σ F=3 (R |×| D=E S) =                                     ?

σ A=5 AND G=9 (R |×| D=E S) =                         ?
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Algebraic Laws

• Laws involving projections
ΠM(R |×| S) = ΠM(ΠP(R) |×| ΠQ(S))

ΠM(ΠN(R)) = ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R |×| D=E S) = Π ? (Π?(R) |×| D=E Π?(S)) 
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Algebraic Laws

• Laws involving grouping and aggregation:
δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

• Which of the following are “duplicate insensitive”?
sum, count, avg, min, max

γA, agg(D)(R(A,B) |×| B=C S(C,D)) =  
γA, agg(D)(R(A,B) |×| B=C (γC, agg(D)S(C,D)))
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Optimizations Based on 
Semijoins

THIS IS ADVANCED STUFF; NOT ON 
THE FINAL

• R        S  = Π A1,…,An (R        S)
• Where the schemas are:

– Input: R(A1,…An),  S(B1,…,Bm)
– Output: T(A1,…,An)
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Optimizations Based on 
Semijoins

Semijoins: a bit of theory (see [AHV])
• Given a query:

• A full reducer for Q is a program:

• Such that no dangling tuples remain in any relation

Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn ))Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn ))

Ri1 := Ri1 Rj1

Ri2 := Ri2 Rj2

. . . . .

Rip := Rip Rjp

Ri1 := Ri1 Rj1

Ri2 := Ri2 Rj2

. . . . .

Rip := Rip Rjp
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Optimizations Based on 
Semijoins

• Example:

• A full reducer is:

Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

The new tables have only the tuples necessary to compute Q(E)
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Optimizations Based on 
Semijoins

• Example: 

• Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”

Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)
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Optimizations Based on 
Semijoins

• Semijoins in [Chaudhuri’98]

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal
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Optimizations Based on 
Semijoins

• First idea:

CREATE VIEW LimitedAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW LimitedAvgSalAs (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSalV
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal
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Optimizations Based on 
Semijoins

• Better: full reducer
CREATE VIEW PartialResult AS

(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)
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Optimizations Based on 
Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal
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Cost-based Optimizations

• Main idea: apply algebraic laws, until 
estimated cost is minimal

• Practically: start from partial plans, 
introduce operators one by one
– Will see in a few slides

• Problem: there are too many ways to apply 
the laws, hence too many (partial) plans
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Cost-based Optimizations

Approaches:

• Top-down: the partial plan is a top 
fragment of the logical plan

• Bottom up: the partial plan is a bottom 
fragment of the logical plan
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Dynamic Programming

Originally proposed in System R

• Only handles single block queries:

• Heuristics: selections down, projections up

• Dynamic programming: join reordering

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk
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Join Trees

• R1 |×| R2 |×| …. |×| Rn
• Join tree:

• A plan = a join tree
• A partial plan = a subtree of a join tree

R3 R1 R2 R4
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Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4
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Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5
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Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4
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Dynamic Programming

• Given: a query  R1 |×| R2 |×| … |×| Rn

• Assume we have a function cost() that gives 
us the cost of every join tree

• Find the best join tree for the query
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Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the best 
plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery
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Dynamic Programming

• For each subquery Q ⊆{R1, …, Rn} 
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)
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Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)
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Dynamic Programming

• Step i: For each Q ⊆{R1, …, Rn} of 
cardinality i do:
– Compute Size(Q)    (later…)

– For every pair of subqueries Q’, Q’’
s.t. Q = Q’∪ Q’’
compute cost(Plan(Q’) |×| Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan
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Dynamic Programming

• Return Plan({R1, …, Rn})
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Dynamic Programming

To illustrate, we will make the following simplifications:
• Cost(P1 |×| P2) = Cost(P1) + Cost(P2) +

size(intermediate result(s))
• Intermediate results:

– If P1 = a join, then the size of the intermediate result is size(P1), 
otherwise the size is 0

– Similarly for P2
• Cost of a scan = 0



127

Dynamic Programming

• Example:

• Cost(R5 |×| R7)  = 0       (no intermediate results)

• Cost((R2 |×| R1) |×| R7) 
= Cost(R2 |×| R1) + Cost(R7) + size(R2 |×| R1)
= size(R2 |×| R1)
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Dynamic Programming

• Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000

• Size estimation: T(A |×| B) = 0.01*T(A)*T(B)
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Reducing the Search Space 

• Left-linear trees v.s. Bushy trees

• Trees without cartesian product

Example:  R(A,B) |×| S(B,C) |×| T(C,D)

Plan: (R(A,B) |×| T(C,D)) |×| S(B,C) has a cartesian product –
most query optimizers will not consider it
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Dynamic Programming: 
Summary

• Handles only join queries:
– Selections are pushed down (i.e. early)
– Projections are pulled up (i.e. late)

• Takes exponential time in general, BUT:
– Left linear joins may reduce time
– Non-cartesian products may reduce time further
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Rule-Based Optimizers

• Extensible collection of rules
Rule = Algebraic law with a direction

• Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

• Volcano (later SQL Sever)
• Starburst (later DB2)
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Completing the 
Physical Query Plan

• Choose algorithm to implement each 
operator
– Need to account for more than cost:

• How much memory do we have ?

• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize

– To pipeline
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Materialize Intermediate Results 
Between Operators

⋈

⋈

⋈ T

R S

U

HashTable  S
repeat read(R, x)

y  join(HashTable, x)
write(V1, y)

HashTable  T
repeat read(V1, y)

z  join(HashTable, y)
write(V2, z)

HashTable  U
repeat read(V2, z)

u  join(HashTable, z)
write(Answer, u)

HashTable  S
repeat read(R, x)

y  join(HashTable, x)
write(V1, y)

HashTable  T
repeat read(V1, y)

z  join(HashTable, y)
write(V2, z)

HashTable  U
repeat read(V2, z)

u  join(HashTable, z)
write(Answer, u)

V1

V2
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Materialize Intermediate Results 
Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost = 

• How much main memory do we need ?
– M = 
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Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1  S
HashTable2  T
HashTable3  U
repeat read(R, x)

y  join(HashTable1, x) 
z  join(HashTable2, y)
u  join(HashTable3, z)
write(Answer, u)

HashTable1  S
HashTable2  T
HashTable3  U
repeat read(R, x)

y  join(HashTable1, x) 
z  join(HashTable2, y)
u  join(HashTable3, z)
write(Answer, u)

pi
pe

lin
e
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Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost = 

• How much main memory do we need ?
– M = 
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Pipeline in Bushy Trees

⋈

⋈

⋈

XR S

⋈

⋈ Z

Y

⋈

V

T

⋈

I



140

Example

• Logical plan is:

• Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks
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Example

Naïve evaluation: 

• 2 partitioned hash-joins

• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101
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Example

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on 

y into 50 buckets (50 buffers)   -- here we pipeline
• Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101
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Example

Continuing:
• How large are the 50 buckets on y ?  Answer: k/50.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join with memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101
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Example

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100

• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101
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Example

Continuing:
• If k > 5000 then materialize instead of pipeline
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101
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Example

Summary:

• If k <= 50, cost = 55,000

• If 50 < k <=5000, cost = 75,000 + 2k

• If k > 5000, cost = 75,000 + 4k
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Size Estimation

The problem: Given an expression E, compute 
T(E) and V(E, A) 

• This is hard without computing E

• Will ‘estimate’ them instead
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Size Estimation

Estimating the size of a projection

• Easy: T(ΠL(R)) = T(R)

• This is because a projection doesn’t 
eliminate duplicates
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Size Estimation

Estimating the size of a selection
• S = σA=c(R)

– T(S) san be anything from 0 to T(R) – V(R,A) + 1
– Estimate: T(S) = T(R)/V(R,A)
– When V(R,A) is not available, estimate T(S) = T(R)/10

• S = σA<c(R)
– T(S) can be anything from 0 to T(R)
– Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
– When Low, High unavailable, estimate T(S) = T(R)/3



150

Size Estimation

Estimating the size of a natural join, R |×|A S

• When the set of A values are disjoint, then 
T(R |×|A S) = 0

• When A is a key in S and a foreign key in 
R, then T(R |×|A S) = T(R)

• When A has a unique value, the same in R 
and S, then T(R |×|A S) = T(R) T(S)
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Size Estimation

Assumptions:

• Containment of values: if V(R,A) <= V(S,A), then the set 
of A values of R is included in the set of A values of S
– Note: this indeed holds when A is a foreign key in R, and a key in 

S

• Preservation of values: for any other attribute B, 
V(R |×| A S, B) = V(R, B)   (or V(S, B))
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Size Estimation

Assume V(R,A) <= V(S,A)

• Then each tuple t in R joins some tuple(s) in S
– How many ?

– On average T(S)/V(S,A)

– t will contribute T(S)/V(S,A) tuples in R |×|A S

• Hence T(R |×|A S) = T(R) T(S) / V(S,A)

In general: T(R |×|A S) = T(R) T(S) / max(V(R,A),V(S,A))
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Size Estimation

Example:

• T(R) = 10000,  T(S) = 20000

• V(R,A) = 100,  V(S,A) = 200

• How large is R |×| A S  ?

Answer: T(R |×|A S) = 10000 20000/200 = 1M
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Size Estimation

Joins on more than one attribute:

• T(R |×|A,B S) = 

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))
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Histograms

• Statistics on data maintained by the 
RDBMS

• Makes size estimation much more accurate 
(hence, cost estimations are more accurate)
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Histograms

Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:
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Histograms

Ranks(rankName, salary)

• Estimate the size of Employee |×| SalaryRanks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks
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Histograms

• Eqwidth

• Eqdepth

315297391042

80..10060..8040..6020..400..20

20002000200020002000

55..10050..5648..5044..480..44


