Data Mining, Database Tuning

Tuesday, Feb. 27, 2007

Outline

- Data Mining: chapter 26
- Database tuning: chapter 20

Data Mining

- Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.
- Example pattern (Census Bureau Data):
- If (relationship $=$ husband $)$, then $($ gender $=$ male). 99.6%

Data Mining

- Valid: The patterns hold in general.
- Novel: We did not know the pattern beforehand.
- Useful: We can devise actions from the patterns.
- Understandable: We can interpret and comprehend the patterns.

Why Use Data Mining Today?

Human analysis skills are inadequate:

- Volume and dimensionality of the data
- High data growth rate

Availability of:

- Data
- Storage
- Computational power
- Off-the-shelf software
- Expertise

Types of Data Mining

- Association Rules
- Decision trees
- Clustering
- Niave Bayes
- Etc, etc, etc.

We'll discuss only association rules, and only briefly.

Association Rules

- Most studied mining method in db community:
- Simple, easy to understand
- Clever, scalable algorithm

We discuss only association rules in class

- Project Phase 4, Task 1:
- Use association rules
- You should be done in 10'
- Tasks 2, 3: may try something else
- E.g Bayesian Networks
- But need to read first

Association Rules

Market Basket Analysis

- Consider shopping cart filled with several items
- Market basket analysis tries to answer the following questions:
- Who makes purchases?
- What do customers buy together?
- In what order do customers purchase items?

Market Basket Analysis

A database of customer transactions

- Each transaction is a set of items
- Example:

Transaction with TID
111 contains items
\{Pen, Ink, Milk, Juice \}

| TID | CID | Date \quad Item | Qty |
| :---: | :---: | :---: | :---: | :---: |
| 111 | 201 | $5 / 1 / 99$ Pen | 2 |
| 111 | 201 | $5 / 1 / 99$ Ink | 1 |
| 111 | 201 | $5 / 1 / 99$ Milk | 3 |
| 111 | 201 | $5 / 1 / 99$ Juice | 6 |
| 112 | 105 | $6 / 3 / 99$ Pen | 1 |
| 112 | 105 | $6 / 3 / 99$ Ink | 1 |
| 112 | 105 | $6 / 3 / 99$ Milk | 1 |
| 113 | 106 | $6 / 5 / 99$ Pen | 1 |
| 113 | 106 | 6/5/99 Milk | 1 |
| 114 | 201 | $7 / 1 / 99$ Pen | 2 |
| 114 | 201 | $7 / 1 / 99$ Ink | 2 |
| 114 | 201 | $7 / 1 / 99$ Juice | 4 |

Market Basket Analysis

Coocurrences

- 80% of all customers purchase items X, Y and Z together.
Association rules
- 60% of all customers who purchase X and Y also buy Z.
Sequential patterns
- 60% of customers who first buy X also purchase Y within three weeks.

Market Basket Analysis

We prune the set of all possible association rules using two interestingness measures:

- Confidence of a rule:
- X -->Y has confidence c if $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{c}$
- Support of a rule:
- X -->Y has support s if $\mathrm{P}(\mathrm{XY})=\mathrm{s}$

We can also define

- Support of an itemset (a coocurrence) XY:
- XY has support s if $\mathrm{P}(\mathrm{XY})=\mathrm{s}$

Market Basket Analysis

Examples:

- $\{$ Pen $\}=>\{$ Milk $\}$ Support: 75\%
Confidence: 75\%
- $\{$ Ink $\}=>\{$ Pen $\}$

Support: 100\%
Confidence: 100\%

| TID | CID | Date \quad Item | Qty |
| :---: | :---: | :---: | :---: | :---: |
| 111 | 201 | $5 / 1 / 99$ Pen | 2 |
| 111 | 201 | $5 / 1 / 99$ Ink | 1 |
| 111 | 201 | $5 / 1 / 99$ Milk | 3 |
| 111 | 201 | $5 / 1 / 99$ Juice | 6 |
| 112 | 105 | $6 / 3 / 99$ Pen | 1 |
| 112 | 105 | $6 / 3 / 99$ Ink | 1 |
| 112 | 105 | $6 / 3 / 99$ Milk | 1 |
| 113 | 106 | 6/5/99 Pen | 1 |
| 113 | 106 | 6/5/99 Milk | 1 |
| 114 | 201 | $7 / 1 / 99$ Pen | 2 |
| 114 | 201 | $7 / 1 / 99$ Ink | 2 |
| 114 | 201 | $7 / 1 / 99$ Juice | 4 |

Market Basket Analysis

Find all itemsets with support $>=75 \%$?

| TID | CID | Date \quad Item | Qty |
| :---: | :---: | :---: | :---: | :---: |
| 111 | 201 | $5 / 1 / 99$ Pen | 2 |
| 111 | 201 | $5 / 1 / 99$ Ink | 1 |
| 111 | 201 | $5 / 1 / 99$ Milk | 3 |
| 111 | 201 | $5 / 1 / 99$ Juice | 6 |
| 112 | 105 | $6 / 3 / 99$ Pen | 1 |
| 112 | 105 | $6 / 3 / 99$ Ink | 1 |
| 112 | 105 | $6 / 3 / 99$ Milk | 1 |
| 113 | 106 | 6/5/99 Pen | 1 |
| 113 | 106 | 6/5/99 Milk | 1 |
| 114 | 201 | $7 / 1 / 99$ Pen | 2 |
| 114 | 201 | $7 / 1 / 99$ Ink | 2 |
| 114 | 201 | $7 / 1 / 99$ Juice | 4 |

Market Basket Analysis

Can you find all association rules with support $>=50 \%$?	TID	CID	Date Item	Qty
	111	201	5/1/99 Pen	2
	111	201	5/1/99 Ink	1
	111	201	5/1/99 Milk	3
	111	201	5/1/99 Juice	6
	112	105	6/3/99 Pen	1
	112	105	6/3/99 Ink	1
	112	105	6/3/99 Milk	1
	113	106	6/5/99 Pen	1
	113	106	6/5/99 Milk	1
	114	201	7/1/99 Pen	2
	114	201	7/1/99 Ink	2
	114	201	7/1/99 Juice	4

Finding Frequent Itemsets

- Input: a set of "transactions":

TID	ItemSet
T_{1}	Pen, Milk, Juice, Wine
T_{2}	Pen, Beer, Juice, Eggs, Bread, Salad
\ldots	
T_{n}	Beer, Diapers

Finding Frequent Itemsets

- Itemset I; E.g I = \{Milk, Eggs, Diapers $\}$

TID	ItemSet
T_{1}	Pen, Milk, Juice, Wine
T_{2}	Pen, Beer, Juice, Eggs, Bread, Salad
\ldots	
T_{n}	Beer, Diapers

Support of $I=\operatorname{supp}(I)=\#$ of transactions that contain I

Finding Frequent Itemsets

- Find ALL itemsets I with supp(I) > minsup

TID	ItemSet
T_{1}	Pen, Milk, Juice, Wine
T_{2}	Pen, Beer, Juice, Eggs, Bread, Salad
\ldots	
T_{n}	Beer, Diapers

Problem: too many I's to check; too big a table (sequential scan)

A priory property

$\mathrm{I} \subset \mathrm{I}^{\prime} \Rightarrow \operatorname{supp}(\mathrm{I}) \geq \operatorname{supp}\left(\mathrm{I}^{\prime}\right)(\mathrm{WHY}$??)

TID	ItemSet
T_{1}	Pen, Milk, Juice, Wine
T_{2}	Pen, Beer, Juice, Eggs, Bread, Salad
\ldots	
T_{n}	Beer, Diapers

Question: which is bigger supp(\{Pen\}) or supp (\{Pen, Beer \}) ?

The A-priori Algorithm

Goal: find all itemsets I s.t. $\operatorname{supp}(\mathrm{I})>$ minsupp

- For each item X check if $\operatorname{supp}(X)>$ minsupp then retain I_{1} $=\{\mathrm{X}\}$
- $\mathrm{K}=1$
- Repeat
- For every itemset I_{k}, generate all itemsets I_{k+1} s.t. $I_{k} \subset I_{k+1}$
- Scan all transactions and compute $\operatorname{supp}\left(\mathrm{I}_{\mathrm{k}+1}\right)$ for all itemsets $\mathrm{I}_{\mathrm{k}+1}$
- Drop itemsets I_{k+1} with support < minsupp
- Until no new frequent itemsets are found

Association Rules

Finally, construct all rules $\mathrm{X} \rightarrow \mathrm{Y}$ s.t.

- XY has high support
- $\operatorname{Supp}(X Y) / \operatorname{Supp}(X)>$ min-confidence

Database Tuning

- Goal: improve performance, without affecting the application
- Recall the "data independence" principle
- How to achieve good performance:
- Make good design choices (we've been studying this for 8 weeks...)
- Physical database design, or "database tuning"

The Database Workload

- A list of queries, together with their frequencies
- Note these queries are typically parameterized, since they are embedded in applications
- A list of updates and their frequencies
- Performance goals for each type of query and update

Analyze the Workload

- For each query:
- What tables/attributes does it touch
- How selective are the conditions; note: this is even harder since queries are parameterized
- For each update:
- What kind of update
- What tables/attributes does it affect

Physical Design and Tuning

- Choose what indexes to create
- Tune the conceptual schema:
- Alternative BCNF form (recall: there can be several choices)
- Denormalization: may seem necessary for performance
- Vertical/horizontal partitioning (see the lecture on views)
- Materialized views
- Manual query/transaction rewriting

Guidelines for Index Selection

- Guideline 1: don't build it unless someone needs it !
- Guideline 2: consider building it if it occurs in a WHERE clause
- WHERE R.A=555 --- consider B+-tree or hash-index
- WHERE R.A > 555 and R.A < 777 -- consider B+ tree

Guidelines for Index Selection

- Guideline 3: Multi-attribute indexes
- WHERE R.A = 555 and R.B = 999 --- consider an index with key (A,B)
- Note: multi-attribute indexes enable "index only" strategies
- Guideline 4: which index to cluster
- Rule of thumb: range predicate \Rightarrow clustered
- Rule of thumb: "index only" \Rightarrow unclustered

Guidelines for Index Selection

- Guideline 5: Hash v.s. B+ tree
- For index nested loop join: prefer hash
- Range predicates: prefer B+
- Guideline 6: balance maintenance cost v.s. benefit
- If touched by too many updates, perhaps drop it

Clustered v.s. Unclustered Index

- Recall that when the selectivity is low, then an unclustered index may be less efficient than a linear scan.
- See graph on pp. 660

Co-clustering Two Relations

Product(pid, pname, manufacturer, price)
Company(cid, cname, address)

Index-Only Plans

SELECT Company.name FROM Company, Product WHERE Company.cid = Product.manufacturer

SELECT Company.name, Company.city,Product.price FROM Company, Product WHERE Company.cid = Product.manufacturer

How can we evaluate these using an index only ?

Automatic Index Selection

SQL Server -- see book

Denormalization

- 3NF instead of BCNF
- Alternative BCNF when possible
- Denormalize (I.e. keep the join)
- Vertical partitioning
- Horizontal partitioning

